Bioinspired Metal Nanoparticles for Microbicidal Activity

$30.00

Bioinspired Metal Nanoparticles for Microbicidal Activity

Rajalakshmi Subramaniyam, Shairam Manickaraj, Prasaanth Ravi Anusuyadevi

The broad reception for nanotechnology is due to their appreciable size and versatile applications in the interdisciplinary areas. In this modern era one of the major problems is microorganisms possessing antibiotic resistance, nanoparticles (NPs) are a lucrative option to solve this. In materials science, “green synthesis” has gained extensive attention as a reliable, sustainable, and eco-friendly protocol for synthesizing a wide range of materials, especially metals, and metal oxides nanomaterials, hybrid materials and bioinspired materials. As such, green synthesis is regarded as an important tool to reduce the destructive effects associated with the traditional methods for synthesis of nanoparticles commonly utilized in laboratory and industry. Bio-inspired NPs held edges over conventionally synthesized nanoparticles due to their low cost, easy synthesis and low toxicity. This chapter elaborates the developments on the biosynthesis of NPs using natural extracts with particular emphasis on their application as microbiocidal agents. This chapter has very specifically dealt with coinage metals such as Cu, Ag, Au due to their significance of antimicrobial activities. Succeeding, reported the developments in the synthetic methodologies of metal-oxide (Titanium dioxide, TiO2) nanoparticles using novel plant extracts with high medicinal value and their corresponding ability to degrade bacterial pathogens through advanced oxidation process (AOPs) based on heterogeneous photocatalysis.

Keywords
Biosynthesis, Metal/Metal Oxide Nanoparticle, Microbicidal Activities, Copper, Silver, Gold, Titanium Dioxide, Photocatalysis

Published online 8/10/2021, 28 pages

Citation: Rajalakshmi Subramaniyam, Shairam Manickaraj, Prasaanth Ravi Anusuyadevi, Bioinspired Metal Nanoparticles for Microbicidal Activity, Materials Research Foundations, Vol. 111, pp 36-62, 2021

DOI: https://doi.org/10.21741/9781644901571-2

Part of the book on Bioinspired Nanomaterials

References
[1] Live Science, 2020. 20 of the worst epidemics and pandemics in history. Retrieved from: https://www.livescience.com/worst-epidemics-and-pandemics-in-history.html
[2] S. Varnagiris, M. Urbonavicius, S. Sakalauskaite, R. Daugelavicius, L. Pranevicius, M. Lelis, D. Milcius, Floating TiO2 photocatalyst for efficient inactivation of E. coli and decomposition of methylene blue solution, Sci. Total Environ. 720 (2020) 137600. https://doi.org/10.1016/j.scitotenv.2020.137600
[3] V. V Makarov, A.J. Love, O. V Sinitsyna, S.S. Makarova, I. V Yaminsky, M.E. Taliansky, N.O. Kalinina, “Green” nanotechnologies: synthesis of metal nanoparticles using plants, Acta Naturae (Англоязычная Версия). 6 (2014). https://doi.org/10.32607/20758251-2014-6-1-35-44
[4] M. Rai, C.A. dos Santos, Nanotechnology applied to pharmaceutical technology, Springer, 2017. https://doi.org/10.1007/978-3-319-70299-5
[5] M.B. Galib, M. Mashru, C. Jagtap, B.J. Patgiri, P.K. Prajapati, Therapeutic potentials of metals in ancient India: A review through Charaka Samhita, J. Ayurveda Integr. Med. 2 (2011) 55. https://doi.org/10.4103/0975-9476.82523
[6] S.S.N. Fernando, T. Gunasekara, J. Holton, Antimicrobial Nanoparticles: applications and mechanisms of action, (2018). https://doi.org/10.4038/sljid.v8i1.8167
[7] J.T. Seil, T.J. Webster, Antimicrobial applications of nanotechnology: methods and literature, Int. J. Nanomedicine. 7 (2012) 2767. https://doi.org/10.2147/IJN.S24805
[8] A. Khezerlou, M. Alizadeh-Sani, M. Azizi-Lalabadi, A. Ehsani, Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses, Microb. Pathog. 123 (2018) 505–526. https://doi.org/10.1016/j.micpath.2018.08.008
