Bio-Mediated Synthesis of Nanoparticles for Fluorescence Sensors

$30.00

Bio-Mediated Synthesis of Nanoparticles for Fluorescence Sensors

Somasundaram Anbu Anjugam Vandarkuzhali, Salman Ahmad Khan, Subramanian Singaravadivel, Gandhi Sivaraman

The nature deeds alike a hefty “bio-laboratory” embracing of plants, algae, fungi, yeast etc. which are poised of biomolecules. These indeed befalling biomolecules must stood notorious to play an active role in the establishment of nanoparticles through diverse shapes and sizes thus acting as a driving force intended for the scheming of greener, safe and environmentally benign protocols for the synthesis of nanoparticles. The contemporary chapter targets the proportional biogenic synthesis and mechanisms of nanoparticles using biomolecules. The practice of biomolecules not only diminishes the price of synthesis but also curtails the need of using hazardous chemicals and arouses ‘green synthesis’. It also emphases on aspects of binding of biomolecules to nanoparticles and certain of the applications of the biosynthesized nanoparticles as sensor for cations, anions and also biosensors.

Keywords
Chemosensors, Nanoparticles, Naked Eye Sensing, Fluorescence, Imaging

Published online 8/10/2021, 30 pages

Citation: Somasundaram Anbu Anjugam Vandarkuzhali, Salman Ahmad Khan, Subramanian Singaravadivel, Gandhi Sivaraman, Bio-Mediated Synthesis of Nanoparticles for Fluorescence Sensors, Materials Research Foundations, Vol. 111, pp 155-184, 2021

DOI: https://doi.org/10.21741/9781644901571-6

Part of the book on Bioinspired Nanomaterials

References
[1] C. Joachim, Nat. Mater. 4 (2005) 4, 107-109. https://doi.org/10.1038/nmat1319
[2] Y. Xia, Y. J. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem. Int. Ed. 48 (2009) 60-103. https://doi.org/10.1002/anie.200802248
[3] Z. Y. Zhou, N. Tian, J. T. Li, I. Broadwell, S. G. Sun, Chem. Soc. Rev. 40 (2011) 4167-4185. https://doi.org/10.1039/c0cs00176g
[4] Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, Y. Q. Yan, Adv. Mater. 15 (2003) 353-389. https://doi.org/10.1002/adma.200390087
[5] G. Chen, Y. Zhao, G. Fu, P. N. Duchesne, L. Gu, Y. Zheng, X. Weng, M. Chen, P. Zhang, C.-W. Pao, Science, 344 (2014) 495-499. https://doi.org/10.1126/science.1252553
[6] B. H. Wu, N. F. Zheng, Nano Today, 8 (2013) 168-197. https://doi.org/10.1016/j.nantod.2013.02.006
[7] L. Wei, J. Lu, H. Xu, A. Patel, Z.-S. Chen, G. Chen, Drug Discov. Today, 20 (2015) 595. https://doi.org/10.1016/j.drudis.2014.11.014
[8] T. Klaus, R. Joerger, E. Olsson, C. G. Granqvist, Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 13611-13614. https://doi.org/10.1073/pnas.96.24.13611
[9] J. Gardea-Torresdey, K. Tiemann, G. Gamez, K. Dokken, S. Tehuacanero, M. Jose-Yacaman, J. Nanopart. Res. 1 (1999) 397-404. https://doi.org/10.1023/A:1010008915465
[10] E. Dujardin, C. Peet, G. Stubbs, J. N. Culver, S. Mann, Nano Lett. 3 (2003) 413-417. https://doi.org/10.1021/nl034004o
[11] J. Xie, Y. Zheng, J. Y. Ying, J. Am. Chem. Soc. 131 (2009) 888-889. https://doi.org/10.1021/ja806804u
[12] M. Mertig, L. C. Ciacchi, R. Seidel, W. Pome, A. De Vita, Nano Lett. 2 (2002) 841-844. https://doi.org/10.1021/nl025612r
[13] E. Dujardin, S. Mann, Adv. Mater, 14 (2002) 1-14. https://doi.org/10.1002/1521-4095(20020605)14:11<775::AID-ADMA775>3.0.CO;2-0
[14] A.-W. Xu, Y. Ma, H. Cölfen, J. Mater. Chem. 17 (2007) 415-449. https://doi.org/10.1039/B611918M
[15] F. C. Meldrum, H. Cölfen, Chem. Rev. 108 (2008) 4332-4432. https://doi.org/10.1021/cr8002856
[16] S. Mann, Biomineralization, Oxford University Press, Oxford, 2001.
