Introduction, Past and Present Scenario of Solar Cell Materials
M. Rizwan, Waheed S. Khan, A. Khadija
Solar cells convert sunlight into electricity directly. It is a reliable, non-toxic and pollution free source of electricity. Since 19th century researchers have been trying to investigate different materials for solar cell devices. Commercially, Si based solar are predominate in this field, however, with passage of time different materials have been reported. Solar cell techniques are based on three different generations. 1st generation is based on Si and 2nd generation includes thin-films of CuInGaSe, GaAs, CdTe and GaInP etc. whereas 3rd generation is based on organic, hybrid perovskites, quantum dot (QD)-sensitizers & dye-sensitizers solar cells. Among all these, the 3rd generation solar cells are the most efficient and more cost effective than 1nd and 2nd generation solar cells. The 2nd generation is less costly but also less efficient compared to 1st generation. 3rd generation faces degradation of the photovoltaic materials which is a major problem. In this chapter different reported materials since 19th century for solar cells are mentioned. The past and present scenarios of solar cells are discussed comprehensively. It is observed that Si-based and multijunction solar cells dominate the market. Although, theoretically it is reported that hybrid perovskites and quantum dot materials for solar cell are the most efficient materials for photovoltaic PV devices. In spite of the high efficiency the stability of organic, hybrid perovskites, QD-sensitizers &dye-sensitizer materials is a big challenge.
Keywords
Solar Cell, QD-Sensitisers, Dye-Sensitizers, Organic Materials, Hybrid Perovskites Materials
Published online 5/1/2021, 23 pages
Citation: M. Rizwan, Waheed S. Khan, A. Khadija, Introduction, Past and Present Scenario of Solar Cell Materials, Materials Research Foundations, Vol. 103, pp 1-23, 2021
DOI: https://doi.org/10.21741/9781644901410-1
Part of the book on Materials for Solar Cell Technologies II
References
[1] C.E. Fritts, On a new form of selenium cell, and some electrical discoveries made by its use, Am. J. Sci. 26 (1883) 465-472. https://doi.org/10.2475/ajs.s3-26.156.465
[2] D.M. Chapin, C. Fuller, G. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power, J. Appl. Phys. 25 (1954) 676-677 https://doi.org/10.1063/1.1721711
[3] D. Reynolds, G. Leies, L. Antes, R. Marburger, Photovoltaic effect in cadmium sulfide, Ph.ys Rev. 96 (1954) 533-534. https://doi.org/10.1103/PhysRev.96.533
[4] D. Jenny, J. Loferski, P. Rappaport, Photovoltaic effect in GaAs p− n junctions and solar energy conversion, Phys. Rev. 101 (1956) 1208-1209. https://doi.org/10.1103/Phys Rev.101.1208
[5] M. Prince, Silicon solar energy converters, J. Appl. Phys. 26 (1955) 534-540. https://doi.org/10.1063/1.1722034
[6] D. Cusano, CdTe solar cells and photovoltaic heterojunctions in II–VI compounds, Solid State Electron. 6 (1963) 217-232 https://doi.org/10.1016/0038-1101(63)90078-9
[7] J. Wysocki, Lithium-doped radiation-resistant silicon solar cells, IEEE T Nucl. Sci. 13 (1966) 168-173. https://doi.org/10.1109/TNS.1996.4324358
[8] Z.I. Alferov, V. Andreev, M. Kagan, I. Protasov, V. Trofim, Solar-energy converters based on pn AlxGal-x As-GaAs heterojunctions, Sov. Phys.-Semicond.(Engl. Transl.);(United States). 4 (1971) 16-25. https://doi.org/10.1117/12.934271.
[9] J. Lindmayer, J. Allison, The violet cell: an improved silicon solar cell. Sol. Cells 29 (1990) 151-166 https://doi.org/10.1016/0379-6787(90)90023-X.