[9] P. Panchal, D.R. Paul, A. Sharma, D. Hooda, R. Yadav, P. Meena, S.P. Nehra, Phytoextract mediated ZnO/MgO nanocomposites for photocatalytic and antibacterial activities, J. Photochem. Photobiol. A Chem. 385 (2019) 112049. https://doi.org/10.1016/j.jphotochem.2019.112049
[10] C. Xu, P. R. Anusuyadevi, C. Aymonier, R. Luque, S. Marre, Nanostructured materials for photocatalysis. Chemical Society Reviews 2019, 48 (14), 3868-3902. https://doi.org/10.1039/C9CS00102F
[11] H. Duan, D. Wang, Y. Li, Green chemistry for nanoparticle synthesis, Chem. Soc. Rev. 44 (2015) 5778–5792. https://doi.org/10.1039/C4CS00363B
[12] S. Ahmed, S.A. Chaudhry, S. Ikram, others, A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry, J. Photochem. Photobiol. B Biol. 166 (2017) 272–284. https://doi.org/10.1016/j.jphotobiol.2016.12.011
[13] M.S. Akhtar, J. Panwar, Y.-S. Yun, Biogenic synthesis of metallic nanoparticles by plant extracts, ACS Sustain. Chem. Eng. 1 (2013) 591–602. https://doi.org/10.1021/sc300118u
[14] D. Sharma, S. Kanchi, K. Bisetty, Biogenic synthesis of nanoparticles: A review, Arab. J. Chem. 12 (2019) 3576–3600. https://doi.org/10.1016/j.arabjc.2015.11.002
[15] A. Rai, A. Prabhune, C.C. Perry, Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings, J. Mater. Chem. 20 (2010) 6789–6798. https://doi.org/10.1039/c0jm00817f
[16] M. Demurtas, C.C. Perry, Facile one-pot synthesis of amoxicillin-coated gold nanoparticles and their antimicrobial activity, Gold Bull. 47 (2014) 103–107. https://doi.org/10.1007/s13404-013-0129-2
[17] L. Sintubin, B. De Gusseme, P. der Meeren, B.F.G. Pycke, W. Verstraete, N. Boon, The antibacterial activity of biogenic silver and its mode of action, Appl. Microbiol. Biotechnol. 91 (2011) 153–162. https://doi.org/10.1007/s00253-011-3225-3
[18] P.K. Gautam, A. Singh, K. Misra, A.K. Sahoo, S.K. Samanta, Synthesis and applications of biogenic nanomaterials in drinking and wastewater treatment, J. Environ. Manage. 231 (2019) 734–748. https://doi.org/10.1016/j.jenvman.2018.10.104
[19] S. Baker, A. Pasha, S. Satish, Biogenic nanoparticles bearing antibacterial activity and their synergistic effect with broad spectrum antibiotics: Emerging strategy to combat drug resistant pathogens, Saudi Pharm. J. 25 (2017) 44–51. https://doi.org/10.1016/j.jsps.2015.06.011
[20] S. Sudhasree, A. Shakila Banu, P. Brindha, G.A. Kurian, Synthesis of nickel nanoparticles by chemical and green route and their comparison in respect to biological effect and toxicity, Toxicol. Environ. Chem. 96 (2014) 743–754. https://doi.org/10.1080/02772248.2014.923148
[21] M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, D.J. de Aberasturi, I.R. de Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, M. Mahmoudi, Antibacterial properties of nanoparticles, Trends Biotechnol. 30 (2012) 499–511. https://doi.org/10.1016/j.tibtech.2012.06.004
[22] A. Thill, O. Zeyons, O. Spalla, F. Chauvat, J. Rose, M. Auffan, A.M. Flank, Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism, Environ. Sci. Technol. 40 (2006) 6151–6156. https://doi.org/10.1021/es060999b
[23] A. Pramanik, D. Laha, D. Bhattacharya, P. Pramanik, P. Karmakar, A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage, Colloids Surfaces B Biointerfaces. 96 (2012) 50–55. https://doi.org/10.1016/j.colsurfb.2012.03.021
[24] S. Wang, R. Lawson, P.C. Ray, H. Yu, Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria, Toxicol. Ind. Health. 27 (2011) 547–554. https://doi.org/10.1177/0748233710393395
[25] C.E. Santo, N. Taudte, D.H. Nies, G. Grass, Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces, Appl. Environ. Microbiol. 74 (2008) 977–986. https://doi.org/10.1128/AEM.01938-07
[26] Y.W. Baek, Y.-J. An, Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus, Sci. Total Environ. 409 (2011) 1603–1608. https://doi.org/10.1016/j.scitotenv.2011.01.014
[27] T.C. Dakal, A. Kumar, R.S. Majumdar, V. Yadav, Mechanistic basis of antimicrobial actions of silver nanoparticles, Front. Microbiol. 7 (2016) 1831. https://doi.org/10.3389/fmicb.2016.01831