[17] F. J. Eber, S. Eiben, H. Jeske, C. Wege, Angew. Chem. Int. Ed. 52 (2013) 7203-7207. https://doi.org/10.1002/anie.201300834
[18] B. Cao, Y. Zhu, L. Wang, C. Mao, Angew. Chem. Int. Ed. 52 (2013) 11750-11754. https://doi.org/10.1002/anie.201303854
[19] F. Wang, S. L. Nimmo, B. Cao, C. Mao, Chem. Sci. 3 (2012) 2639-2645. https://doi.org/10.1039/c2sc00583b
[20] C. Mao, F. Wang, B. Cao, Angew. Chem. Int. Ed. 51 (2012) 6411-6415. https://doi.org/10.1002/anie.201107824
[21] B. Cao, H. Xu, C. Mao, Angew. Chem. Int. Ed. 50 (2011) 6264-6268. https://doi.org/10.1002/anie.201102052
[22] F. Wang, B. Cao, C. Mao, Chem. Mater. 22 (2010) 3630-3636. https://doi.org/10.1021/cm902727s
[23] F. Wang, D. Li, C. Mao, Adv. Funct. Mater. 18 (2008) 4007-4013. https://doi.org/10.1002/adfm.200800889
[24] L. F. Hakim, J. L. Portman, M. D. Casper, A.W. Weimer, Powder Technology, 160 (2015) 149-160. https://doi.org/10.1016/j.powtec.2005.08.019
[25] P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parishcha, P.V. Ajaykumar, M. Alam, R. Kumar, M. Sastry, Nano Letters, 1 (2001) 515-519. https://doi.org/10.1021/nl0155274
[26] S.L. Tripp, S.V. Pusztay, A.E. Ribbe, A. Wei, J. Am. Chem. Soc, 124 (2004) 7914-7915. https://doi.org/10.1021/ja0263285
[27] J. Huang, L.Lin, D. Sun, H. Chen, D. Yang, Q. Li, Chem. Soc. Rev, 44 (2015) 6330-6374. https://doi.org/10.1039/C5CS00133A
[28] V. Patel, D. Berthold, P. Puranik, M. Gantar, Biotech. Rep. 5 (2015) 112-119. https://doi.org/10.1016/j.btre.2014.12.001
[29] K. P. Talaro, A. Talaro, G. Delisle, L. Tomalty,
[30] Foundations in microbiology, McGraw-Hill Higher Education, Burr Ridge, 1996.
[31] B. Nair, T. Pradeep, Cryst. Growth Des. 2 (2002) 293-298. https://doi.org/10.1021/cg0255164
[32] R. Y. Parikh, S. Singh, B. L. V. Prasad, M. S. Patole, M. Sastry, Y. S. Shouche, Chem Bio Chem, 9 (2009) 1415-1422. https://doi.org/10.1002/cbic.200700592
[33] D. Mandal, M. E. Bolander, D. Mukhopadhyay, G. Sarkar, P. Mukherjee, Appl. Microbiol. Biotechnol. 69 (2006) 485-492. https://doi.org/10.1007/s00253-005-0179-3
[34] L. Q. Lin, W. W. Wu, J. L. Huang, D. H. Sun, N. M. Waithera, Y. Zhou, H. T. Wang, Q. B. Li, Chem. Eng. J. 225 (2013) 857-864. https://doi.org/10.1016/j.cej.2013.04.003
[35] A. K. Manocchi, N. E. Horelik, B. Lee, H. Yi, Langmuir, 26 (2010) 3670-3677. https://doi.org/10.1021/la9031514
[36] C. Yang, C.-H. Choi, C.-S. Lee, H. Yi, ACS Nano, 7 (2013) 5032-5044. https://doi.org/10.1021/nn4005582
[37] W. Ernst, Appl. Geochem. 11 (1996) 163-167. https://doi.org/10.1016/0883-2927(95)00040-2