[10] S. S. Hegedus, A. Luque, Status, trends, challenges and the bright future of solar electricity from photovoltaics. Handbook of photovoltaic science and engineering, John Wiley(2003)1-43. https://doi.org/10.1002/0470014008
[11] R.Sinton, Y. Kwark, J. Gan, R.M. Swanson, 27.5-percent silicon concentrator solar cells. IEEE Electron Device Lett.7 (1986) 567-569. https://doi.org/10.1109/EDL.1986.26476
[12] D.Friedman, S.R. Kurtz, K. Bertness, A. Kibbler, C. Kramer, J. Olson, D. King, B. Hansen, J. Snyder, Accelerated publication 30.2% efficient GaInP/GaAs monolithic two terminal tandem concentrator cell. Prog. Photovolt. 3 (1995) 47-50. https://doi.org/10.1002/pip.4670030105
[13] M.A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, R. Noufi, Progress toward 20% efficiency in Cu (In, Ga) Se2 polycrystalline thin film solar cells. Prog. Photovolt. 7 (1999) 311-316. https://doi.org/10.1002/pip.4670030105
[14] R. King, C. Fetzer, K. Edmondson, D. Law, P. Colter, H. Cotal, R. Sherif, H. Yoon, T. Isshiki, D. Krut. Metamorphic III-V materials, sublattice disorder, and multijunction solar cell approaches with over 37% efficiency, 19th European photovoltaic solar energy conference and exhibition. (2004) 7-11.
[15] M.J. Keevers, T.L. Young, U. Schubert, M.A. Green. 10% efficient CSG minimodules, 22nd European photovoltaic solar energy conference, (2007) 1783-1790.
[16] L.S. Mattos, S.R. Scully, M. Syfu, E. Olson, L. Yang, C. Ling, B.M. Kayes, G. He. New module efficiency record: 23.5% under 1-sun illumination using thin-film single-junction GaAs solar cells. in 2012 38th IEEE photovoltaic specialists conference. 38 (2012) 1-4. https://doi.org/10.1109/PVSC.2012.6318255
[17] W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin film solar cells with 12.6% efficiency. Adv. Energy Mater. 4 (2014) 1-5. https://doi.org/10.1002/aenm.201301465
[18] F. Solar, First solar builds the highest efficiency thin film PV cell on record, 2014.
[19] M. Tuteja, A.B. Mei, V. Palekis, A. Hall, S. MacLaren, C.S. Ferekides, A.A. Rockett, CdCl2 treatment-induced enhanced conductivity in CdTe solar cells observed using conductive atomic force microscopy, J. Phys. Chem. Lett. 7 (2016) 4962-4967. https://doi.org/10.1021/acs.jpclett.6b02399
[20] P. Verlinden, Will we have> 22% efficient multi crystalline silicon solar cells, PVSEC. 26 (2016) 24-28.
[21] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nat. Energy. 2 (2017) 17-32. https://doi.org/10.1038/nenergy.2017.32
[22] J. Zhao, A. Wang, M.A. Green, F. Ferrazza, 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett.73 (1998) 1991-1993. https://doi.org/10.1063/1.122345
[23] F. Haase, C. Hollemann, S. Schaefer, A. Merkle, M. Rienaecker, J. Krügener, R. Brendel, R. Peibst, Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells. Sol. Energy Mater. Sol. 186(2018) 184-193. https://doi.org/10.1016/j.solmat.2018.06.020.
[24] A. Richter, J. Benick, F. Feldmann, A. Fell, M. Hermle, and S.W. Glunz, n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation. Sol. Energy. Mater. Sol. 173 (2017) 96-105. https://doi.org/10.1016/j.solmat.2017.05.042
[25] P. Oxford, Oxford PV sets world record for perovskite solar cell. 2018
[26] M. Wanlass, Systems and methods for advanced ultra-high-performance InP solar cells: Google Patents. 2017.