[28] I.K. Sen, A.K. Mandal, S. Chakraborti, B. Dey, R. Chakraborty, S.S. Islam, Green synthesis of silver nanoparticles using glucan from mushroom and study of antibacterial activity, Int. J. Biol. Macromol. 62 (2013) 439–449. https://doi.org/10.1016/j.ijbiomac.2013.09.019
[29] D.K. Manna, A.K. Mandal, I.K. Sen, P.K. Maji, S. Chakraborti, R. Chakraborty, S.S. Islam, Antibacterial and DNA degradation potential of silver nanoparticles synthesized via green route, Int. J. Biol. Macromol. 80 (2015) 455–459. https://doi.org/10.1016/j.ijbiomac.2015.07.028
[30] A. Abbaszadegan, Y. Ghahramani, A. Gholami, B. Hemmateenejad, S. Dorostkar, M. Nabavizadeh, H. Sharghi, The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study, J. Nanomater. 2015 (2015). https://doi.org/10.1155/2015/720654
[31] A. Ahmad, Y. Wei, F. Syed, K. Tahir, A.U. Rehman, A. Khan, S. Ullah, Q. Yuan, The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles, Microb. Pathog. 102 (2017) 133–142. https://doi.org/10.1016/j.micpath.2016.11.030
[32] B. Ramalingam, T. Parandhaman, S.K. Das, Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa, ACS Appl. Mater. Interfaces. 8 (2016) 4963–4976. https://doi.org/10.1021/acsami.6b00161
[33] S.K. Gogoi, P. Gopinath, A. Paul, A. Ramesh, S.S. Ghosh, A. Chattopadhyay, Green fluorescent protein-expressing escherichia c oli as a model system for investigating the antimicrobial activities of silver nanoparticles, Langmuir. 22 (2006) 9322–9328. https://doi.org/10.1021/la060661v
[34] Y.-H. Hsueh, K.-S. Lin, W.-J. Ke, C.-T. Hsieh, C.-L. Chiang, D.-Y. Tzou, S.-T. Liu, The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ions, PLoS One. 10 (2015) e0144306. https://doi.org/10.1371/journal.pone.0144306
[35] O. Bondarenko, A. Ivask, A. Käkinen, I. Kurvet, A. Kahru, Particle-cell contact enhances antibacterial activity of silver nanoparticles, PLoS One. 8 (2013). https://doi.org/10.1371/journal.pone.0064060
[36] Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, J. Biomed. Mater. Res. 52 (2000) 662–668. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
[37] K. Siriwardana, A. Wang, M. Gadogbe, W.E. Collier, N.C. Fitzkee, D. Zhang, Studying the effects of cysteine residues on protein interactions with silver nanoparticles, J. Phys. Chem. C. 119 (2015) 2910–2916. https://doi.org/10.1021/jp512440z
[38] K. Poole, Efflux-mediated antimicrobial resistance, J. Antimicrob. Chemother. 56 (2005) 20–51. https://doi.org/10.1093/jac/dki171
[39] X. Yan, B. He, L. Liu, G. Qu, J. Shi, L. Hu, G. Jiang, Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach, Metallomics. 10 (2018) 557–564. https://doi.org/10.1039/C7MT00328E
[40] N.S. Wigginton, A. de Titta, F. Piccapietra, J.A.N. Dobias, V.J. Nesatyy, M.J.F. Suter, R. Bernier-Latmani, Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity, Environ. Sci. Technol. 44 (2010) 2163–2168. https://doi.org/10.1021/es903187s
[41] B. Das, S.K. Dash, D. Mandal, T. Ghosh, S. Chattopadhyay, S. Tripathy, S. Das, S.K. Dey, D. Das, S. Roy, Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage, Arab. J. Chem. 10 (2017) 862–876. https://doi.org/10.1016/j.arabjc.2015.08.008
[42] M.N. Gallucci, J.C. Fraire, A.P.V.F. Maillard, P.L. Páez, I.M.A. Mart\’\inez, E.V.P. Miner, E.A. Coronado, P.R. Dalmasso, Silver nanoparticles from leafy green extract of Belgian endive (Cichorium intybus L. var. sativus): Biosynthesis, characterization, and antibacterial activity, Mater. Lett. 197 (2017) 98–101. https://doi.org/10.1016/j.matlet.2017.03.141
[43] S. Belluco, C. Losasso, I. Patuzzi, L. Rigo, D. Conficoni, F. Gallocchio, V. Cibin, P. Catellani, S. Segato, A. Ricci, Silver as antibacterial toward Listeria monocytogenes, Front. Microbiol. 7 (2016) 307. https://doi.org/10.3389/fmicb.2016.00307
[44] S.-H. Kim, H.-S. Lee, D.-S. Ryu, S.-J. Choi, D.-S. Lee, others, Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli, Korean J. Microbiol. Biotechnol. 39 (2011) 77–85.