[38] J. Gardea-Torresdey, J. Parsons, E. Gomez, J. Peralta-Videa, H. Troiani, P. Santiago, M. J. Yacaman, Nano Lett. 2 (2002) 397-401. https://doi.org/10.1021/nl015673+
[39] H. L. Parker, E. L. Rylott, A. J. Hunt, J. R. Dodson, A. F. Taylor, N. C. Bruce, J. H. Clark, PLoS One. 9 (2014) e87192. https://doi.org/10.1371/journal.pone.0087192
[40] S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. Sastry, Nat. Mater. 3 (2004) 482-488. https://doi.org/10.1038/nmat1152
[41] J. L. Huang, G. W. Zhan, B. Y. Zheng, D. H. Sun, F. F. Lu, Y. Lin, H. M. Chen, Z. D. Zheng, Y. M. Zheng, Q. B. Li, Ind. Eng. Chem. Res. 50 (2011) 9095-9106. https://doi.org/10.1021/ie200858y
[42] B. Zheng, T. Kong, X. Jing, T. Odoom-Wubah, X. Li, D. Sun, F. Lu, Y. Zheng, J. Huang, Q. Li, J. Colloid Interface Sci. 396 (2013) 138-145. https://doi.org/10.1016/j.jcis.2013.01.021
[43] H. R. Zhang, Q. B. Li, Y. H. Lu, D. H. Sun, X. P. Lin, X. Deng, N. He, S. Z. Zheng, J. Chem. Technol. Biotechnol. 80 (2005) 285-290. https://doi.org/10.1002/jctb.1191
[44] J. R. Lloyd, FEMS Microbiol. Rev. 27 (2003) 411-425. https://doi.org/10.1016/S0168-6445(03)00044-5
[45] P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S. R. Sainkar, M. I. Khan, R. Parishcha, P. V. Ajaykumar, M. Alam, R. Kumar, M. Sastry, Nano Lett. 1 (2001) 515-519. https://doi.org/10.1021/nl0155274
[46] I. W.-S. Lin, C.-N. Lok, C.-M. Che, Chem. Sci. 5 (2014) 3144-3150. https://doi.org/10.1039/C4SC00138A
[47] L. M. Rösken, S. Körsten, C. B. Fischer, A. Schönleber, S. van Smaalen, S. Geimer, S. Wehner, J. Nanopart. Res. 16 (2014) 2370. https://doi.org/10.1007/s11051-014-2370-x
[48] Y. Konishi, T. Tsukiyama, T. Tachimi, N. Saitoh, T. Nomura, S. Nagamine, Electrochim. Acta, 53 (2007) 186-192. https://doi.org/10.1016/j.electacta.2007.02.073
[49] Y. Konishi, T. Tsukiyama, K. Ohno, N. Saitoh, T. Nomura, S. Nagamine, Hydrometallurgy, 81 (2006) 24-29. https://doi.org/10.1016/j.hydromet.2005.09.006
[50] A. Ahmad, S. Senapati, M. I. Khan, R. Kumar, M. Sastry, Langmuir, 19 (2003) 3550-3553. https://doi.org/10.1021/la026772l
[51] A. N. Mabbett, P. Yong, J. P. G. Farr, L. E. Macaskie, Biotechnol. Bioeng. 87 (2004) 104-109. https://doi.org/10.1002/bit.20105
[52] A. N. Mabbett, P. Yong, J. P. G. Farr, L. E. Macaskie, Biotechnol. Bioeng. 87 (2004) 104-109. https://doi.org/10.1002/bit.20105
[53] R. Ramanathan, A. P. O’Mullane, R. Y. Parikh, P. M. Smooker, S. K. Bhargava, V. Bansal, Langmuir, 27 (2011)714-719. https://doi.org/10.1021/la1036162
