Polysaccharide as Green Corrosion Inhibitor
Y. Dewangan, A.K. Dewangan, D.K. Verma
The carbohydrates associated with polysaccharide glycosidic bonds are tightly chained, usually linear and highly branched complex molecules. Their structure mainly consists of hydroxyl groups in the form of functional groups, in which an oxygen heterogeneous atom is present. Some polysaccharides have hetero atoms. Nitrogen and Sulfur in addition to oxygen, which have unshared electron pairs. Hetero atoms easily share their electron pair to the vacant d orbitals of the metal ion and prevent the metal from corrosion. Polysaccharides are biodegradable, renewable, inexpensive and environment friendly due to which they are easily used as corrosion inhibitors. The present study mentions some major research work in which polysaccharides are used as corrosion inhibitors. Their mixed type nature has been reported in most research papers, and in the case of steel metal, they mainly follow the Langmuir adsorption isotherm. Chemical (gravimetric analysis) and electrochemical (EIS & PDP) studies are frequently used for the corrosion inhibition study. Some of the current research papers have also used computational or theoretical studies such as quantum chemical study and MD simulation. At the end of this book chapter, a discussion is also given regarding further research and direction related to the topic.
Keywords
Polysaccharide, Heteroatom, Metal, Corrosion Inhibitor, Electron Impedance Spectroscopy, Density Function Theory
Published online 6/5/2021, 31 pages
Citation: Y. Dewangan, A.K. Dewangan, D.K. Verma, Polysaccharide as Green Corrosion Inhibitor, Materials Research Foundations, Vol. 107, pp 70-100, 2021
DOI: https://doi.org/10.21741/9781644901496-4
Part of the book on Sustainable Corrosion Inhibitors
References
[1] C. Verma, M.A. Quraishi, Thermodynamic, electrochemical and surface studies of dendrimers as effective corrosion inhibitors for mild steel in 1 M HCl, Anal. Bioanal. Electrochem. 8(1) (2016) 104-123.
[2] S. Bourichi, Y.K. Rodi, M. El Azzouzi, Y. Kharbach, F.O. Chahdi, A. Aouniti, Inhibitive effect of new synthetized imidazopyridine derivatives for the mild steel corrosion in Hydrochloric acid medium, J. Mater. Environ. Sci. 8(5) (2017) 1696-1707.
[3] E.S. Ferreira, C. Giacomelli, F.C. Giacomelli, A. Spinelli, Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel, Mater. Chem. Phys. 83(1) (2004) 129-134. https://doi.org/10.1016/j.matchemphys.2003.09.020
[4] I. Sekine, Y. Nakahata, H. Tanabe, The corrosion inhibition of mild steel by ascorbic and folic acids, Corros. Sci. 28(10) (1988) 987-1001. https://doi.org/10.1016/0010-938X(88)90016-9
[5] L.R. Chauhan, G. Gunasekaran, Corrosion inhibition of mild steel by plant extract in dilute HCl medium, Corros. Sci. 49 (2007) 1143-1161. https://doi.org/10.1016/j.corsci.2006.08.012
[6] X. Wang, Y. Gu, Q. Zhang, L. Xu, X. Li, Rose, gardenia, and solanumviolaceum extracts as inhibitors of steel corrosion, Int. J. Electrochem. Sci., 14 (2019) 8405-8418. https://doi.org/10.20964/2019.09.41
[7] S. Paul, I. Koley, Corrosion inhibition of carbon steel in acidic environment by papaya seed as green inhibitor, J. Bio. Tribo. Corros. 2 (2016) 6. https://doi.org/10.1007/s40735-016-0035-2
[8] R. Anitha, S. Chitra, Corrosion resistance of cissusquadrangularis extracts on metal in aggressive medium: Gravimetric and surface examinations, Rasayan J. Chem. 12 (2019) 1326-1339. https://doi.org/10.31788/RJC.2019.1235195
