Photocatalytic Degradation of Levofloxacin by Cu doped TiO2 under Visible LED Light

$30.00

Photocatalytic Degradation of Levofloxacin by Cu doped TiO2 under Visible LED Light

K.S. Varma, V.G. Gandhi, R.J. Tayade, A.D. Shukla, B. Bharatiya, P.A. Joshi

Degradation performance of Cu-TiO2 photocatalytic materials against a widely used antibiotic drug levofloxacin (LFX) was investigated under visible LED light source of 40 W. Cu-TiO2 (0.25-1.0 wt%) nanomaterials are prepared through reverse micelle mediated modified sol-gel method. Characterization of synthesized Cu-TiO2 samples are performed by XRD, UV-Vis, and DLS techniques. The doping of 0.5 wt% copper in TiO2 shown lower crystallite size (5.79 nm) and visible light absorption characteristics with energy band gap of 2.84 eV. 0.5 wt% Cu-TiO2 photocatalyst has shown significant LFX degradation of 75.5% with catalyst loading of 1 g/L and initial pollutant concentration of 50 mg/L.

Keywords
Cu-TiO2, Doping, Photocatalyst, Degradation, Levofloxacin, Visible LED Light

Published online 5/1/2021, 17 pages

Citation: K.S. Varma, V.G. Gandhi, R.J. Tayade, A.D. Shukla, B. Bharatiya, P.A. Joshi, Photocatalytic Degradation of Levofloxacin by Cu doped TiO2 under Visible LED Light, Materials Research Foundations, Vol. 102, pp 182-198, 2021