[54] M. Oves, M. S. Khan, A. Zaidi, A. S. Ahmed, F. Ahmed, E. Ahmad, A. Sherwani, M. Owais, A. Azam, PLoS One, 8 (2013) e59140. https://doi.org/10.1371/journal.pone.0059140
[55] C. K. Ng, K. Sivakumar, X. Liu, M. Madhaiyan, L. Ji, L. Yang, C. Tang, H. Song, S. Kjelleberg, B. Cao, Biotechnol. Bioeng. 110 (2013)1831-1837. https://doi.org/10.1002/bit.24856
[56] P. Mukherjee, S. Senapati, D. Mandal, A. Ahmad, M. I. Khan, R. Kumar, M. Sastry, Chem Bio Chem. 3 (2002) 461-463. https://doi.org/10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X
[57] S. K. Das, J. Liang, M. Schmidt, F. Laffir, E. Marsili, ACS Nano. 6 (2012) 6165-6173. https://doi.org/10.1021/nn301502s
[58] E. P. Vetchinkina, E. A. Loshchinina, A. M. Burov, L. A. Dykman, V. E. Nikitina, J. Biotechnol. 182 (2014) 37-45. https://doi.org/10.1016/j.jbiotec.2014.04.018
[59] Y. Liu, J. Fu, H. Hu, D. Tang, Z. Ni, X. Yu, Chin. Sci. Bull. 46 (2001) 1709-1712. https://doi.org/10.1360/csb2001-46-20-1709
[60] J. K. Fu, Y. Y. Liu, P. Y. Gu, D. L. Tang, Z. Y. Lin, B. X. Yao, S. Z. Weng, Acta Phys.-Chim. Sin. 16 (2000) 779-782.
[61] Z. Lin, C. Zhou, J. Wu, H. Cheng, B. Liu, Z. Ni, J. Zhou, J. Fu, Chin. Sci. Bull. 47 (2002) 1262-1266.
[62] H. R. Zhang, Q. B. Li, H. X. Wang, D. H. Sun, Y. H. Lu, N. He, Appl. Biochem. Biotechnol. 143 (2007) 54-62. https://doi.org/10.1007/s12010-007-8006-1
[63] S. De Corte, T. Hennebel, S. Verschuere, C. Cuvelier, W. Verstraete, N. Boon, J. Chem. Technol. Biotechnol. 86 (2011) 547-553. https://doi.org/10.1002/jctb.2549
[64] Z. Lin, R. Xue, Y. Ye, J. Zheng, Z. Xu, BMC Biotechnol. 9 (2009) 62. https://doi.org/10.1186/1472-6750-9-62
[65] Z. Y. Lin, J. M. Wu, R. Xue, Y. Yang, Spectrochim. Acta, Part A, 61 (2005) 761-765. https://doi.org/10.1016/j.saa.2004.03.029
[66] Z. Lin, Y. Ye, Q. Li, Z. Xu, M. Wang, BMC Biotechnol. 11 (2011) 98. https://doi.org/10.1186/1472-6750-11-98
[67] H. X. Yang, M. M. Du, T. Odoom-Wubah, J. Wang, D. H. Sun, J. L. Huang, Q. B. Li, J. Chem. Technol. Biotechnol. 89 (2014) 1410-1418. https://doi.org/10.1002/jctb.4225
[68] X. L. Jing, D. P. Huang, H. M. Chen, T. Odoom-Wubah, D. H. Sun, J. L. Huang, Q. B. Li, J. Chem. Technol. Biotechnol. 90 (2015) 678-685. https://doi.org/10.1002/jctb.4353
[69] H. M. Chen, D. H. Sun, X. L. Jing, F. F. Lu, T. Odoom- Wubah, Y. M. Zheng, J. L. Huang, Q. B. Li, RSC Adv. 3 (2013) 15389-15395. https://doi.org/10.1039/c3ra41215f
[70] H. M. Chen, J. L. Huang, D. P. Huang, M. H. Shao, D. H. Sun, Q. B. Li, J. Mater. Chem. A, 3 (2015) 4846-4854. https://doi.org/10.1039/C4TA06226D
[71] W. X. Jia, Medical microbiology, People’s Medical Publishing House, Beijing, (2005).