[9] N. Raghavendra, J. IshwaraBhat, An environmentally friendly approach towards mitigation of Al corrosion in hydrochloric acid by yellow colour ripe arecanut husk extract: Introducing potential and sustainable inhibitor for material protection, J. Bio. Tribo. Corros. 4 (2018). https://doi.org/10.1007/s40735-017-0112-1
[10] A.K. Satapathy, G. Gunasekaran, S.C. Sahoo, K. Amit, P.V. Rodrigues, Corrosion inhibition by Justiciagendarussa plant extract in hydrochloric acid solution, Corros. Sci. 51 (2009) 2848-2856. https://doi.org/10.1016/j.corsci.2009.08.016
[11] H. Mohammed, S.bt. Sobri, Corrosion inhibition studies of cashew nut (Anacardiumoccidentale) on carbon steel in 1.0 M hydrochloric acid environment, Mater. Lett.. 229 (2018) 82-84. https://doi.org/10.1016/j.matlet.2018.06.108
[12] E.S. Ferreira, C. Giacomelli, F.C. Giacomelli, A. Spinelli, Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel, Mater. Chem. Phys. 83 (2004) 129-134. https://doi.org/10.1016/j.matchemphys.2003.09.020
[13] P.B. Raja, M.G. Sethuraman, Natural products as corrosion inhibitor for metals in corrosive media – A review, Mater. Lett. 62 (2008) 113-116. https://doi.org/10.1016/j.matlet.2007.04.079
[14] M. Behzadnasab, S.M. Mirabedini, K. Kabiri, S. Jamali, Corrosion performance of epoxy coatings containing silane treated ZrO2 nanoparticles on mild steel in 3.5% NaCl solution, Corros. Sci. 53 (2011) 89-98. https://doi.org/10.1016/j.corsci.2010.09.026
[15] X. Li, S. Deng, H. Fu, G. Mu, Inhibition effect of 6-benzylaminopurine on the corrosion of cold rolled steel in H2SO4 solution, Corros. Sci. 51 (2009) 620-634. https://doi.org/10.1016/j.corsci.2008.12.021
[16] W.H. Li, Q. He, S.T. Zhang, C.L. Pei, B.R. Hou, Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium, J. Appl. Electrochem. 38 (2008) 289-295. https://doi.org/10.1007/s10800-007-9437-7
[17] A. Popova, E. Sokolova, S. Raicheva, M. Christov, AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives, Corros. Sci. 45 (2003) 33-58. https://doi.org/10.1016/S0010-938X(02)00072-0
[18] A. Döner, R. Solmaz, M. Özcan, G. Kardaş, Experimental and theoretical studies of thiazoles as corrosion inhibitors for mild steel in sulphuric acid solution, Corros. Sci. 53 (2011) 2902-2913. https://doi.org/10.1016/j.corsci.2011.05.027
[19] R. Solmaz, G. Kardaş, M. Çulha, B. Yazici, M. Erbil, Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media, Electrochim. Acta. 53 (2008) 5941-5952. https://doi.org/10.1016/j.electacta.2008.03.055
[20] H. Ashassi-Sorkhabi, B. Shaabani, D. Seifzadeh, Corrosion inhibition of mild steel by some schiff base compounds in hydrochloric acid, Appl. Surf. Sci. 239 (2005) 154-164. https://doi.org/10.1016/j.apsusc.2004.05.143
[21] M. Lebrini, M. Lagrenée, H. Vezin, L. Gengembre, F. Bentiss, Electrochemical and quantum chemical studies of new thiadiazole derivatives adsorption on mild steel in normal hydrochloric acid medium, Corros. Sci. (2005) 47, 485-505. https://doi.org/10.1016/j.corsci.2004.06.001
[22] M. Palomar-Pardavé, M. Romero-Romo, H. Herrera-Hernández, M.A. Abreu-Quijano, N.V. Likhanova, J. Uruchurtu, J.M. Juárez-García, Influence of the alkyl chain length of 2 amino 5 alkyl 1,3,4thiadiazole compounds on the corrosion inhibition of steel immersed in sulfuric acid solutions, Corros. Sci. 54 (2012) 231-243. https://doi.org/10.1016/j.corsci.2011.09.020