DOI: https://doi.org/10.21741/9781644901397-7

Part of the book on Advances in Wastewater Treatment II

References
[1] E. Etebu, I. Arikekpar, Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives, Int. J. Appl. Microbiol. Biotechnol. Res. 4 (2016), 90–101
[2] M. Boy-Roura, J. Mas-Pla, M. Petrovic, M. Gros, D. Soler, D. Brusi, A. Menció, Towards the understanding of antibiotic occurrence and transport in groundwater: Findings from the Baix Fluvià alluvial aquifer (NE Catalonia, Spain). Sci. Total Environ, 612 (2018) 1387–1406. https://doi.org/10.1016/j.scitotenv.2017.09.012
[3] M. Feng, X. Wang, J. Chen, R. Qu, Y. Sui, L. Cizmas, Z. Wang, V. K. Sharma, Degradation of fluoroquinolone antibiotics by ferrate(VI): Effects of water constituents and oxidized products. Water Res. 103 (2016) 48–57. https://doi.org/10.1016/j.watres.2016.07.014
[4] R. Mirzaei, M. Yunesian, S. Nasseri, M. Gholami, E. Jalilzadeh, S. Shoeibi, A. Mesdaghinia, Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran. Sci. Total Environ. 619–620 (2018) 446–459. https://doi.org/10.1016/j.scitotenv.2017.07.272
[5] P. K. Mutiyar, A. K. Mittal, Risk assessment of antibiotic residues in different water matrices in India: key issues and challenges. Environ. Sci. Pollut. Res. 21 (2014) 7723–7736. https://doi.org/10.1007/s11356-014-2702-5
[6] L. Riaz, T. Mahmood, A. Kamal, M. Shafqat, A. Rashid, Industrial release of fluoroquinolones (FQs) in the waste water bodies with their associated ecological risk in Pakistan. Environ. Toxicol. Pharmacol. 52 (2017) 14–20. https://doi.org/10.1016/j.etap.2017.03.002
[7] C. Teglia, F. Perez, N. Michlig, M. Repetti, H. Goicoechea, M. Culzoni, Occurrence, Distribution, and Ecological Risk of Fluoroquinolones in Rivers and Wastewaters. Environ. Toxicol. Chem. 38 (2019). https://doi.org/10.1002/etc.4532
[8] H. A. Younes, H. M. Mahmoud, M. M. Abdelrahman, H. F. Nassar, Seasonal occurrence, removal efficiency and associated ecological risk assessment of three antibiotics in a municipal wastewater treatment plant in Egypt. Environ. Nanotechnology, Monit. Manag. 12 (2019) 100239. https://doi.org/10.1016/j.enmm.2019.100239
[9] L. Zhang, L. Shen, S. Qin, J. Cui, Y. Liu, Quinolones antibiotics in the Baiyangdian Lake, China: Occurrence, distribution, predicted no-effect concentrations (PNECs) and ecological risks by three methods. Environ. Pollut. 256 (2020) 113458. https://doi.org/10.1016/j.envpol.2019.113458
[10] L. Birošová, T. Mackuľak, I. Bodík, J. Ryba, J. Škubák, R. Grabic, Pilot study of seasonal occurrence and distribution of antibiotics and drug resistant bacteria in wastewater treatment plants in Slovakia. Sci. Total Environ. 490 (2014) 440–444. https://doi.org/10.1016/j.scitotenv.2014.05.030
[11] G. Chen, X. Liu, D. Tartakevosky, M. Li, Risk assessment of three fluoroquinolone antibiotics in the groundwater recharge system. Ecotoxicol. Environ. Saf. 133 (2016) 18–24. https://doi.org/10.1016/j.ecoenv.2016.05.030
[12] A. Mahmood, H. Alhaideri, F. Hassan, Detection of Antibiotics in Drinking Water Treatment Plants in Baghdad City, Iraq. Adv. Public Heal. (2019) 1–10. https://doi.org/10.1155/2019/7851354
[13] A. Wang, H. Wang, H. Deng, S. Wang, W. Shi, Z. Yi, R. Qiu, K. Yan, Controllable synthesis of mesoporous manganese oxide microsphere efficient for photo-Fenton-like removal of fluoroquinolone antibiotics. Appl. Catal. B Environ. 248 (2019) 298–308. https://doi.org/10.1016/j.apcatb.2019.02.034
[14] M. Gonzalez-pleiter, S. Gonzalo, I. Rodea-Palomares, F. Leganes, R. Rosal, K. Boltes, E. Marco, F. Fernandez-Piñas, Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment. Water Res. 47 (2013). https://doi.org/10.1016/j.watres.2013.01.020
[15] Z. Zhou, Z. Zhang, L. Feng, J. Zhang, Y. Li, T. Lu, H. Qian, Adverse effects of levofloxacin and oxytetracycline on aquatic microbial communities. Sci. Total Environ. 734 (2020) 139499. https://doi.org/10.1016/j.scitotenv.2020.13949
[16] L. P. Padhye, H. Yao, F. T. Kung’u, C. -H. Huang, Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Water Res. 51 (2014) 266–276. https://doi.org/10.1016/j.watres.2013.10.070
