Green Corrosion Inhibitors from Biomass and Natural Sources
A.N. Grassino, I. Cindrić, J. Halambek
Considering the fact that corrosion of metals and alloys presents a significant problem all over the world, the one of most recently utilized approaches to combat this problem necessitates the researches for employment of new materials, which satisfied the green chemistry idea. In this connection, the development of sustainable corrosion inhibitors is highly demanded due to the increasing of awareness of green chemistry principles not only in corrosion discipline, but also in all branches of science and technology. Due to natural and biological origin as well as their eco-friendly extraction, the plant materials and biomass derived from various waste sources could be applied as beneficial substances for metals and alloys protection in different corrosion environment. Therefore, this work reports the main findings regarding their employments as green anticorrosion substances.
Keywords
Natural Sources, Biomass Waste, Green Corrosion Inhibitors, Metal Surface, Corrosion Media
Published online 6/5/2021, 24 pages
Citation: A.N. Grassino, I. Cindrić, J. Halambek, Green Corrosion Inhibitors from Biomass and Natural Sources, Materials Research Foundations, Vol. 107, pp 46-69, 2021
DOI: https://doi.org/10.21741/9781644901496-3
Part of the book on Sustainable Corrosion Inhibitors
References
[1] G. Trabanelli, V. Carassiti, Mechanism and phenomenology of organic inhibitors, in: M.G. Fontaine, R.W. Stachle (Eds.), Advances in Corrosion Science and Technology, Plenum Press, New York, 1970, pp. 147-20. https://doi.org/10.1007/978-1-4615-8252-6_3
[2] P.B. Raja, M.S. Sethuraman, Matural products as corrosion inhibitor for metals in corrosive media – A review, Mater. Lett. 62 (2008) 113-116. https://doi.org/10.1016/j.matlet.2007.04.079
[3] J. Aljourani, K. Raeissi, M.A. Golozar, Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1 M HCl solution, Corros. Sci. 51 (2009) 1836-1843. https://doi.org/10.1016/j.corsci.2009.05.011
[4] S. Marzorati, L. Verotta, S.P. Trasatti, Green corrosion inhibitors from natural sources and biomass wastes, Molecules. 48 (2019) 1-24. https://doi.org/10.3390/molecules24010048
[5] A. Ninčević Grassino, Plant extracts as a natural corrosion inhibitors of metals and its alloys used in food preserving industry, in A. Méndez-Vilas (Ed.), Science within Food: Up to date Advances on Research and Education Ideas, Food Science Book Series 1, Formatex Research Center, Badajoz, 2017, pp. 185-193.
[6] L.T. Popoola, Organic green corrosion inhibitors (OGCIs): a critical review, Corros. Rev. 37 (2019) 71-102. https://doi.org/10.1515/corrrev-2018-0058
[7] S.A. Umoren, M.M. Solomon, I.B. Obot, R.K. Suleiman, A critical review on the recent studies on plant biomaterials as corrosion inhibitors for industrial metals, J. Ind. Eng. Chem. 76 (2019) 91-115. https://doi.org/10.1016/j.jiec.2019.03.057
[8] C. Verma, E.E. Ebenso, I. Bahadur, M.A. Quraishi, An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media, J. Mol. Liq. 266 (2018) 577-590. https://doi.org/10.1016/j.molliq.2018.06.110
[9] L.C. Pirvu, Polyphenols and herbal-based extracts at the basis of new antioxidant, Material Protecting Products, in: M. Aliofkhazraei (Ed.), Developments in Corrosion Protection, Intech Open, London, 2014, pp. 181-198.