[23] A.S. Begum, J. Mallika, P. Gayathri, Corrosion inhibition property of some 1, 3, 4- thiadiazolines on mild steel in acidic medium, E. J. Chem. 7 (2010) 185-197. https://doi.org/10.1155/2010/623298
[24] I.O. Arukalam, Durability and synergistic effects of KI on the acidcorrosion inhibition of MS by hydroxypropyl methylcellulose, Carbohydr. Polymer. 112 (2014) 291-9. https://doi.org/10.1016/j.carbpol.2014.05.071
[25] M. Abdallah, Guar Gum as Corrosion Inhibitor for Carbon Steel in Sulfuric Acid Solutions, Port. ElectrochimicaActa (2003) 161-175. https://doi.org/10.4152/pea.200402161
[26] M. Mobin, M.A. Khan, M. Parveen, Inhibition of MS Corrosion in Acidic Medium Using Starch and Surfactants Additives, J. Appl. Polymer Sci. 121(3) (2011) 1558-1565. https://doi.org/10.1002/app.33714
[27] M. Mobin, M.A. Khan, Investigation on the Adsorption and Corrosion Inhibition Behavior of Gum Acacia and Synergistic Surfactants Additives on MS in 0.1 M H2SO4, J. Disper. Sci. Technol. 34(11) (2013) 1496-1506. https://doi.org/10.1080/01932691.2012.751031
[28] M. Mobin, M. Rizvi, Inhibitory effect of xanthan gum and synergistic surfactant additives for MS corrosion in 1 M HCl, Carbohydr. Polymer. 136 (2016) 384-393. https://doi.org/10.1016/j.carbpol.2015.09.027
[29] M. Mobin, M. Rizvi, Polysaccharide from Plantagoas a Green Corrosion Inhibitor for Carbon Steel in 1M HCl Solution, Carbohydr. Polymer. 160 (2017) 172-183. https://doi.org/10.1016/j.carbpol.2016.12.056
[30] M.V. Fiori-Bimbi, P.E. Alvarez, H. Vaca, C.A. Gervasi, Corrosion inhibition of MS in HCl solution by pectin, Corros. Sci. 92 (2015) 192-199. https://doi.org/10.1016/j.corsci.2014.12.002
[31] M.M. Solomon, S.A. Umoren, I.I. Udosoro, A.P. Udoh, Inhibitive and adsorption behaviour of carboxymethyl cellulose on MS corrosion in sulphuric acid solution, Corros. Sci. 52(4) (2010) 1317-1325. https://doi.org/10.1016/j.corsci.2009.11.041
[32] M.N. EL-Haddad, Hydroxyethylcellulose used as an eco-friendly inhibitor for 1018 c- steel corrosion in 3.5% NaCl solution, Carbohydr. Polymer. 112 (2014) 595-602. https://doi.org/10.1016/j.carbpol.2014.06.032
[33] M. Bello, N. Ochoa, V. Balsamo, F. López-Carrasquero, S. Coll, A. Monsalve, G. González, Modified cassava starches as corrosion inhibitors of carbon steel: An electrochemical and morphological approach, Carbohydr. Polymer. 82(3) (2010) 561-568. https://doi.org/10.1016/j.carbpol.2010.05.019
[34] M. Mobin, M. Rizvi, L.O. Olasunkanmi, E.E. Ebenso, Biopolymer from tragacanth gum as a green corrosion inhibitor for carbon steel in 1 M HCl solution, ACS Omega. 2(7) (2018) 3997−4008. https://doi.org/10.1021/acsomega.7b00436
[35] M. Mobin, M. Rizvi, Adsorption and corrosion inhibition behavior of hydroxyethylcellulose and synergistic surfactants additives for carbon steel in 1 M HCl, Carbohydr. Polymer 156 (2017) 202-214. https://doi.org/10.1016/j.carbpol.2016.08.066
[36] N.O. Eddy, P. Ameh, C.E. Gimba , E.E. Ebenso, Chemical information from gcms of Ficus platyphylla gum and its corrosion inhibition potential for MS in 0.1 M HCl, Int. J. Electrochem. Sci. 7 (2012) 5677 – 5691.
[37] N.O. Eddy, P. Ameh, C.E. Gimba, E.E. Ebenso, GCMS studies on Anogessus Leocarpus (Al) gum and their corrosion inhibition potential for MS in 0.1 M HCl, Int. J. Electrochem. Sci. 6 (2011) 5815 – 5829.