[45] K. Ishida, T.F. Cipriano, G.M. Rocha, G. Weissmüller, F. Gomes, K. Miranda, S. Rozental, Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts, Mem. Inst. Oswaldo Cruz. 109 (2014) 220–228. https://doi.org/10.1590/0074-0276130269
[46] N.T. Khan, M. Mushtaq, Determination of antifungal activity of silver nanoparticles produced from Aspergillus Niger, Biol. Med. 9 (2017) 1. https://doi.org/10.4172/0974-8369.1000363
[47] M. Wypij, J. Czarnecka, H. Dahm, M. Rai, P. Golinska, Silver nanoparticles from Pilimelia columellifera subsp. pallida SL19 strain demonstrated antifungal activity against fungi causing superficial mycoses, J. Basic Microbiol. 57 (2017) 793–800. https://doi.org/10.1002/jobm.201700121
[48] M.S. Usman, M.E. El Zowalaty, K. Shameli, N. Zainuddin, M. Salama, N.A. Ibrahim, Synthesis, characterization, and antimicrobial properties of copper nanoparticles, Int. J. Nanomedicine. 8 (2013) 4467. https://doi.org/10.2147/IJN.S50837
[49] H.-J. Lee, G. Lee, N.R. Jang, J.H. Yun, J.Y. Song, B.S. Kim, Biological synthesis of copper nanoparticles using plant extract, Nanotechnology. 1 (2011) 371–374.
[50] P. Kanhed, S. Birla, S. Gaikwad, A. Gade, A.B. Seabra, O. Rubilar, N. Duran, M. Rai, In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi, Mater. Lett. 115 (2014) 13–17. https://doi.org/10.1016/j.matlet.2013.10.011
[51] M. Sampath, R. Vijayan, E. Tamilarasu, A. Tamilselvan, B. Sengottuvelan, Green synthesis of novel jasmine bud-shaped copper nanoparticles, J. Nanotechnol. 2014 (2014). https://doi.org/10.1155/2014/626523
[52] Y. Fujimori, T. Sato, T. Hayata, T. Nagao, M. Nakayama, T. Nakayama, R. Sugamata, K. Suzuki, Novel antiviral characteristics of nanosized copper (I) iodide particles showing inactivation activity against 2009 pandemic H1N1 influenza virus, Appl. Environ. Microbiol. 78 (2012) 951–955. https://doi.org/10.1128/AEM.06284-11
[53] R. Das, S. Gang, S.S. Nath, R. Bhattacharjee, Linoleic acid capped copper nanoparticles for antibacterial activity, J. Bionanoscience. 4 (2010) 82–86. https://doi.org/10.1166/jbns.2010.1035
[54] A.M. Schrand, M.F. Rahman, S.M. Hussain, J.J. Schlager, D.A. Smith, A.F. Syed, Metal-based nanoparticles and their toxicity assessment, Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology. 2 (2010) 544–568. https://doi.org/10.1002/wnan.103
[55] J.-H. Kim, H. Cho, S.-E. Ryu, M.-U. Choi, Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion, Arch. Biochem. Biophys. 382 (2000) 72–80. https://doi.org/10.1006/abbi.2000.1996
[56] D.G. Deryabin, E.S. Aleshina, A.S. Vasilchenko, T.D. Deryabina, L. V Efremova, I.F. Karimov, L.B. Korolevskaya, Investigation of copper nanoparticles antibacterial mechanisms tested by luminescent Escherichia coli strains, Nanotechnologies Russ. 8 (2013) 402–408. https://doi.org/10.1134/S1995078013030063
[57] N. Cioffi, L. Torsi, N. Ditaranto, G. Tantillo, L. Ghibelli, L. Sabbatini, T. Bleve-Zacheo, M. D’Alessio, P.G. Zambonin, E. Traversa, Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties, Chem. Mater. 17 (2005) 5255–5262. https://doi.org/10.1021/cm0505244
[58] Z. Chen, H. Meng, G. Xing, C. Chen, Y. Zhao, G. Jia, T. Wang, H. Yuan, C. Ye, F. Zhao, others, Acute toxicological effects of copper nanoparticles in vivo, Toxicol. Lett. 163 (2006) 109–120. https://doi.org/10.1016/j.toxlet.2005.10.003
[59] B.M. Prabhu, S.F. Ali, R.C. Murdock, S.M. Hussain, M. Srivatsan, Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat, Nanotoxicology. 4 (2010) 150–160. https://doi.org/10.3109/17435390903337693