[10] A. Dehghani, G. Bahlakeha, B. Ramezanzadeh, Green Eucalyptus leaf extract: A potent source of bio-active corrosion inhibitors for mild steel, Bioelectrochemistry. 130 (2019) 107339. https://doi.org/10.1016/j.bioelechem.2019.107339
[11] A. Ostovari, S.M. Hoseinieh, M. Peikari, S.R. Shadizadeh, S.J. Hashemi, Corrosion inhibition of mild steel in 1M HCl solution by henna extract: a comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, α-d-Glucose and Tannic acid), Corros. Sci. 51 (2009) 1935-1949. https://doi.org/10.1016/j.corsci.2009.05.024
[12] M. Chevalier, F. Robert, N. Amusant, M. Traisnel, C. Roos, M. Lebrini, Enhanced corrosion resistance of mild steel in 1 M hydrochloric acid solution by alkaloids extract from Aniba rosaeodora plant: Electrochemical, phytochemical and XPS studies, Electrochim. acta 131 (2014) 96-105. https://doi.org/10.1016/j.electacta.2013.12.023
[13] P.C. Okafor, V.E. Ebiekpe, C.F. Azike, G.E. Egbung, E.A. Brisibe, E.E. Ebenso, Inhibitory action of Artemisia annua extracts and Artemisinin on the corrosion of mild steel in H2SO4 Solution, Int. J. Corros. 2012 (2011) 1-8. https://doi.org/10.1155/2012/768729
[14] A. Saxena, D. Prasad, R. Haldhar, G. Singh, A. Kumar, Use of Saraca ashoka extract as green corrosion inhibitor for mild steel in 0.5 M H2SO4, J. Mol. Liq. 258 (2018) 89-97. https://doi.org/10.1016/j.molliq.2018.02.104
[15] F. Gapsari, K.A. Madurani, F.M. Simanjuntak, A. Andoko, H. Wijaya, F. Kurniawan, Corrosion inhibition of honeycomb waste extracts for 304 stainless steel in sulfuric acid solution, Materials. 12 (2019) 1-15. https://doi.org/10.3390/ma12132120
[16] O. Sanni, A.P.I. Popoola, O.S.I. Fayomi, Enhanced corrosion resistance of stainless steel type 316 in sulphuric acid solution using eco-friendly waste product, Results Phys. 9 (2018) 225-230. https://doi.org/10.1016/j.rinp.2018.02.001
[17] L.F. Montoyaa, D. Contreras, A.F. Jaramillo, C. Carrascoc, K. Fernándezd, B. Schwederski, D. Rojas, M.F. Melendrez, Study of anticorrosive coatings based on high and low molecular weight polyphenols extracted from the Pine radiata bark, Prog. Org Coat. 127 (2019) 100-109. https://doi.org/10.1016/j.porgcoat.2018.11.010
[18] A. Cruz-Zabaleguia, E. Vazquez-Velezb, G. Galicia-Aguilara, M. Casales-Diazb, R. Lopez-Sesenesc, J.G. Gonzalez-Rodriguezd, L. Martinez-Gomez, Use of a non-ionic gemini-surfactant synthesized from the wasted avocado oil as a CO2- corrosion inhibitor for X-52 steel, Ind. Crops Prod. 133 (2019) 203-211. https://doi.org/10.1016/j.indcrop.2019.03.011
[19] L.L Liao, S. Mo, H.Q. Luo, N.B. Li, Corrosion protection for mild steel by extract from the waste of lychee fruit in HCl solution: experimental and theoretical studies, J. Colloid. Interf. Sci. 520 (2018) 41-49. https://doi.org/10.1016/j.jcis.2018.02.071
[20] S. Pal, H. Lgaz, P. Tiwari, I.M. Chung, G. Ji, R. Prakash, Experimental and theoretical investigation of aqueous and methanolic extracts of Prunus dulcis peels as green corrosion inhibitors of mild steel in aggressive chloride media, J. Mol. Liq. 276 (2019) 347-361. https://doi.org/10.1016/j.molliq.2018.11.099
[21] P. Tiwari, M. Srivastava, R. Mishra, G. Ji, R. Prakash, Economic use of Waste Musa Paradisica peels for effective control of mild steel loss in aggressive acid solutions, 6 (2018) 4773-4783. https://doi.org/10.1016/j.jece.2018.07.016
[22] L. Soares Rodrigues, A. Ferreira do Valle, E. D’Elia, Biomass of microalgae spirulina maxima as a corrosion inhibitor for 1020 carbon steel in acidic solution, Int. J. Electrochem. Sci. 13 (2018) 6169-6189. https://doi.org/10.20964/2018.07.11
[23] M.H.M. Hussein, M.F.El-Hady, H.A.H. Shehata, M.A. Hegazy, H.H.H. Hefni, Preparation of some eco-friendly corrosion inhibitors having antibacterial activity from sea food waste, J. Surfact. Deterg. 16 (2013) 233-242. https://doi.org/10.1007/s11743-012-1395-3
[24] L.C. Go, W. Holmes, D. Depan, R. Hernandez, Evaluation of extracellular polymeric substances extracted from waste activated sludge as a renewable corrosion inhibitor, Peer. J. (2019) e7193. https://doi.org/10.7717/peerj.7193.