[72] C. Yang, J. H. Meldon, B. Lee, H. Yi, Catal. Today. 233 (2014) 108-116. https://doi.org/10.1016/j.cattod.2014.02.043
[73] M. Wnęk, M. Ł. Górzny, M. Ward, C. Wälti, A. Davies, R. Brydson, S. Evans, P. Stockley, Nanotechnology. 24, (2013) 025605. https://doi.org/10.1088/0957-4484/24/2/025605
[74] A. A. Aljabali, G. P. Lomonossoff, D. J. Evans, Biomacromolecules. 12 (2011) 2723-2728. https://doi.org/10.1021/bm200499v
[75] K. N. Avery, J. E. Schaak, R. E. Schaak, Chem. Mater. 21(2009) 2176-2178. https://doi.org/10.1021/cm900869u
[76] M. Knez, M. Sumser, A. Bittner, C. Wege, H. Jeske, S. Kooi, M. Burghard, K. Kern, J. Electroanal. Chem. 522 (2002) 70-74. https://doi.org/10.1016/S0022-0728(01)00728-8
[77] K. M. Bromley, A. J. Patil, A. W. Perriman, G. Stubbs, S. Mann, J. Mater. Chem. 18 (2008) 4796-4801. https://doi.org/10.1039/b809585j
[78] A. A. Khan, E. K. Fox, M. Ł. Górzny, E. Nikulina, D. F. Brougham, C. Wege, A. M. Bittner, Langmuir. 29 (2013) 2094-2098. https://doi.org/10.1021/la3044126
[79] M. Knez, M. Sumser, A. M. Bittner, C. Wege, H. Jeske, T. P. Martin, K. Kern, Adv. Funct. Mater. 14 (2004) 116-124. https://doi.org/10.1002/adfm.200304376
[80] J. L. Gardea-Torresdey, E. Gomez, J. R. Peralta-Videa, J. G. Parsons, H. Troiani, M. Jose-Yacaman, Langmuir, 19 (2003) 1357-1361. https://doi.org/10.1021/la020835i
[81] N. C. Sharma, S. V. Sahi, S. Nath, J. G. Parsons, J. L. Gardea- Torresdey, T. Pal, Environ. Sci. Technol. 41 (2007) 5137-5142. https://doi.org/10.1021/es062929a
[82] R. Haverkamp, A. Marshall, J. Nanopart. Res. 11 (2009) 1453-1463. https://doi.org/10.1007/s11051-008-9533-6
[83] R. Bali, R. Siegele, A. T. Harris, J. Nanopart. Res. 12 (2010) 3087-3095. https://doi.org/10.1007/s11051-010-9904-7
[84] C. W. Anderson, S. M. Bhatti, J. Gardea-Torresdey, J. Parsons, ACS Sustainable Chem. Eng. 1 (2013) 640-648. https://doi.org/10.1021/sc400011s
[85] G. Zhai, K. S. Walters, D. W. Peate, P. J. Alvarez, J. L. Schnoor, Environ. Sci. Technol. Lett. 1 (2014) 146-151. https://doi.org/10.1021/ez400202b
[86] A. F. Taylor, E. L. Rylott, C. W. Anderson, N. C. Bruce, PLoS One, 9 (2014) e93793. https://doi.org/10.1371/journal.pone.0093793
[87] Y. Zhou, W. Lin, J. Huang, W. Wang, Y. Gao, L. Lin, Q. Li, L. Lin, M. Du, Nanoscale Res. Lett. 5 (2015) 1351-1359. https://doi.org/10.1007/s11671-010-9652-8
[88] P. Mohanpuria, N. K. Rana, S. K. Yadav, J. Nanopart. Res. 10 (2008) 507-517. https://doi.org/10.1007/s11051-007-9275-x