[27] M. Hosoya, H. Oooka, H. Nakao, T. Gotanda, S. Mori, N. Shida, R. Hayase, Y. Nakano, M. Saito. Organic thin film photovoltaic modules. in Proceedings of the 93rd Annual Meeting of the Chemical Society of Japan. 2013.
[28] A. Laventure, C.R. Harding, E. Cieplechowicz, Z. Li, J. Wang, Y. Zou, G.C. Welch, Screening quinoxaline-type donor polymers for roll-to-roll processing compatible organic photovoltaics. ACS Appl. Polym. Mater. 1 (2019) 2168-2176. https://doi.org/10.1021/acsapm. 9b00433.
[29] K. Unnikrishnan, Environmental chamber to regulate film morphology for solar energy materials printing using additive manufacturing and investigating the role of additives in perovskites, University of Washington Libraries, 2018.
[30] E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin, T.-Y. Yang, J.H. Noh, J. Seo, Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene). Nat. 567 (2019) 511. https://doi.org/10.1038/s41586-019-1036-3
[31] W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. sci. 348 (2015) 1234-1237. https://doi.org/10.1126/science.aaa9272
[32] M. Kawai, High-durability dye improves efficiency of dye-sensitized solar cells. Nikkei Electronics, (2013).
[33] R. Komiya, A. Fukui, N. Murofushi, N. Koide, R. Yamanaka, H. Katayama. Improvement of the conversion efficiency of a monolithic type dye-sensitized solar cell module. in Technical Digest, 21st International photovoltaic science and engineering conference. 2011.
[34] S. Mori, H. Oh-oka, H. Nakao, T. Gotanda, Y. Nakano, H. Jung, A. Iida, R. Hayase, N. Shida, M. Saito, Organic photovoltaic module development with inverted device structure. Mater. Res. Soc. Symp. Proc. 1737 (2015) 27-15. https://doi.org/10.1557/opl.2015.540
[35] J. Benick, A. Richter, R. Müller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M.C. Schubert, M. Hermle, High-efficiency n-type HP mc silicon solar cells. IEEE J. Photovolt. 7 (2017) 1171-1175. https://doi.org/10.1109/JPHOTOV.2017.2714139.
[36] R. Venkatasubramanian, B. O’Quinn, J. Hills, P. Sharps, M. Timmons, J. Hutchby, H. Field, R. Ahrenkiel, B. Keyes. 18.2% (AM1. 5) efficient GaAs solar cell on optical-grade polycrystalline Ge substrate in conference record of the twenty fifth IEEE photovoltaic specialists conference. 25 (1996) 31-36. https://doi.org/10.1109/PVSC.1996.563940
[37] M.A. Green, Commercial progress and challenges for photovoltaics. Nat Energy. 1 (2016) 1-4. https://doi.org/10.1038/nenergy.2015.15
[38] K. Sun, C. Yan, F. Liu, J. Huang, F. Zhou, J.A. Stride, M. Green, X. Hao, Over 9% efficient kesterite Cu2ZnSnS4 solar cell fabricated by using Zn1–xCdxS buffer layer. Adv. Energy Mater. 6 (2016) 160-46. https://doi.org/10.1002/aenm.201600046
[39] M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl Ebinger, A.W. HoBaillie, Solar cell efficiency tables (version 50). Prog Photovolt. 25 (2017) 668-676. https://doi.org/10.1002/pip.2909
[40] M. Alves, A. Pérez-Rodríguez, P.J. Dale, C.D. Domínguez, S. Sadewasser, Thin-film micro-concentrator solar cells. J. Phys. Energy. 02 (2019) 76-55. https://doi.org/10.1088/2515-7655/ab4289
[41] C.Yan, C., J. Huang, K. Sun, S. Johnston, Y. Zhang, H. Sun, A. Pu, M. He, F. Liu, K. Eder, Cu2 ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat. Energy. 3 (2018) 764–772. https://doi.org/10.1038/s41560-018-0206-0
[42] H. Sugimoto, High efficiency and large volume production of CIS-based modules. in 2014 IEEE 40th Photovoltaic specialist conference (PVSC).40 (2014) 2767-2770. https://doi.org/10.1109/PVSC.2014.6925503.