[25] A. Dehghani, G. Bahlakeha, B. Ramezanzadeh, A detailed electrochemical/theoretical exploration of the aqueous Chinese gooseberry fruit shell extract as a green and cheap corrosion inhibitor for mild steel in acidic solution, J. Mol. Liq. 282 (2019) 366-384. https://doi.org/10.1016/j.molliq.2019.03.011
[26] A. Adewuyi, R.A. Oderinde, Synthesis of hydroxylated fatty amide from underutilized seed oil of Khaya senegalensis: a potential green inhibitor of corrosion in aluminium, J. Anal. Sci. Technol. 9 (2018) 1-26. https://doi.org/10.1186/s40543-018-0158-9
[27] G. Salinas-Solanoa, J. Porcayo-Calderon, L.M. Martinez de la Escalera, J. Canto, M. Casales-Diaz, O. Sotelo-Mazon, John Henao, L. Martinez-Gomeza, Development and evaluation of a green corrosion inhibitor based on rice bran oil obtained from agro-industrial waste, Ind. Crops Prod. 119 (2018) 111-124. https://doi.org/10.1016/j.indcrop.2018.04.009
[28] M. Fioro-Bimbi, P.E. Alvarez, H. Vaca, C.A. Gervasi, Corrosion inhibition of mild steel in HCl solution by pectin, Corros. Sci. 92 (2015) 192-199. https://doi.org/10.1016/j.corsci.2014.12.002
[29] A. Ninčević Grassino, J. Halambek, S. Djaković, S. Rimac Brnčić, M. Dent, Z. Grabarić, Utilization of tomato peel waste from canning factory as a potential source for pectin production and application as tin corrosion inhibitor, Food Hydrocoll. 52 (2016) 265-274. https://doi.org/10.1016/j.foodhyd.2015.06.020
[30] A. Ninčević Grassino, S. Djaković, T. Bosiljkov, J. Halambek, Z. Zorić, V. Dragović-Uzelac, M. Petrović, S. Rimac Brnčić, Valorisation of tomato peel waste as a sustainable source for pectin, polyphenols and fatty acids recovery using sequential extraction, Waste and Biomass Valorization, 4 (2019). https://doi.org/10.1007/s12649-019-00814-7
[31] A.S. Abbas, É. Fazakas and T.I. Török, Corrosion studies of steel rebar samples in neutral sodium chloride solution also in the presence of a bio-based (green) inhibitor, Int. J. Corros. Scale Inhib. 7 (2018) 38-47.
[32] A. Marciales, T. Haile, B. Ahvazi, T.D. Ngo, J. Wolodko, Performance of green corrosion inhibitors from biomass in acidic media, Corros. Rev. 36 (2018) 239-266. https://doi.org/10.1515/corrrev-2017-0094
[33] K.E. Heusler, D. Landolt, S. Trasatti, Electrochemical corrosion nomenclature, Pure Appl. Chem. 61 (1989) 19-22. https://doi.org/10.1351/pac198961010019
[34] N. Perez, Electrochemistry and Corrosion Science, Kluwer Academic Publisher, Boston, 2004. https://doi.org/10.1007/b118420
[35] B.N. Popov, Corrosion inhibitors, in: B.N. Popov (Ed.), Corossion Engineering, Principles and Solved Problems, Elsevier, Amsterdam, 2015, pp. 581-597. https://doi.org/10.1016/B978-0-444-62722-3.00014-8
[36] O. Gharbi, S. Thomas, C. Smith, N. Birbilis, Chromate replacement: what does the future hold?, Mater. Degrad. 12 (2018). https://doi.org/10.1038/s41529-018-0034-5
[37] A. Režek Jambrak, Non-thermal and innovative processing technologies, in: P. Ferranti, E.M. Berry, J.R. Anderson (Eds.), Encyclopedia of Food Security and Sustainability, Elsevier, 2019, pp. 477-483. https://doi.org/10.1016/B978-0-08-100596-5.22285-3