[60] B. Sarkar, S.K. Verma, J. Akhtar, S.P. Netam, S.K. Gupta, P.K. Panda, K. Mukherjee, Molecular aspect of silver nanoparticles regulated embryonic development in Zebrafish (Danio rerio) by Oct-4 expression, Chemosphere. 206 (2018) 560–567. https://doi.org/10.1016/j.chemosphere.2018.05.018
[61] J. Sun, S. Wang, D. Zhao, F.H. Hun, L. Weng, H. Liu, Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells, Cell Biol. Toxicol. 27 (2011) 333–342. https://doi.org/10.1007/s10565-011-9191-9
[62] P. Xu, J. Xu, S. Liu, G. Ren, Z. Yang, In vitro toxicity of nanosized copper particles in PC12 cells induced by oxidative stress, J. Nanoparticle Res. 14 (2012) 906. https://doi.org/10.1007/s11051-012-0906-5
[63] A.N. Grace, K. Pandian, Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—A brief study, Colloids Surfaces A Physicochem. Eng. Asp. 297 (2007) 63–70. https://doi.org/10.1016/j.colsurfa.2006.10.024
[64] A.K. Khan, R. Rashid, G. Murtaza, A. Zahra, Gold nanoparticles: synthesis and applications in drug delivery, Trop. J. Pharm. Res. 13 (2014) 1169–1177. https://doi.org/10.4314/tjpr.v13i7.23
[65] B. DJ Glišić, M.I. Djuran, Gold complexes as antimicrobial agents: an overview of different biological activities in relation to the oxidation state of the gold ion and the ligand structure, Dalt. Trans. 43 (2014) 5950–5969. https://doi.org/10.1039/C4DT00022F
[66] M. Nadeem, B.H. Abbasi, M. Younas, W. Ahmad, T. Khan, A review of the green syntheses and anti-microbial applications of gold nanoparticles, Green Chem. Lett. Rev. 10 (2017) 216–227. https://doi.org/10.1080/17518253.2017.1349192
[67] M.R. Bindhu, M. Umadevi, Antibacterial activities of green synthesized gold nanoparticles, Mater. Lett. 120 (2014) 122–125. https://doi.org/10.1016/j.matlet.2014.01.108
[68] M. Venkatachalam, K. Govindaraju, A.M. Sadiq, S. Tamilselvan, V.G. Kumar, G. Singaravelu, Functionalization of gold nanoparticles as antidiabetic nanomaterial, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 116 (2013) 331–338. https://doi.org/10.1016/j.saa.2013.07.038
[69] A. Muthuvel, K. Adavallan, K. Balamurugan, N. Krishnakumar, Biosynthesis of gold nanoparticles using Solanum nigrum leaf extract and screening their free radical scavenging and antibacterial properties, Biomed. Prev. Nutr. 4 (2014) 325–332. https://doi.org/10.1016/j.bionut.2014.03.004
[70] M.R. Bindhu, P.V. Rekha, T. Umamaheswari, M. Umadevi, Antibacterial activities of Hibiscus cannabinus stem-assisted silver and gold nanoparticles, Mater. Lett. 131 (2014) 194–197. https://doi.org/10.1016/j.matlet.2014.05.172
[71] C. Jayaseelan, R. Ramkumar, A.A. Rahuman, P. Perumal, Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity, Ind. Crops Prod. 45 (2013) 423–429. https://doi.org/10.1016/j.indcrop.2012.12.019
[72] A.I. El-Batal, A.-A.M. Hashem, N.M. Abdelbaky, Gamma radiation mediated green synthesis of gold nanoparticles using fermented soybean-garlic aqueous extract and their antimicrobial activity, Springerplus. 2 (2013) 1–10. https://doi.org/10.1186/2193-1801-2-129
[73] K.M. Kumar, B.K. Mandal, M. Sinha, V. Krishnakumar, Terminalia chebula mediated green and rapid synthesis of gold nanoparticles, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 86 (2012) 490–494. https://doi.org/10.1016/j.saa.2011.11.001
[74] Y. Cui, Y. Zhao, Y. Tian, W. Zhang, X. Lü, X. Jiang, The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli, Biomaterials. 33 (2012) 2327–2333. https://doi.org/10.1016/j.biomaterials.2011.11.057