[43] M.P. Van der Laan, S.J. Andersen, P. ]E. Réthoré, Brief communication: Wind speed independent actuator disk control for faster AEP calculations of wind farms using CFD. Wind energy science discussions, 2019.
[44] A.W. Bett, S.P. Philipps, S. Essig, S. Heckelmann, R. Kellenbenz, V. Klinger, M. Niemeyer, D. Lackner, F. Dimroth. Overview about technology perspectives for high efficiency solar cells for space and terrestrial applications. in 28th European photovoltaic solar energy conference and exhibition. 2013.
[45] S. Essig, C. Allebé, T. Remo, J.F. Geisz, M.A. Steiner, K. Horowitz, L. Barraud, J.S. Ward, M. Schnabel, A. Descoeudres, Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nat. Energy. 2 (2017) 1-8. https://doi.org/10.1038/nenergy.2017.144
[46] H. Sai, T. Matsui, K. Matsubara, Stabilized 14.0%-efficient triple-junction thin-film silicon solar cell. App. Phys. Lett. 109 (2016) 183-506. https://doi.org/10.1063/1.4966996
[47] R. Cariou, J. Benick, F. Feldmann, O. Höhn, H. Hauser, P. Beutel, N. Razek, M. Wimplinger, B. Bläsi, D. Lackner, III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration. Nat. Energy. 3 (2018) 326–333. https://doi.org/10.1038/s41560-018-0125-0
[48] M. Feifel, J. Ohlmann, J. Benick, M. Hermle, J. Belz, A. Beyer, K. Volz, T. Hannappel, A.W. Bett, D. Lackner, Direct growth of III–V/silicon triple-junction solar cells with 19.7% efficiency. IEEE J. Photovolt. 8 (2018) 1590-1595. https://doi.org/10.1109/JPHOTOV. 2018.2868015
[49] T.J. Grassman, D.J. Chmielewski, S.D. Carnevale, J.A. Carlin, S.A. Ringel. GaAsP/Si dual-junction solar cells grown by MBE and MOCVD. in 2015 IEEE 42nd Photovoltaic specialist conference (PVSC). (2015) 1-5. https://doi.org/10.1109/PVSC.2015.7356384.
[50] T. Takamoto, H. Washio, H. Juso. Application of InGaP/GaAs/InGaAs triple junction solar cells to space use and concentrator photovoltaic. in 2014 IEEE 40th photovoltaic specialist conference (PVSC). (2014) 0001-0005. https://doi.org/10.1109/PVSC.2014.6924936.
[51] J.F. Geisz, M.A. Steiner, N. Jain, K.L. Schulte, R.M. France, W.E. McMahon, E.E. Perl, D.J. Friedman, Building a six-junction inverted metamorphic concentrator solar cell. IEEE J. Photovolt. 8 (2017) 626-632. https://doi.org/10.1109/JPHOTOV.2017.2778567
[52] T. Matsui, K. Maejima, A. Bidiville, H. Sai, T. Koida, T. Suezaki, M. Matsumoto, K. Saito, I. Yoshida, M. Kondo, High-efficiency thin-film silicon solar cells realized by integrating stable a-Si: H absorbers into improved device design. Japanese J. Appl. Phys. 54 (2015)1-5. https://doi.org/10.7567/JJAP.54.08KB10
[53] Lin,Chu-Jian Investigation of Gallium Arsenide Thin Films deposited by RF Sputtering, NCU Institutional Repository.