[17] M. Yasojima, N. Nakada, K. Komori, Y. Suzuki, H. Tanaka, Occurrence of levofloxacin, clarithromycin and azithromycin in wastewater treatment plant in Japan. Water Sci. Technol. 53 (2006) 227–233. https://doi.org/10.2166/wst.2006.357
[18] M. H. Al-Jabari, S. Sulaiman, S. Ali, R. Barakat, A. Mubarak, S. A. Khan, Adsorption study of levofloxacin on reusable magnetic nanoparticles: Kinetics and antibacterial activity. J. Mol. Liq. 291 (2019) 111249. https://doi.org/10.1016/j.molliq.2019.111249
[19] S. S. Limbikai, N. A. Deshpande, R. M. Kulkarni, A. A. P. Khan, A. Khan, Kinetics and adsorption studies on the removal of levofloxacin using coconut coir charcoal impregnated with Al2O3 nanoparticles. Desalin. Water Treat. 57 (2016) 23918–23926. https://doi.org/10.1080/19443994.2016.1138330
[20] A. Ullah, M. Zahoor, S. Alam, R. Ullah, A. S. Alqahtani, H. M. Mahmood, Separation of levofloxacin from industry effluents using novel magnetic nanocomposite and membranes hybrid processes. Biomed Res. Int. (2019) 5276841. https://doi.org/10.1155/2019/5276841
[21] V. Homem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices – A review. J. Environ. Manage. 92 (2011) 2304–2347. https://doi.org/10.1016/j.jenvman.2011.05.023
[22] B. Bethi, S. H. Sonawane, B. A. Bhanvase, S. P. Gumfekar, Nanomaterials-based advanced oxidation processes for wastewater treatment: A review. Chem. Eng. Process.- Process Intensif. 109 (2016) 178–189. https://doi.org/10.1016/j.cep.2016.08.016
[23] M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 35 (2009) 402–417. https://doi.org/10.1016/j.envint.2008.07.009
[24] R. Patel, T. Bhingradiya, A. Deshmukh, V. Gandhi, Response Surface Methodology for Optimization and Modeling of Photo-Degradation of Alizarin Cyanine Green and Acid Orange 7 Dyes Using UV/TiO2 Process. Mater. Sci. Forum 855 (2016) 94–104. https://doi.org/10.4028/www.scientific.net/MSF.855.94
[25] J. Vyas, M. Mishra, V. Gandhi, Photocatalytic Degradation of Alizarin Cyanine Green G, Reactive Red 195 and Reactive Black 5 Using UV/TiO2 Process. Mater. Sci. Forum 764 (2013) 284–292. https://doi.org/10.4028/www.scientific.net/MSF.764.284
[26] R. J. Tayade, W. K. Jo, Enhanced Photocatalytic Activity of TiO2 Supported on Different Carbon Allotropes for Degradation of Pharmaceutical Organic Compounds, in: R. J. Tayade, V. Gandhi (Eds.), Photocatalytic nanomaterials for environmental applications, Materials Research Forum LLC, Millersville, PA 17551, USA, 2018, pp. 139-159.
[27] B. S. M. Al Balushi, F. Al Marzouqi, B. Al Wahaibi, A. T. Kuvarega, S. M. Z. Al Kindy, Y. Kim, R. Selvaraj, Hydrothermal synthesis of CdS sub-microspheres for photocatalytic degradation of pharmaceuticals. Appl. Surf. Sci. 457 (2018) 559–565. https://doi.org/10.1016/j.apsusc.2018.06.286
[28] Q. Chen, Y. Xin, X. Zhu, Au-Pd nanoparticles-decorated TiO2 nanobelts for photocatalytic degradation of antibiotic levofloxacin in aqueous solution. Electrochim. Acta 186 (2015) 34–42. https://doi.org/10.1016/j.electacta.2015.10.095
[29] M. Kaur, A. Umar, S. K. Mehta, S. K. Kansal, Reduced graphene oxide-CdS heterostructure: An efficient fluorescent probe for the sensing of Ag(I) and sunset yellow and a visible-light responsive photocatalyst for the degradation of levofloxacin drug in aqueous phase. Appl. Catal. B Environ. 245 (2019) 143–158. https://doi.org/10.1016/j.apcatb.2018.12.042
[30] H. Sun, P. Qin, Z. Wu, C. Liao, J. Guo, S. Luo, Y. Chai, Visible light-driven photocatalytic degradation of organic pollutants by a novel Ag3VO4/Ag2CO3 p–n heterojunction photocatalyst: Mechanistic insight and degradation pathways. J. Alloys Compd. 834 (2020) 155211. https://doi.org/10.1016/j.jallcom.2020.155211
[31] T. An, H. Yang, W. Song, G. Li, H. Luo, W. J. Cooper, Mechanistic Considerations for the Advanced Oxidation Treatment of Fluoroquinolone Pharmaceutical Compounds using TiO2 Heterogeneous Catalysis. J. Phys. Chem. A 114 (2010) 2569–2575. https://doi.org/10.1021/jp911349y
[32] V. Bhatia, A. K. Ray, A. Dhir, Enhanced photocatalytic degradation of ofloxacin by co-doped titanium dioxide under solar irradiation. Sep. Purif. Technol. 161 (2016) 1–7. https://doi.org/10.1016/j.seppur.2016.01.028