[89] V. Kumar, S. K. Yadav, J. Chem. Technol. Biotechnol. 84 (2009) 151-157. https://doi.org/10.1002/jctb.2023
[90] D. Bhattacharya, R. K. Gupta, Crit. Rev. Biotechnol. 25 (2005) 199-204. https://doi.org/10.1080/07388550500361994
[91. J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, Nanotechnology, 18 (2007) 105104. https://doi.org/10.1088/0957-4484/18/10/105104
[92] D. Philip, Spectrochim. Acta, Part A, 73 (2009) 374-381. https://doi.org/10.1016/j.saa.2009.02.037
[93] J. Kasthuri, S. Veerapandian, N. Rajendiran, Colloids Surf. B, 68 (2009) 55-60. https://doi.org/10.1016/j.colsurfb.2008.09.021
[94] J. Y. Song, B. S. Kim, Korean J. Chem. Eng. 25 (2008) 808-811. https://doi.org/10.1007/s11814-008-0133-z
[95] K. B. Narayanan, N. Sakthivel, Mater. Lett. , 62 (2008) 4588-4590. https://doi.org/10.1016/j.matlet.2008.08.044
[96] A. T. Harris, R. Bali, J. Nanopart. Res. 10 (2008) 691-695. https://doi.org/10.1007/s11051-007-9288-5
[97] M. N. Nadagouda, R. S. Varma, Green Chem. 10 (2008) 859-862. https://doi.org/10.1039/b804703k
[98] J. P. Xie, J. Y. Lee, D. I. C. Wang, Y. P. Ting, Small, 3 (2007) 672-682. https://doi.org/10.1002/smll.200600612
[99] G. Zhan, L. Ke, Q. Li, J. Huang, D. Hua, A.-R. Ibrahim, D. Sun, Ind. Eng. Chem. Res. 51 (2012) 1575315762. https://doi.org/10.1021/ie302483d
[100] W. W. Wu, J. L. Huang, L. F. Wu, D. H. Sun, L. Q. Lin, Y. Zhou, H. T. Wang, Q. B. Li, Sep. Purif. Technol. 106 (2013) 117-122. https://doi.org/10.1016/j.seppur.2013.01.005
[101] D. Liu, Z. Wang, X. Jiang, Nanoscale, 3 (2011) 1421-1433. https://doi.org/10.1039/c0nr00887g
[102] W. Li, B. Chen, H. Zhang, Y. Sun, J. Wang, J. Zhang, Y. Fu, Biosens. Bioelectron. 66 (2015) 251-258. https://doi.org/10.1016/j.bios.2014.11.032
[103] X. Jiang, C. Sun, Y. Guo, G. Nie, L. Xu, Biosens. Bioelectron. 64 (2015) 165-170. https://doi.org/10.1016/j.bios.2014.08.078
[104] F. Wen, Y. Dong, L. Feng, S. Wang, S. Zhang, X. Zhang, Anal. Chem. 83 (2011) 1193-1196. https://doi.org/10.1021/ac1031447
[105] J. Xie, Y. Zheng, J. Y. Ying, Chem. Commun. 46 (2010) 961-963. https://doi.org/10.1039/B920748A
[106] G. Y. Lan, C. C. Huang, H. T. Chang, Chem. Commun. 46 (2010) 1257-1259. https://doi.org/10.1039/b920783j
[107] Z. Huang, F. Pu, Y. Lin, J. Ren, X. Qu, Chem. Commun. 47 (2011) 3487-3489. https://doi.org/10.1039/c0cc05651k
[108] Y. Liu, K. Ai, X. Cheng, L. Huo, L. Lu, Adv. Funct. Mater. 20 (2010) 951-956. https://doi.org/10.1002/adfm.200902062
[109] R. Wen, H. Lia, B. Chen, L. Wang, Sens. Actu. B: Chem. 248 (2017) 63-70.