[38] N.O. Eddy, A.O. Odiongenyi, P.O. Ameh, E.E. Ebenso, Corrosion inhibition potential of Daniella Oliverri Gum exudate for MS in acidic medium, Int. J. Electrochem. Sci., 7 (2012) 7425 – 7439.
[39] P.O. Ameh, Adsorption and Inhibitive Properties of Khaya ivorensis Gum for the Corrosion of MS in HCl, Int. J. Mod. Chem. 2(1) (2012) 28-40. https://doi.org/10.1007/s11164-013-1117-0
[40] S. Banerjee, V. Srivastava, M.M. Singh, Chemically modified natural polysaccharide as green corrosion inhibitor for MS in acidic medium, Corros. Sci. 59 (2012) 35-41. https://doi.org/10.1016/j.corsci.2012.02.009
[41] V. Rajeswari, D. Kesavan, M. Gopiraman, P. Viswanathamurthi, Physicochemical studies of glucose, gellan gum, and hydroxypropyl cellulose-Inhibition of cast iron corrosion, Carbohydr. Polymer. 95(1) (2013) 288- 294. https://doi.org/10.1016/j.carbpol.2013.02.069
[42] M. Abdallah, Guar gum as corrosion inhibitor for carbon steel in sulfuric acid solutions, Port. ElectrochimicaActa 22 (2004) 161-175. https://doi.org/10.4152/pea.200402161
[43] H. Bentrah, Y. Rahali, A. Chala, Gum Arabic as an eco-friendly inhibitor for API 5L X42 pipeline steel in HCl medium, Corros. Sci. 82 (2014) 426-431. https://doi.org/10.1016/j.corsci.2013.12.018
[44] A. Biswas, S. Pal, G. Udayabhanu, Experimental and theoretical studies of xanthan gum and its graftco-polymer as corrosion inhibitor for MS in 15% HCl, Appl. Surf. Sci. 353 (2015) 173-183. https://doi.org/10.1016/j.apsusc.2015.06.128
[45] M.M. Solomon, S.A. Umoren, I.I. Udosoro, A.P. Udoh, Inhibitive and adsorption behaviour of carboxymethyl cellulose on MS corrosion in sulphuric acid solution, Corros. Sci. 52(4) (2010) 1317-1325. https://doi.org/10.1016/j.corsci.2009.11.041
[46] S.A. Umoren, U.F. Ekanem, Inhibition of MS corrosion in H2SO4 using exudate gum from pachylobusedulis and synergistic potassium halide additives, Chem. Eng. Comm. 197(10) (2010) 1339-1356. https://doi.org/10.1080/00986441003626086
[47] N. Manimaran, S. Rajendran, M. Manivannan, J.A. Thangakani, A.S. Prabha, Corrosion inhibition by carboxymethyl cellulose, Eur. Chem. Bull. 2(7) (2013) 494-498.
[48] M.N. EL-Haddad, Hydroxyethylcellulose used as an eco-friendly inhibitor for 1018 c- steel corrosion in 3.5% NaCl solution, Carbohydr. Polymer. 112 (2014) 595-602. https://doi.org/10.1016/j.carbpol.2014.06.032
[49] I.O. Arukalam, I.C. Madufor, O. Ogbobe, E.E. Oguzie, Inhibition of mild steel corrosion in sulphuric acid medium by hydroxyethyl cellulose, Chem. Eng. Commun. 202(1) (2014) 112-122. https://doi.org/10.1080/00986445.2013.838158
[50] T. Brindha, J. Mallika, V.S. Moorthy, Synergistic effect between starch and substituted piperidin-4-one on the corrosion inhibition of MS in acidic medium, J. Mater. Environ. Sci. 6(1) (2015) 191-200.
[51] M. Prabakaran, S. Ramesh , V. Periasamy, B. Sreedhar, The corrosion inhibition performance of pectin with propyl phosphonic acid and Zn2+ for corrosion control of carbon steel in aqueous solution, Res. Chem. Intermed. 41 (2015) https://doi.org/10.1007/s11164-014-1558-0
4649-4671.