[33] X. Van Doorslaer, P. M. Heynderickx, K. Demeestere, K. Debevere, H. Van Langenhove, J. Dewulf, TiO2 mediated heterogeneous photocatalytic degradation of moxifloxacin: Operational variables and scavenger study. Appl. Catal. B Environ. 111–112 (2012) 150–156. https://doi.org/10.1016/j.apcatb.2011.09.029
[34] V. Gandhi, M. Mishra, P. A. Joshi, Titanium dioxide catalyzed photocatalytic degradation of carboxylic acids from waste water: A review. Mater. Sci. Forum 712 (2012) 175–189. https://doi.org/10.4028/www.scientific.net/MSF.712.175
[35] S. K. Kansal, P. Kundu, S. Sood, R. Lamba, A. Umar, S. K. Mehta, Photocatalytic degradation of the antibiotic levofloxacin using highly crystalline TiO2 nanoparticles. New J. Chem. 38 (2014) 3220–3226. https://doi.org/10.1039/C3NJ01619F
[36] A. Kaur, D. B. Salunke, A. Umar, S. K. Mehta, A. S. K. Sinha, S. K. Kansal, Visible light driven photocatalytic degradation of fluoroquinolone levofloxacin drug using Ag2O/TiO2 quantum dots: a mechanistic study and degradation pathway. New J. Chem. 41 (2017) 12079–12090. https://doi.org/10.1039/C7NJ02053H
[37] X. Qu, J. Brame, Q. Li, P. J. J. Alvarez, Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse. Acc. Chem. Res. 46 (2013) 834–843. https://doi.org/10.1021/ar300029v
[38] M. A. Rauf, M. A. Meetani, S. Hisaindee, An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 276 (2011) 13–27. https://doi.org/10.1016/j.desal.2011.03.071
[39] S. Sharma, A. Umar, S. Mehta, A. Ibhadon, S. Kansal, Solar light driven photocatalytic degradation of levofloxacin using TiO2/Carbon-dots nanocomposite. New J. Chem. 42 (2018) https://doi.org/10.1039/C7NJ05118B
[40] K. Natarajan, P. Singh, H. C. Bajaj, R. J. Tayade, Facile synthesis of TiO2/ZnFe2O4 nanocomposite by sol-gel auto combustion method for superior visible light photocatalytic efficiency. Korean J. Chem. Eng. 33 (2016) 1788–1798. https://doi.org/10.1007/s11814-016-0051-4
[41] W. -K. Jo, R. J. Tayade, New Generation Energy-Efficient Light Source for Photocatalysis: LEDs for Environmental Applications. Ind. Eng. Chem. Res. 53 (2014) 2073–2084. https://doi.org/10.1021/ie404176g
[42] K. Natarajan, H. Bajaj, R. Tayade, Synthesis Route Impact on BiVO₄ Nanoparticles and their Visible Light Photocatalytic Activity Under Green LED Irradiation. J. Nanosci. Nanotechnol. 19 (2019) 5100–5115. https://doi.org/10.1166/jnn.2019.16833
[43] R. Klein, R. Sayre, J. Dowdy, V. Werth, The risk of ultraviolet radiation exposure from indoor lamps in lupus erythematosus. Autoimmun. Rev. 8 (2009) 320–324. https://doi.org/10.1016/j.autrev.2008.10.003
[44] D. Chatterjee, S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants. J. Photochem. Photobiol. C Photochem. Rev. 6 (2005) 186–205. https://doi.org/10.1016/j.jphotochemrev.2005.09.001
[45] H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 79 (2015) 128–146. https://doi.org/10.1016/j.watres.2015.04.038
[46] T. Parangi, M. K. Mishra, Titania Nanoparticles as Modified Photocatalysts: A Review on Design and Development. Comments Inorg. Chem. 39 (2019) 90–126. https://doi.org/10.1080/02603594.2019.1592751
[47] K. S. Varma, R. J. Tayade, K. J. Shah, P. A. Joshi, , A. D. Shukla, , V. G. Gandhi, Photocatalytic degradation of pharmaceutical and pesticide compounds (PPCs) using doped TiO2 nanomaterials: A review. Water-Energy Nexus 3 (2020) 46–61. https://doi.org/10.1016/j.wen.2020.03.008
[48] S. S. Boxi, S. Paria, Visible light induced enhanced photocatalytic degradation of organic pollutants in aqueous media using Ag doped hollow TiO2 nanospheres. RSC Adv. 5 (2015) 37657–37668. https://doi.org/10.1039/C5RA03421C
[49] L. Devi, N. Kottam, B. Murthy, S. Kumar, Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light. J. Mol. Catal. A Chem. 328 (2010) 44–52. https://doi.org/10.1016/j.molcata.2010.05.021
[50] V. Krishnakumar, S. Boobas, J. Jayaprakash, M. Rajaboopathi, B. Han, M. Louhi-Kultanen, Effect of Cu doping on TiO2 nanoparticles and its photocatalytic activity under visible light. J. Mater. Sci. Mater. Electron. 27 (2016) 7438–7447. https://doi.org/10.1007/s10854-016-4720-1
[51] X. Lin, F. Rong, X. Ji, D. Fu, Visible light photocatalytic activity and Photoelectrochemical property of Fe-doped TiO2 hollow spheres by sol–gel method. J. Sol-Gel Sci. Technol. 59 (2011) 283–289. https://doi.org/10.1007/s10971-011-2497-5