[54] H. Lv, F. Sheng, J. Dai, W. Liu, C. Cheng, and J. Zhang, Temperature-dependent model of concentrator photovoltaic modules combining optical elements and III–V multi-junction solar cells. Sol. Energy. 112 (2015) 351-360. https://doi.org/10.1016/j.solener.2014.12.005
[55] N. Jain, K.L. Schulte, J.F. Geisz, D.J. Friedman, R.M. France, E.E. Perl, A.G. Norman, H.L. Guthrey, M.A. Steiner, High-efficiency inverted metamorphic 1.7/1.1 eV GaInAsP/GaInAs dual-junction solar cells. App. Phys. Lett. 112 (2018) 0539051-0539055. https://doi.org/10.1063/1.5008517
[56] S. Ananthakumar, J.R. Kumar, S.M. Babu, Third-generation solar cells: concept, materials and performance-an overview, in emerging nanostructured materials for energy, Environ. Sci. (2019) 305-339. https://doi.org/10.1007/978-3-030-04474-9_7
[57] I. Dharmadasa, Advances in thin-film solar cells: Jenny Stanford Publishing. (2013). https://doi.org/10.1201/9780429020841
[58] G. Adolf, H. Christopher, Photovoltaic materials, past, present, future. Sol. Energy Mater. Sol. 62 (2000) 1-19. https://doi.org/10.1016/B978-185617390-2/50006-4
[59] K.H. Yoon, Beard trimmer: Google Patents,2014.
[60] L.R.Weiss, S.L. Bayliss, F. Kraffert, K.J. Thorley, J.E. Anthony, R. Bittl, R.H. Friend, A. Rao, N.C. Greenham, J. Behrends, Strongly exchange-coupled triplet pairs in an organic semiconductor. Nat Phys.13 (2017)1-5. https://doi.org/10.1038/nphys3908
[61] F.W. Low C.W. Lai, Recent developments of graphene-TiO2 composite nanomaterials as efficient photoelectrodes in dye-sensitized solar cells: A review. Renew. Sust. Energ. Rev. 82 (2018) 103-125. https://doi.org/10.1016/j.rser.2017.09.024
[62] Drevets, W.C. Q.S. Li, Method for the treatment of depression: Google Patents.2018.
[63] A.Goetzberger C. Hebling, Photovoltaic materials, past, present, future. Sol. Energy Mater. Sol. 62 (2000) 1-19. https://doi.org/10.1016/S0927-0248(99)00131-2
[64] M.A.V. Green, E.D. Dunlop, D.H. Levi, J. Hohl Ebinger, M. Yoshita, A.W. Ho Baillie, Solar cell efficiency tables (version 54). Prog Photovolt. 27(2019) 565-575. https://doi.org/10.1002/pip.3171
[65] S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells. Chem Rev. 107 (2007) 1324-1338. https://doi.org/10.1021/cr050149z
[66] C.W. Tang, Two layer organic photovoltaic cell. App. Phys. Lett. 48 (1986) 183-185. https://doi.org/10.1063/1.96937
[67] M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, D. Meissner, Metal cluster enhanced organic solar cells. Sol. Energy. Mater. Sol. 61(2000) 97-105. https://doi.org/10.1016/S0927-0248(99)00100-2
[68] N. Sariciftci, D. Braun, C. Zhang, V. Srdanov, A. Heeger, G. Stucky, F. Wudl, Semiconducting polymer buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells. App. Phys. Lett. 62 (1993) 585-587. https://doi.org/10.1063/1.108863
[69] B. Kraabel, D. McBranch, N. Sariciftci, D. Moses, A. Heeger, Ultrafast spectroscopic studies of photoinduced electron transfer from semiconducting polymers to C 60. Phys. Rev. B. 50 (1994) 18543. https://doi.org/10.1103/PhysRevB.50.18543
[70] N.Sariciftci, F. Wudl, A. Heeger, M. Maggini, G. Scorrano, M. Prato, J. Bourassa, P. Ford, Photoinduced electron transfer and long lived charge separation in a donor-bridge-acceptor supramolecular ‘diad’consisting of ruthenium (II) tris (bipyridine) functionalized C60. Chem. Phys. lett. 247 (1995) 510-514. https://doi.org/10.1016/S0009-2614(95)01276-1.