[38] J. Azmir, I.S.M. Zaidul, M.M. Rahman, K.M. Sharif, A. Mohamed, F. Sahena, M.H.A. Jahurul, K. Ghafoor, N.A.N. Norulaini, A.K.M. Omar, Techniques for extraction of bioactive compounds from plant materials: A review, J. Food Eng. 117 (2013) 426-436. https://doi.org/10.1016/j.jfoodeng.2013.01.014
[39] D.C. Costa, H. Costa, T.G. Albuquerque, F. Ramos, M.C. Castilho, A. Sanches-Silva, Advances in phenolic compounds analysis of aromatic plants and their potential applications, Trends Food Sci. Tech. 45 (2015) 336-354. https://doi.org/10.1016/j.tifs.2015.06.009
[40] K. Xhanari, M. Fingšar, M. Knez-Hrnčić, U. Maver, Ž. Knez, B. Seiti, Green corrosion inhibitors for aluminium and its alloys: a review, RSC Adv. 7 (2017) 27299-27330. https://doi.org/10.1039/C7RA03944A
[41] M. Srivastava, P. Tiwari, S.K. Srivastava, A. Kumar, G. Ji, R. Prakash, Low cost aqueous extract of Pisum sativum peels for inhibition of mild steel corrosion, J. Mol. Liq. 254 (2018) 357-368. https://doi.org/10.1016/j.molliq.2018.01.137
[42] S. Burt, Essential oils: their antimicrobial properties and potential application in foods-A review, Inter. J. Food Microb. 94 (2004) 223-253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
[43] L. Afia, R. Salghi, L. Bammou, El. Bazzi, B. Hammouti, L. Bazzi, A. Bouyanzer, Anti-corrosive properties of Argan oil on C38 steel in molar HCl solution, J. Saudi Chem. Soc. 18 (2014) 19-25. https://doi.org/10.1016/j.jscs.2011.05.008
[44] D.B. Hmamou, R. Salghi, A. Zarrouk, H. Zarrouk, M. Errami, B. Hammouti, L. Afia, L. Bazzi, L. Bazzi, Adsorption and corrosion inhibition of mild steel in hydrochloric acid solution by verbena essential oil, Res. Chem. Intermed. 39 (2013) 973-989. https://doi.org/10.1007/s11164-012-0609-7
[45] D.B. Hmamou, R. Salghi, A. Zarrouk, O. Benali, F. Fade, H. Zarrok, B. Hammouti, Carob seed oil: an efficient inhibitor of C38 steel corrosion in hydrochloric acid, Int. J. Ind. Chem. 3 (2012) 1-9. https://doi.org/10.1186/2228-5547-3-25
[46] M. Bendahou, M. Benabdellah, B. Hammouti, A study of rosemary oil as a green corrosion inhibitor for steel in 2 M H3PO4, Pigm. Resin Technol, 35 (2006) 95-100. https://doi.org/10.1108/03699420610652386
[47] D. Ben Hmamou, R. Salghi, A. Zarrouk, B. Hammouti, S.S. Al-Deyab, L. Bazzi, H. Zarrok, A. Chakir, L. Bammou, Corrosion inhibition of steel in 1 m hydrochloric acid medium by chamomile essential oils, Int. J. Electrochem. Sci. 7 (2012) 2361-2373.
[48] N. Lahhit, A. Bouyanzer, J.M. Desjobert, B. Hammouti, R. Salghi, J. Costa, C. Jama, F. Bentiss, L. Majidi, Fennel (Foeniculum Vulgare) Essential oil as green corrosion inhibitor of carbon steel in hydrochloric acid solution, Port. Electrochim. Acta. 29 (2011) 127-138. https://doi.org/10.4152/pea.201102127
[49] L. Afia, O. Benali, R. Salghi, E.E. Ebenso, S. Jodeh, M. Zougagh, B. Hammouti, Steel Corrosion inhibition by acid garlic essential oil as a green corrosion inhibitor and sorption behavior, Int. J. Electrochem. Sci. 9 (2014) 8392-8406.