[75] A. Ahmad, F. Syed, M. Imran, A.U. Khan, K. Tahir, Z.U.H. Khan, Q. Yuan, Phytosynthesis and antileishmanial activity of gold nanoparticles by M aytenus Royleanus, J. Food Biochem. 40 (2016) 420–427. https://doi.org/10.1111/jfbc.12232
[76] T. Ahmad, I.A. Wani, I.H. Lone, A. Ganguly, N. Manzoor, A. Ahmad, J. Ahmed, A.S. Al-Shihri, Antifungal activity of gold nanoparticles prepared by solvothermal method, Mater. Res. Bull. 48 (2013) 12–20. https://doi.org/10.1016/j.materresbull.2012.09.069
[77] R. Geethalakshmi, D.V.L. Sarada, Characterization and antimicrobial activity of gold and silver nanoparticles synthesized using saponin isolated from Trianthema decandra L., Ind. Crops Prod. 51 (2013) 107–115. https://doi.org/10.1016/j.indcrop.2013.08.055
[78] A.R. Herdt, S.M. Drawz, Y. Kang, T.A. Taton, DNA dissociation and degradation at gold nanoparticle surfaces, Colloids Surfaces B Biointerfaces. 51 (2006) 130–139. https://doi.org/10.1016/j.colsurfb.2006.06.006
[79] W. Ahmad, K.K. Jaiswal, S. Soni, Green synthesis of titanium dioxide (TiO2) nanoparticles by using Mentha arvensis leaves extract and its antimicrobial properties, Inorg. Nano-Metal Chem. (2020) 1–7. https://doi.org/10.1080/24701556.2020.1732419
[80] T. Santhoshkumar, A.A. Rahuman, C. Jayaseelan, G. Rajakumar, S. Marimuthu, A.V. Kirthi, K. Velayutham, J. Thomas, J. Venkatesan, S.-K. Kim, Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties, Asian Pac. J. Trop. Med. 7 (2014) 968–976. https://doi.org/10.1016/S1995-7645(14)60171-1
[81] S. Subhapriya, P. Gomathipriya, Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties, Microb. Pathog. 116 (2018) 215–220. https://doi.org/10.1016/j.micpath.2018.01.027
[82] M. Sundrarajan, K. Bama, M. Bhavani, S. Jegatheeswaran, S. Ambika, A. Sangili, P. Nithya, R. Sumathi, Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method, J. Photochem. Photobiol. B Biol. 171 (2017) 117–124. https://doi.org/10.1016/j.jphotobiol.2017.05.003
[83] G. Sathishkumar, C. Gobinath, K. Karpagam, V. Hemamalini, K. Premkumar, S. Sivaramakrishnan, Phyto-synthesis of silver nanoscale particles using Morinda citrifolia L. and its inhibitory activity against human pathogens, Colloids Surfaces B Biointerfaces. 95 (2012) 235–240. https://doi.org/10.1016/j.colsurfb.2012.03.001
[84] B.-N. Su, A.D. Pawlus, H.-A. Jung, W.J. Keller, J.L. McLaughlin, A.D. Kinghorn, Chemical Constituents of the Fruits of Morinda c itrifolia (Noni) and Their Antioxidant Activity, J. Nat. Prod. 68 (2005) 592–595. https://doi.org/10.1021/np0495985
[85] Y. Zhou, W. Lin, J. Huang, W. Wang, Y. Gao, L. Lin, Q. Li, L. Lin, M. Du, Biosynthesis of gold nanoparticles by foliar broths: roles of biocompounds and other attributes of the extracts, Nanoscale Res. Lett. 5 (2010) 1351. https://doi.org/10.1007/s11671-010-9652-8
[86] N. Durán, P.D. Marcato, M. Durán, A. Yadav, A. Gade, M. Rai, Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants, Appl. Microbiol. Biotechnol. 90 (2011) 1609–1624. https://doi.org/10.1007/s00253-011-3249-8
[87] E.M. Yahia, Postharvest biology and technology of tropical and subtropical fruits: fundamental issues, Elsevier, 2011. https://doi.org/10.1533/9780857092762
[88] S. Pratima, P. Shrikanth, Organoleptic and Preliminary Phytochemical Study of Achchhuka (Morinda Citrifolia), Int J Ayurvedic Herb Med. 5 (2015) 2029–2032.E.M. Yahia, Postharvest biology and technology of tropical and subtropical fruits: fundamental issues, Elsevier, 2011.