[71] J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317 (2007) 222-225. https://doi.org/10.1126/science.1141711
[72] T. Chang, Real analysis 2 (2018) 1-5.
[73] E.J. Benjamin, S.S. Virani, C.W. Callaway, A.M. Chamberlain, A.R. Chang, S. Cheng, S.E. Chiuve, M. Cushman, F.N. Delling, R. Deo, Heart disease and stroke statistics-2018 update: a report from the Circ. Res. 137 (2018) 67-426 https://doi.org/10.1161/CIR.00000 00000000558
[74] M.C. Scharber N.S. Sariciftci, Efficiency of bulk-heterojunction organic solar cells. Prog Polym. Sci. 38 (2013)1929-1940. https://doi.org/10.1016/j.progpolymsci.2013.05.001
[75] M. Gratzel B. O’Regan, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nat. 353 (1991) 737-740. https://doi.org/10.1021/nl400286w
[76] S. Ito, M.K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Péchy, M. Jirousek, A. Kay, S.M. Zakeeruddin, M. Grätzel, Photovoltaic characterization of dye sensitized solar cells: effect of device masking on conversion efficiency. Prog. photovolt. 14 (2006) 589-601 https://doi.org/10.1002/pip.683
[77] G. Redmond, D. Fitzmaurice, M. Graetzel, Visible light sensitization by cis-bis (thiocyanato) bis (2, 2′-bipyridyl-4, 4′-dicarboxylato) ruthenium (II) of a transparent nanocrystalline ZnO film prepared by sol-gel techniques. Chem Mater. 6 (1994) 686-691. https://doi.org/10.1021/cm00041a020.
[78] Y. Tachibana, K. Hara, K. Sayama, H. Arakawa, Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells. Chem. Mater. 14 (2002) 2527-2535. https://doi.org/10.1021/cm 011563s
[79] K. Eguchi, H. Koga, K. Sekizawa, K. Sasaki, Nb2O5-based composite electrodes for dye-sensitized solar cells. J. Ceram. Soc. Japan. 108 (2000) 1067-1071. https://doi.org/10.2109/jcersj.108.1264_1067
[80] H. Rensmo, K. Keis, H. Lindström, S. Södergren, A. Solbrand, A. Hagfeldt, S.-E. Lindquist, L. Wang, M. Muhammed, High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J. Phys. Chem. B. 101 (1997) 2598-2601. https://doi.org/10.1021/jp962918b
[81] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, H. Arakawa, Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells. Sol. Energy Mater. Sol. 64 (2000) 115-134 https://doi.org/1016/S0927-0248(00)00065-9
[82] N.N. Dinh, M.-C. Bernard, A. Hugot-Le Goff, T. Stergiopoulos, P. Falaras, Photoelectrochemical solar cells based on SnO2 nanocrystalline films. Cr. Chim. 9 (2006) 676-683. https://doi.org/10.1016/j.crci.2005.02.042
[83] S.Gholamrezaei, M.S. Niasari, M. Dadkhah, B. Sarkhosh, New modified sol–gel method for preparation SrTiO3 nanostructures and their application in dye-sensitized solar cells. J. Mater. Sci. Mater. 27 (2016) pp. 118-125. https://doi.org/10.1007/s10854-015-3726-4
[84] S.Burnside, J.-E. Moser, K. Brooks, M. Grätzel, D. Cahen, Nanocrystalline mesoporous strontium titanate as photoelectrode material for photosensitized solar devices: increasing photovoltage through flatband potential engineering. J. Phys. Chem. B.103 (1999) 9328-9332. https://doi.org/10.1021/jp9913867
[85] J. He, H. Lindström, A. Hagfeldt, S.-E. Lindquist, Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. J. Phys Chem. B. 103 (1999) 8940-8943 https://doi.org/10.1021/jp991681r.