[52] M. Vega, M. Hinojosa Reyes, A. Hernandez-Ramírez, J. Guzmán Mar, V. Glez, L. Reyes, Visible light photocatalytic activity of sol–gel Ni-doped TiO2 on p-arsanilic acid degradation. J. Sol-Gel Sci. Technol. 85 (2018) https://doi.org/10.1007/s10971-018-4579-0
[53] M. T. Yilleng, E. C. Gimba, G. I. Ndukwe, I. M. Bugaje, D. W. Rooney, H. G. Manyar, Batch to continuous photocatalytic degradation of phenol using TiO2 and Au-Pd nanoparticles supported on TiO2. J. Environ. Chem. Eng. 6 (2018) 6382–6389. https://doi.org/10.1016/j.jece.2018.09.048
[54] S. Mathew, P. Ganguly, S. Rhatigan, V. Kumaravel, C. Byrne, S. J. Hinder, J. Bartlett, M. Nolan, S. C. Pillai, Cu-Doped TiO2: Visible Light Assisted Photocatalytic Antimicrobial Activity. Appl. Sci. 8 (2018) 2067. https://doi.org/10.3390/app8112067
[55] H. Nishikiori, T. Sato, S. Kubota, N. Tanaka, Y. Shimizu, T. Fujii, Preparation of Cu-doped TiO2 via refluxing of alkoxide solution and its photocatalytic properties. Res. Chem. Intermed. 38 (2012) 595–613. https://doi.org/10.1007/s11164-011-0374-z
[56] R. S. K. Wong, J. Feng, X. Hu, P. L.Yue, Discoloration and Mineralization of Non-biodegradable Azo Dye Orange II by Copper-doped TiO2 Nanocatalysts. J. Environ. Sci. Heal. Part A 39 (2004) 2583–2595. https://doi.org/10.1081/ESE-200027013
[57] M. Asilturk, F. Sayılkan, E. Arpaç, Effect of Fe3+ Ion Doping to TiO2 on the Photocatalytic Degradation of Malachite Green Dye under UV and Vis-Irradiation. J. Photochem. Photobiol. A Chem. 203 (2009) 64–71. https://doi.org/10.1016/j.jphotochem.2008.12.021
[58] S. I. Mogal, V. G. Gandhi, M. Mishra, S. Tripathi, T. Shripathi, P. A. Joshi, , D. O. Shah, Single-Step Synthesis of Silver-Doped Titanium Dioxide: Influence of Silver on Structural, Textural, and Photocatalytic Properties. Ind. Eng. Chem. Res. 53 (2014) 5749–5758. https://doi.org/10.1021/ie404230q
[59] M. Fernández-García, X. Wang, C. Belver, J. C. Hanson, J. A. Rodriguez, Anatase-TiO2 Nanomaterials:  Morphological/Size Dependence of the Crystallization and Phase Behavior Phenomena. J. Phys. Chem. C 111 (2007) 674–682. https://doi.org/10.1021/jp065661i
[60] B. Richard, J. -L. Lemyre, A. M. Ritcey, Nanoparticle Size Control in Microemulsion Synthesis. Langmuir 33 (2017) 4748–4757. https://doi.org/10.1021/acs.langmuir.7b00773
[61] L. -F. Chiang, R. Doong, Cu–TiO2 nanorods with enhanced ultraviolet- and visible-light photoactivity for bisphenol A degradation. J. Hazard. Mater. 277 (2014) 84–92. https://doi.org/10.1016/j.jhazmat.2014.01.047
[62] P. Singla, O. P. Pandey, K. Singh, Study of photocatalytic degradation of environmentally harmful phthalate esters using Ni-doped TiO2 nanoparticles. Int. J. Environ. Sci. Technol. 13 (2016) 849–856. https://doi.org/10.1007/s13762-015-0909-8
[63] J. Huang, X. Guo, B. Wang, L. Li, M. Zhao, L. Dong, X. Liu, Y. Huang, Synthesis and Photocatalytic Activity of Mo-Doped TiO2 Nanoparticles. J. Spectrosc. (2015) 681850. https://doi.org/10.1155/2015/681850
[64] C. -J. Lin, W. -T. Yang, Ordered mesostructured Cu-doped TiO2 spheres as active visible-light-driven photocatalysts for degradation of paracetamol. Chem. Eng. J. 237 (2014)131–137. https://doi.org/10.1016/j.cej.2013.10.027
[65] R. Kamble, S. Mahajan, V. Puri, H. Shinde, P. K. M. Garadkar, Visible Light-Driven high Photocatalytic Activity of Cu-Doped TiO2 Nanoparticles Synthesized by Hydrothermal Method. Mater. Sci. Res. India 15 (2018) 197–208. https://doi.org/10.13005/msri/150301
[66] N. Turkten, Z. Cinar, A. Tomruk, M. Bekbolet, Copper-doped TiO2 photocatalysts: application to drinking water by humic matter degradation. Environ. Sci. Pollut. Res. 26 (2019) 36096–36106. https://doi.org/10.1007/s11356-019-04474-x
[67] M. Sarafraz, M. Sadeghi, A. Yazdanbakhsh, M. M. Amini, M. Sadani, A. Eslami, Enhanced photocatalytic degradation of ciprofloxacin by black Ti3+/N-TiO2 under visible LED light irradiation: Kinetic, energy consumption, degradation pathway, and toxicity assessment. Process Saf. Environ. Prot. 137 (2020) 261–272. https://doi.org/10.1016/j.psep.2020.02.030