[110] J. Lee, J. Park, H. H. Lee, H. I. Kim, W. J. Kim, J. Mater. Chem. B, 2 (2014) 2616-2621. https://doi.org/10.1039/c3tb21446j
[111] Y. Lin, Y. Tao, J. Ren, F. Pu, X. Qu, Biosens. Bioelectron. 28 (2011) 339-343. https://doi.org/10.1016/j.bios.2011.07.040
[112] A. Sannigrahi, S. Chowdhury, I. Nandi, D. Sanyal, S. Chall, K. Chattopadhyay, Nanoscale. Adv. 1 (2019) 3660-3669. https://doi.org/10.1039/C9NA00459A
[113] M. Yu, Z. Zhu, H. Wang, L. Li, F. Fu, Y. Song, E. Song, Biosens. Bioelectron. 91 (2017) 143-148. https://doi.org/10.1016/j.bios.2016.11.052
[114] J. Wu, K. Jiang, X. Wang, C. Wang, C. Zhang, Microchim Acta. 184 (2017) 1315-1324. https://doi.org/10.1007/s00604-017-2111-9
[115] M. Zhang, H-N. Le, X-Q. Jiang, S-M. Guo, H-J. Yu, B-C. Ye, Talanta. 117 (2013)399-404. https://doi.org/10.1016/j.talanta.2013.09.034
[116] M. Luo, J. Di, L. Li, Y. Tu, J. Yan, Talanta. 187 (2018) 231-236. https://doi.org/10.1016/j.talanta.2018.05.047
[117] G-M. Zhang, Y-G. J. Li, C-H. Xu Zhang, S-M. Shuang, C. Dong, MM- F. Choi, Sens Actuators B. 183 (2013) 583-588. https://doi.org/10.1016/j.snb.2013.04.023
[118] W. Chen, X. Tu, X. Guo, Chem. Commun. 13 (2009) 1736-1738. https://doi.org/10.1039/b820145e
[119] E. Babaee, A. Barati, M-B. Gholivand, A. Taherpour, N. Zolfaghar, M. Shamsipur J. Hazard. Mater. 367 (2019) 437-446. https://doi.org/10.1016/j.jhazmat.2018.12.104
[120] Q. Niu, P-F. Gao, M-J. Yuan, G-M. Zhang, Y. Zhou, C. Dong, S-M. Shuang, Y. Zhang, Microchem. J. 146 (2019) 1140-1149. https://doi.org/10.1016/j.microc.2019.02.050
[121] J. Wang, S. Ma, J. Ren, J. Yang, Y. Qu, D. Ding, M. Zhang, G. Yang, Sens. Actuators B. 267 (2018)342-350. https://doi.org/10.1016/j.snb.2018.04.034
[122. H. Wei, Z. Wang, L. Yang, S. Tian, C. Hou, Y. Lu, Analyst, 135 (2010) 1406-1410. https://doi.org/10.1039/c0an00046a
[123] H. Kawasaki, K. Yoshimura, K. Hamaguchi, R. Arakawa, Anal. Sci Int. J. Jpn. Soc. Anal. Chem. 27 (2011) 591-596. https://doi.org/10.2116/analsci.27.591
[124] L. Shang, L. Yang, F. Stockmar, R. Popescu, V. Trouillet, M. Bruns, D. Gerthsen, G-U. Nienhaus, Nanoscale, 4 (2012) 4155-4160. https://doi.org/10.1039/c2nr30219e
[125] H. Huang, H. Li, J. Feng, A-J. Wang, Sens. Actuators B. 223 (2016) 550-556. https://doi.org/10.1016/j.snb.2015.09.136
[126] J-J. Li, D. Qiao, J. Zhao, G-J. Weng J. Zhu, J-W. Zhao, Methods. Appl. Fluoresc. 7 (2019) 045001. https://doi.org/10.1088/2050-6120/ab34be
[127] Y. Yang, A. Han, R-X. Li, G-Z. Fang, J-F. Liu, S. Wang, Analyst, 142 (2017) 4486-4493. https://doi.org/10.1039/C7AN01348E
[128] B. Duan, M. Wang, Y. Li, S. Jiang, Y. Liu, Z-Z. Huang, New J. Chem. 43 (2019) 14678-14683. https://doi.org/10.1039/C9NJ03524A
[129] H-Y. Zhang, Q. Liu, T. Wang, Z-J, Yun, G-L, Li, J, Liu, G-B. Jiang, Anal. Chim Acta., 770 (2013) 140-146. https://doi.org/10.1016/j.aca.2013.01.042