[86] K. Sayama, H. Sugihara, H. Arakawa, Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chem. Mater. 10 (1998) 3825-3832. https://doi.org/10.1021/cm980111l.
[87] T.N. Rao, L. Bahadur, Photoelectrochemical studies on dye sensitized particulate ZnO thin film photoelectrodes in nonaqueous media. J. Electrochem. Soc. 144 (1997) 179-185. https://doi.org/10.1149/1.1837382
[88] A. Zaban, S. Chen, S. Chappel, B. Gregg, Bilayer nanoporous electrodes for dye sensitized solar cells. Chem. Comm. 22 (2000) 2231-2232. https://doi.org/10.1039/B005921H
[89] A. Kay, M. Graetzel, Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J. Phys. Chem. 97 (1993) 6272-6277. https://doi.org/10.1021/j100125a029
[90] V.A.S. Perera, An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chem. Comm. (1999) 15-16 https://doi.org/10.1039/A806801A
[91] K. Tennakone, G. Senadeera, V. Perera, I. Kottegoda, L. De Silva, Dye-sensitized photoelectrochemical cells based on porous SnO2/ZnO composite and TiO2 films with a polymer electrolyte. Chem Mater. 11 (1999) 2474-2477. https://doi.org/10.1021/cm990165a
[92] S. Ferrere, A. Zaban, B.A. Gregg, Dye sensitization of nanocrystalline tin oxide by perylene derivatives. J. Phys. Chem. B. 101 (1997) 4490-4493 https://doi.org/10.1021/jp970683d
[93] K. Sayama, M. Sugino, H. Sugihara, Y. Abe, H. Arakawa, Photosensitization of porous TiO2 semiconductor electrode with xanthene dyes. Chem Lett. 27 (1998) 753-754. https://doi.org/10.1246/cl.1998.753
[94] A.C. Khazraji, S. Hotchandani, S. Das, P.V. Kamat, Controlling dye (Merocyanine-540) aggregation on nanostructured TiO2 films. An organized assembly approach for enhancing the efficiency of photosensitization. J. Phys. Chem B. 103 (1999) 4693-4700. https://doi.org/10.1021/jp9903110.
[95] Z.S. Wang, F.Y. Li, C.H. Huang, Highly efficient sensitization of nanocrystalline TiO2 films with styryl benzothiazolium propylsulfonate. Chem. Comm. 20 (2000) 2063-2064. https://doi.org/10.1039/b006427k.
[96] Z.S. Wang, F.Y. Li, C.H. Huang, L. Wang, M. Wei, L.P. Jin, N.Q. Li, Photoelectric conversion properties of nanocrystalline TiO2 electrodes sensitized with hemicyanine derivatives. J. Phys. Chem. B. 104 (2000)9676-9682. https://doi.org/10.1021/jp001580p.
[97] K. Sayama, K. Hara, N. Mori, M. Satsuki, S. Suga, S. Tsukagoshi, Y. Abe, H. Sugihara, H. Arakawa, Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain. Chem. Comm.13 (2000) 1173-1174. https://doi.org/10.1039/b001517m.