[52] R. Geethanjali, A.A.F. Sabirneeza, S. Subhashini, Water-soluble and biodegradable pectin-grafted polyacrylamide and pectin-grafted polyacrylic acid: electrochemical investigation of corrosion-inhibition behaviour on MS in 3.5% NaCl media, Indian J. Mater. Sci. (2014) 356075. https://doi.org/10.1155/2014/356075
[53] S.A. Umoren, M.J. Banera, T. Alonso-Garcia, C.A. Gervasi, M.V. Mirı’fico, Inhibition of MS corrosion in HCl solution using chitosan, Cellulose. 20 (2013) 2529-2545. https://doi.org/10.1007/s10570-013-0021-5
[54] A.M. Fekry, R.R. Mohamed, Acetyl thiourea chitosan as an eco-friendly inhibitor for MS in sulphuric acid medium, Electrochim. Acta. 55(6) (2010) 1933-1939. https://doi.org/10.1016/j.electacta.2009.11.011
[55] A.M. Atta, G.A. El-Mahdy, H.A. Al-Lohedan, A.R.O. Ezzat, Synthesis of nonionic amphiphilic chitosan nanoparticles for active corrosion protection of steel, J. Mol. Liq. 211 (2015) 315-323. https://doi.org/10.1016/j.molliq.2015.07.035
[56] S. John, A. Joseph, A.J. Jose, B. Narayana, Enhancement of corrosion protection of MS by chitosan/ZnO nanoparticle composite membranes, Prog. Org. Coatings. 84 (2015) 28-34. https://doi.org/10.1016/j.porgcoat.2015.02.005
[57] S.H.D. Koesoemo, R. Ruriyanti, L.S. Anggara, Application chitosan derivatives as inhibitor corrosion on steel with fluidization method, J. Chem. Pharm. Res. 7 (2015) 260-267.
[58] Y. Sangeetha, S. Meenakshi, C.S. Sundaram, Corrosion mitigation of N-(2-hydroxy-3-trimethyl ammonium)propylchitosan chloride as inhibitor on MS, Int. J. Biol. Macromol. 72 (2015) 1244- 1249. https://doi.org/10.1016/j.ijbiomac.2014.10.044
[59] I.O. Arukalam, N.T. Ijomah, S.C. Nwanonenyi, H.C. Obasi, B.C. Aharanwa, P.I. Anyanwu, Studies on acid corrosion of aluminium by a naturally occurring polymer (Xanthan gum), Int. J. Sci. Eng. Res. 5(3) (2014) 663-673.
[60] N.O. Eddy, P.O. Ameh, M.Y. Gwarzo, I.J. Okop, S.N. Dodo, Physicochemical study and corrosion inhibition potential of ficus tricopoda for aluminium in acidic medium, Port. Electrochim. Acta. 31(2) (2013) 79-93. https://doi.org/10.4152/pea.201302079
[61] N.O. Eddy, P.O. Ameh, A.O. Odiongenyi, Physicochemical characterization and corrosion inhibition potential of ficus benjamina (fb) gum for aluminum in 0.1 M H2SO4, Port. Electrochim. Acta. 32(3) (2014) 183-197. https://doi.org/10.4152/pea.201403183
[62] N.O. Eddy, U.J. Ibok, P.O. Ameh, N.O. Alobi, M.M. Sambo, Adsorption and quantum chemical studies on the inhibition of the corrosion of aluminum in HCl by Gloriosasuperba (GS) Gum, Chem. Eng. Comm. 201(10) (2014) 1360-1383. https://doi.org/10.1080/00986445.2013.809000
[63] N.O. Eddy, P.O. Ameh, O. Danclementino, A. Odiongenyi, Adsorption and chemical studies on the inhibition of the corrosion of aluminium in hydrochloric acid by commiphora africana gum, Int. J. Chem. Mater. Environ. Res. 1(1) (2014) 16-28.