[89] J.R. Peralta-Videa, Y. Huang, J.G. Parsons, L. Zhao, L. Lopez-Moreno, J.A. Hernandez-Viezcas, J.L. Gardea-Torresdey, Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis?, Nanotechnol. Environ. Eng. 1 (2016) 4. https://doi.org/10.1007/s41204-016-0004-5
[90] M.S. Baliga, P.L. Palatty, M. Adnan, T.S. Naik, P.S. Kamble, Anti-Diabetic Effects of Leaves of Trigonella foenum-graecum L.(Fenugreek): Leads from Preclinical Studies, J Food Chem Nanotechnol. 3 (2017) 67–71. https://doi.org/10.17756/jfcn.2017-039
[91] U.C.S. Yadav, N.Z. Baquer, Pharmacological effects of Trigonella foenum-graecum L. in health and disease, Pharm. Biol. 52 (2014) 243–254. https://doi.org/10.3109/13880209.2013.826247
[92] K. Velayutham, A.A. Rahuman, G. Rajakumar, T. Santhoshkumar, S. Marimuthu, C. Jayaseelan, A. Bagavan, A.V. Kirthi, C. Kamaraj, A.A. Zahir, Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis, Parasitol. Res. 111 (2012) 2329–2337. https://doi.org/10.1007/s00436-011-2676-x
[93] P. R. Anusuyadevi, A. V. Riazanova, M. S. Hedenqvist, A. J. Svagan, Floating Photocatalysts for Effluent Refinement Based on Stable Pickering Cellulose Foams and Graphitic Carbon Nitride (g-C3N4). ACS Omega. 5 (35) (2020) 22411-22419. https://doi.org/10.1021/acsomega.0c02872
[94] P.R. Anusuyadevi, Synthesis of Novel Nanophotocatalyst in Micro/Millifludic Supercritical Reactor, (2018).
[95] R. de O. Teixeira, M.L. Camparoto, M.S. Mantovani, V.E.P. Vicentini, Assessment of two medicinal plants, Psidium guajava L. and Achillea millefolium L., in in vitro and in vivo assays, Genet. Mol. Biol. 26 (2003) 551–555. https://doi.org/10.1590/S1415-47572003000400021
[96] U.K. Parashar, V. Kumar, T. Bera, P.S. Saxena, G. Nath, S.K. Srivastava, R. Giri, A. Srivastava, Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles, Nanotechnology. 22 (2011) 415104. https://doi.org/10.1088/0957-4484/22/41/415104
[97] S.K. Basha, K. Govindaraju, R. Manikandan, J.S. Ahn, E.Y. Bae, G. Singaravelu, Phytochemical mediated gold nanoparticles and their PTP 1B inhibitory activity, Colloids Surfaces B Biointerfaces. 75 (2010) 405–409. https://doi.org/10.1016/j.colsurfb.2009.09.008
[98] D. Hariharan, K. Srinivasan, L.C. Nehru, Synthesis and characterization of Tio2 nanoparticles using cynodon dactylon leaf extract for antibacterial and anticancer (A549 cell lines) activity, J. Nanomedicine Res. 5 (2017) 138–142. https://doi.org/10.15406/jnmr.2017.05.00138