[98] K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, H. Arakawa, A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Chem. Comm. 06 (2001) 569-570. https://doi.org/10.1039/b010058g
[99] K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B.107 (2003) 597-606. https://doi.org/10.1021/jp026963x
[100] Z. Wu, T. Kinnunen, N. Evans, J. Yamagishi, C. Hanilçi, M. Sahidullah, A. Sizov. ASVspoof 2015: the first automatic speaker verification spoofing and countermeasures challenge. in sixteenth annual conference of the international speech communication association. 16 (2015) 1-5. https://doi.org/10. 7488/ds/252
[101] M.S. Faber S. Jin, Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 7(2014)3519-3542. https://doi.org/10.1039/ c4ee01760a
[102] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Y. Lin, Y. Xie, Y. Wei, Counter electrodes in dye-sensitized solar cells. Chem. Soc. Rev. 46 (2017) 5975-6023. https://doi.org/10.1039/C6CS00752J
[103] J. Theerthagiri, A.R. Senthil, J. Madhavan, T. Maiyalagan, Recent progress in non platinum counter electrode materials for dye sensitized solar cells. Chem. Electro. Chem. 2 (2015) 928-945. https://doi.org/10.1002/celc.201402406.
[104] S. Yun, H. Pu, J. Chen, A. Hagfeldt, T. Ma, Enhanced performance of supported HfO2 counter electrodes for redox couples used in dye sensitized solar cells. ChemSusChem. 7 (2014) 442-450. doi. 10.1002/cssc.201301140
[105] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa, M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 51 (2015)15894-15897. https://doi.org/10.1039/c5cc06759f
[106] S.Y. Myong, Recent progress in inorganic solar cells using quantum structures. Recent patents on nanotechnology. 01 (2007) 67-73. https://doi.org/10.2174/187221007779814763
[107] K. Barnham, P. Abbott, I. Ballsrd, D. Bushnell, A. Chatten, M. Mazzer, G. Hills, J. Roberts, M. Malik, P. O’Brien, Future applications of low dimensional structures in photovoltaics. Proc. Photovoltaics for the 21st Century,(2005) 30 – 45.
[108] R.Morf, Unexplored opportunities for nanostructures in photovoltaics. Physica E Low Dimens. Syst. Nanostruct. 14 (2002) 78-83. https://doi.org/10.1016/s1386-9477(02)00360-0
[109] C.B. Honsberg, A.M. Barnett, D. Kirkpatrick. Nanostructured solar cells for high efficiency photovoltaics. in 2006 IEEE 4th world conference on photovoltaic energy conference. 2006. https://doi.org/10.1109/WCPEC.2006.279769
[110] Bailey, S., S. Castro, R. Raffaelle, S. Fahey, T. Gennett, P. Tin. Nanostructured materials for solar cells. in 3rd World conference on photovoltaic energy conversion. 2003.2690-2693
[111] K. Zhao, Z. Pan, I.n. Mora-Seró, E. Cánovas, H. Wang, Y. Song, X. Gong, J. Wang, M. Bonn, J. Bisquert, Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control. J. Am. Chem. Soc. 137 (2015) 5602-5609. https://doi.org/10.1021/jacs.5b01946
[112] R.K. Goyal, Nanomaterials and nanocomposites: synthesis, properties, characterization techniques, and applications: CRC Press, 2017.
[113] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131 (2009) 6050-6051. https://doi.org/10.1021/ja809598r
[114] J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale. 3 (2011) 4088-4093 https://doi.org/10.1039/C 1NR10867K
[115] C.W. Chen, H.W. Kang, S.Y. Hsiao, P.F. Yang, K.M. Chiang, H.W. Lin, Efficient and uniform planar‐type perovskite solar cells by simple sequential vacuum deposition. Advanced Materials, 26 (2014) 6647-6652. https://doi.org/10.1002/adma.201402461
[116] M. Bag, Z. Jiang, L.A. Renna, S.P. Jeong, V.M. Rotello, D. Venkataraman, Rapid combinatorial screening of inkjet-printed alkyl-ammonium cations in perovskite solar cells. Mater Lett. 164 (2016) 472-475. https://doi.org/10.1016/j.matlet.2015.11.058
[117] J. Calbo, Dye sensitized solar cells: past, present and future. photoenergy and thin film materials, in: X Yu Yang (Eds) Photoenergy and thin film materials, Scrivener Publishing LLC. (2019) 49-119.