[64] R. Rosliza, W.B.W. Nik, Improvement of corrosion resistance of AA6061 alloy by tapioca starch in seawater, Curr. Appl. Phys. 10(1) (2010) 221-229. https://doi.org/10.1016/j.cap.2009.05.027
[65] S.A. Umoren, I.B. Obot, E.E. Ebenso, P.C. Okafor, O. Ogbobe, E.E. Oguzie, Gum arabic as a potential corrosion inhibitor for aluminium in alkaline medium and its adsorption characteristics, Anti-Corros. Meth. Mater. 53(5) (2006) 277-282. https://doi.org/10.1108/00035590610692554
[66] S.A. Umoren, I.B. Obot, E.E. Ebenso, N. Obi-Egbedi, Studies on the inhibitive effect of exudate gum from dacroydesedulison the acid corrosion of aluminium, Port. Electrochim. Acta (2008) 199-209. https://doi.org/10.4152/pea.200802199
[67] R. Kalaivani, P.T. Arasu, S. Rajendran, Inhibitive nature of Carboxymethylcellulose with Zn2+ ion, Chem. Sci. Trans. 2(4) (2013) 1352-1357. https://doi.org/10.7598/cst2013.618
[68] S. Eid, M. Abdallah, E.M. Kamar, A.Y. El-Etre, Corrosion inhibition of aluminum and aluminum silicon alloys in sodium hydroxide solutions by methyl cellulose, J. Mater. Environ. Sci. 6(3) (2015) 892-901.
[69] I. Zaafarany, Corrosion inhibition of aluminum in aqueous alkaline solutions by alginate and pectate water-soluble natural polymer anionic polyelectrolytes, Port. Electrochim. Acta. 30(6) (2012) 419-426. https://doi.org/10.4152/pea.201206419
[70] R.M. Hassan, I.A. Zaafarany, Kinetics of corrosion inhibition of aluminum in acidic media by water-soluble natural polymeric pectates as anionic polyelectrolyte inhibitors, Mater. (Basel) 6(6) (2013) 2436-2451. https://doi.org/10.3390/ma6062436
[71] M.N. El-Haddad, Chitosan as a green inhibitor for copper corrosion in acidic medium, Int. J. Biol. Macromol. 55 (2013) 142- 149. https://doi.org/10.1016/j.ijbiomac.2012.12.044
[72] M.L Li, R.H. Li, J. Xu, X. Han, T.Y. Yao, J. Wang, Thiocarbohydrazide-modified chitosan as anticorrosion and metal ion adsorbent, J. Appl. Polym. Sci. 131(17) (2014) 40671. https://doi.org/10.1002/app.40671
[73] S.A. Umoren1, U.M. Eduok, Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: A review, Carbohydr. Polymer. 140 (2016) 314-341. https://doi.org/10.1016/j.carbpol.2015.12.038
[74] J. Aljourani, K. Raeissi, M.A. Golozar, Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1M HCl solution, Corros. Sci. 51 (2009) 1836-1843. https://doi.org/10.1016/j.corsci.2009.05.011
[75] A. Popova, E. Sokolova, S. Raicheva, M. Christov, AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives, Corros. Sci. 45 (2003) 33-58. https://doi.org/10.1016/S0010-938X(02)00072-0
[76] H. Cang, Z. Fei, H. Xiao, J. Huang, Q. Xu, Inhibition effect of reed leaves extract on steel in hydrochloric acid and sulphuric acid solutions, Int. J. Electrochem. Sci. 7 (2012) 8869-8882.
[77] C. Kamal, M.G. Sethuraman, Spirulinaplatensis – A novel green inhibitor for acid corrosion of mild steel, Arab. J. Chem. 5 (2012) 155-161. https://doi.org/10.1016/j.arabjc.2010.08.006
[78] M. Bouklah, B. Hammouti, M. Lagrenée, F. Bentiss, Thermodynamic properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium, Corros. Sci. 48 (2006) 2831-2842. https://doi.org/10.1016/j.corsci.2005.08.019
[79] F.B. Mainier, R.de.M.B.e. Silva, Evaluation of corrosion inhibitors in acid medium, Anti Corros. Meth. Mater. 62 (2015) 241-245. https://doi.org/10.1108/ACMM-12-2013-1329
[80] M. Hosseini, S.F.L. Mertens, M. Ghorbani, M.R. Arshadi, Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media, Mater. Chem. Phys. 78 (2003) 800-808. https://doi.org/10.1016/S0254-0584(02)00390-5
[81] J. Zhou, X. Niu, Y. Cui, Z. Wang, J. Wang, R. Wang, Study on the film forming mechanism, corrosion inhibition effect and synergistic action of two different inhibitors on copper surface chemical mechanical polishing for GLSI, Appl. Surf. Sci. 505 (2019) 144507. https://doi.org/10.1016/j.apsusc.2019.144507