[130] P. Li, J. Li, M-H. Bian, D. Huo, C. Hou, P. Yang, S. Zhang, C-H. Shen, M. A. Yang, Anal. Methods. 10 (2018) 3256-3262. https://doi.org/10.1039/C8AY00892B
[131] P. Nath, M. Chatterjee, N. Chanda, ACS. Appl. Nano. Mater. 1 (2018) 5108-5118. https://doi.org/10.1021/acsanm.8b01191
[132] C. Zong, L-R. Zheng, W. He, X. Ren, C. Jiang, L. Lu, Anal .Chem. 86 (2014) 1687-1692. https://doi.org/10.1021/ac403480q
[133] D. Lu, L. Liu, F. Li, S. Shuang, Y. Li, M. M. F. Choi et al. Spectrochim Acta A.121 (2014) 77-80. https://doi.org/10.1016/j.saa.2013.10.009
[134] C-Y. Liu, W-L. Tseng, Anal. Methods, 4 (2012) 2537-2542. https://doi.org/10.1039/c2ay25291k
[135] C-Y. Liu, W-L. Tseng, Chem.Commun. 47 (2011) 2550-2552. https://doi.org/10.1039/c0cc04591h
[136] C. Wang, Y. Chen, B-Y. Wu, C-K. Lee, Y-C. Chen, Y-H. Huang, H-T. Chang, Anal. Bioanal. Chem. 408 (2016) 287-294. https://doi.org/10.1007/s00216-015-9104-5
[137] L. Wang, G-Q. Chen, G-M. Zeng, J. Liang, H. Dong, M. Yan, Z. Li, Z. Guo, W, Tao, L. Peng, New. J. Chem. 39 (2015) 9306-9312. https://doi.org/10.1039/C5NJ01783A
[138] W-Y. Chen, G-Y. Lan, H-T. Chang, Anal. Chem. 83 (2011) 9450-9455. https://doi.org/10.1021/ac202162u
[139] B-Y. Wu, C-W. Wang, P-C. Chen, H-T. Chang, Sens. Actuators B.238 (2017) 1258-1265. https://doi.org/10.1016/j.snb.2016.09.071
[140] B. Unnikrishnan, S-C. Wei, W-J. Chiu, J-S. Cang, P-H. Hsu, C-C. Huang, Analyst, 139 (2014) 2221-2228. https://doi.org/10.1039/C3AN02291A
[141] H-Y. Liu, G-H. Yang, E-S. A. Halim,, J-J. Zhu, Talanta, 104 (2013) 135-139. https://doi.org/10.1016/j.talanta.2012.11.020
[142] Q-L.Yue, L-J. Sun, T-F. Shen, X-H. Gu, S-Q. Zhang, J-F. Liu, J. Fluoresc. 23 (2013) 1313-1318. https://doi.org/10.1007/s10895-013-1265-z
[143] J. Zhang, C-X. Chen, X-W. Xu, X-L. Wang, X-R. Yang, Chem. Commun. 49 (2013) 2691-2693. https://doi.org/10.1039/c3cc38298b
[144] Y. Hu, X-M. Lu, X-M. Jiang, P. Wu, J. Hazard Mater. 384 (2019) 121368. https://doi.org/10.1016/j.jhazmat.2019.121368
[145] D-H. Tian, Z-S. Qian, Y-S. Xia, C-Q. Zhu, Langmuir, 28 (2012) 3945-3951. https://doi.org/10.1021/la204380a
[146] M-L. Cui, J-M. Liu, X-X. Wang, L-P. Lin, L. Jiao, L-H. Zhang, Z-Y. Zheng, S-Q. Lin Analyst, 137 (2012) 5346-5351. https://doi.org/10.1039/c2an36284h
[147] H. Zhao, X-P. Wen, W-Y. Li, Y-Q. Li, C-X. Yin, J. Mater Chem B. 7 (2019) 2169-2176. https://doi.org/10.1039/C8TB03184C
[148] C. Dai, C-X. Yang, X-P. Yan, Nano. Res. 11 (2018) 2488-2497. https://doi.org/10.1007/s12274-017-1872-0
[149] T. Feng, Y. Chen, B-B. Feng, J. Yan, J. Di, Spectrochim. Acta. A. 206 (2019) 97-103. https://doi.org/10.1016/j.saa.2018.07.087
[150] Z-X. Wang, S-N. Ding, E-Y-J. Narjh, Anal. Lett. 48 (2015) 647-658. https://doi.org/10.1080/00032719.2014.956217
[151] J. Zhang, Y. Yuan, Y. Wang, F. Sun, G. Liang, Z. Jiang, S-H. Yu, Nano Res. 8 (2015) 2329-2339. https://doi.org/10.1007/s12274-015-0743-9