[50] M. Chraibi, K. Fikri Benbrahim, H. Elmsellem, A. Farah, I. Abdel-Rahman, B. El Mahi, Y. Filali Baba, Y. Kandri Rodi, F. Hlimi, Antibacterial activity and corrosion inhibition of mild steel in 1.0 M hydrochloric acid solution by M. piperita and M. pulegium essential oils, J. Mater. Environ. Sci. 8 (2017) 972-981.
[51] Y. El Ouadi, A. Bouyanzer, L. Majidi, J. Paolini, J.M. Desjobert, J. Costa, A. Chetouani, B. Hammouti, S. Jodeh, I. Warad, Y. Mabkhot, T. Ben Hadda, Evaluation of Pelargonium extract and oil as eco-friendly corrosion inhibitor for steel in acidic chloride solutions and pharmacological properties, Res. Chem. Intermed. 41 (2015) 7125-7149. https://doi.org/10.1007/s11164-014-1802-7
[52] J. Halambek, M. Cvjetko Bubalo, I. Radojčić Redovniković, K. Berković, Corrosion behaviour of aluminium and AA5754 alloy in 1% acetic acid solution in presence of laurel oil, Int. J. Electrochem. Sci. 9 (2014) 5496-5506. https://doi.org/10.1016/j.ecoenv.2013.10.019
[53] J. Halambek, A. Žutinić, K. Berković, Ocimum basilicumL. oil as corrosion inhibitor for aluminium in hydrochloric acid solution, Int. J. Electrochem. Sci. 8 (2013) 11201-11214.
[54] J. Halambek, K. Berković, Inhibitive action of Anethum graveolens L. oil on aluminium corrosion in acidic media, Int. J. Electrochem. Sci. 7 (2012) 8356-8368.
[55] K. Dahmani, M. Galai, M. Cherkaoui, A. El Hasnaoui, A. El Hessni, Cinnamon essential oil as a novel eco-friendly corrosion inhibitor of copper in 0.5 M Sulfuric Acid medium, J. Mater. Environ. Sci. 8 (2017) 1676-1689.
[56] L. Bammou, M. Mihit, R. Salghi, A. Bouyanzer, S.S. Al-Deyab, L. Bazzi, B. Hammouti, Inhibition effect of natural artemisia oils towards tinplate corrosion in HCl solution: Chemical characterization and electrochemical study, Int. J. Electrochem. Sci.6 (2011) 1454-1467.
[57] L. Bammou , B. Chebli , R. Salghi , L. Bazzi , B. Hammouti , M. Mihit, H. Idrissi, Thermodynamic properties of Thymus satureioides essential oils as corrosion inhibitor of tinplate in 0.5 M HCl: chemical characterization and electrochemical study, Green Chem. Lett. Rev. 3 (2010) 173-178. https://doi.org/10.1080/17518251003660121
[58] J. Halambek,K. Berković, J. Vorkapić-Furač, The influence of Lavandula angustifolia L. oil on corrosion of Al-3Mg alloy, Corros. Sci. 52 (2010) 3978-3983. https://doi.org/10.1016/j.corsci.2010.08.012
[59] J. Halambek, K. Berković, J. Vorkapić-Furač, Laurus nobilis L. oil as green corrosion inhibitor for aluminium and AA5754 aluminium alloy in 3 % NaCl solution, Mater. Chem. Phys. 137 (2013) 788-795. https://doi.org/10.1016/j.matchemphys.2012.09.066
[60] R. Haldhar, D. Prasad, A. Saxena, Armoracia rusticana as sustainable and eco-friendly corrosion inhibitor for mild steel in 0.5M sulphuric acid: Experimental and theoretical investigations, J. Environ. Chem. Eng. 6 (2018) 5230-5238. https://doi.org/10.1016/j.jece.2018.08.025
[61] P. C. Okafor, E. E. Ebenso, U.J. Ekpe, Azadirachta Indica Extracts as corrosion inhibitor for mild steel in acid medium, Int. J. Electrochem. Sci. 5 (2010) 978-993.
[62] X. Li, S. Deng, H. Fu, Inhibition of the corrosion of steel in HCl, H2SO4 solutions by bamboo leaf extract, Corros. Sci. 62 (2012) 163-175. https://doi.org/10.1016/j.corsci.2012.05.008
[63] S. Deng, X. Li, Inhibition by Ginkgo leaves extract of the corrosion of steel in HCl and H2SO4 solutions, Corros. Sci. 55 (2012) 407-415. https://doi.org/10.1016/j.corsci.2011.11.005
[64] I.B. Obot, N.O. Obi-Egbedi, Ginseng Root: A new efficient and effective eco-friendly corrosion inhibitor for aluminium alloy of type aa 1060 in hydrochloric acid solution, Int. J. Electrochem. Sci. 4 (2009) 1277-1288.
[65] M. Dahmani, A. Et-Touhami, S.S. Al-Deyab, B. Hammouti, A. Bouyanzer, Corrosion inhibition of C38 steel in 1 M HCl: A comparative study of black pepper extract and its isolated piperine, Int. J. Electrochem. Sci. 5 (2010) 1060-1069.
[66] A. Dehghani , G. Bahlakeha, B. Ramezanzadehb, M. Ramezanzadeh, Potential of Borage flower aqueous extract as an environmentally sustainable corrosion inhibitor for acid corrosion of mild steel: Electrochemical and theoretical studies, J. Mol. Liq. 277 (2019) 895-911. https://doi.org/10.1016/j.molliq.2019.01.008
[67] M. Faustin, A. Maciuk, P. Salvin, C. Roos, M. Lebrini, Corrosion inhibition of C38 steel by alkaloids extract of Geissospermum laeve in 1 M hydrochloric acid: Electrochemical and phytochemical studies, Corros. Sci. 92 (2015) 287-300. https://doi.org/10.1016/j.corsci.2014.12.005
[68] I.B. Obot, E.E. Ebenso, Z.M. Gasem, Eco-friendly corrosion inhibitors: Adsorption and inhibitive action of ethanol extracts of Chlomolaena Odorata L. for the corrosion of mild steel in H2SO4 solutions, Int. J. Electrochem. Sci. 7 (2012) 1997-2008.
[69] E.A. Noor, Potential of aqueous extract of Hibiscus sabdariffa leaves for inhibiting the corrosion of aluminum in alkaline solutions, J. Appl. Electrochem. 39 (2009) 1465-1475. https://doi.org/10.1007/s10800-009-9826-1
[70] A. Saxena, D. Prasad, R. Haldhar, G. Singh, A. Kumar, Use of Saraca ashoka extract as green corrosion inhibitor for mild steel in 0.5 M H2SO4, J. Mol. Liq. 258 (2018) 89-97. https://doi.org/10.1016/j.molliq.2018.02.104
[71] X.H. Li, S.H. Deng, H. Fu, Inhibition by Jasminum nudiflorum Lindl. leaves extract of the corrosion of cold rolled steel in hydrochloric acid solution, J. Appl. Electrochem. 40 (2010) 1641-1649. https://doi.org/10.1007/s10800-010-0151-5
[72] Q. Wang, B. Tan, H. Bao, Y. Xie, Y. Moua, P. Li, D. Chena, Y. Shi, X. Li, W. Yang, Evaluation of Ficus tikoua leaves extract as an eco-friendly corrosion inhibitor for carbon steel in HCl media, Bioelectrochemistry. 128 (2019) 49-55. https://doi.org/10.1016/j.bioelechem.2019.03.001
[73] A. Singh, E.E. Ebenso, M. A. Quraishi, Theoretical and electrochemical studies of cuminum cyminum (jeera) extract as green corrosion inhibitor for mild steel in hydrochloric acid solution, Int. J. Electrochem. Sci. 7 (2012) 8543-8559.
[74] Z. Sanaeia, M. Ramezanzadeha, G. Bahlakehb, B. Ramezanzadeha, Use of Rosa canina fruit extract as a green corrosion inhibitor for mild steel in 1 M HCl solution: A complementary experimental, molecular dynamics and quantum mechanics investigation, J. Ind. Eng. Chem. 69 (2019) 18-31. https://doi.org/10.1016/j.jiec.2018.09.013
[75] T. H. Ibrahim, M. A. Zour, Corrosion Inhibition of mild steel using fig leaves extract in hydrochloric acid solution, Int. J. Electrochem. Sci. 6 (2011) 6442-6455.