Recent Developments of Membrane Technology for Wastewater Treatment

$30.00

Recent Developments of Membrane Technology for Wastewater Treatment

Mahendra S. Gaikwad

The worldwide one major and important issue is the increasing shortage of freshwater. Water is polluted by various category of pollutant such as heavy metal, organic toxic chemical, dyes and others. In such situation providing better solutions for water treatment is a major challenge for researchers. Various techniques have been used in wastewater treatment applications but among those techniques the membrane technology is the most promising technology. This chapter contains recent progress of membrane technology for advanced wastewater treatment, is systematically summarize. This review includes introduction about different membrane technology such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO). Current status of each membrane separation techniques, membrane cleaning techniques, challenges and promising solutions for various wastewater treatment have been discussed.

Keywords
Membrane Technology, Wastewater, Pollutant Removal, Membrane Fouling, Membrane Cleaning

Published online 5/1/2021, 38 pages

Citation: Mahendra S. Gaikwad, Recent Developments of Membrane Technology for Wastewater Treatment, Materials Research Foundations, Vol. 102, pp 68-105, 2021

DOI: https://doi.org/10.21741/9781644901397-3

Part of the book on Advances in Wastewater Treatment II

References
[1] A. Kalfa, B. Shapira, A. Shopin, I. Cohen, E. Avraham, D. Aurbach, Capacitive deionization for wastewater treatment: Opportunities and challenges, Chemosphere 241 (2020) 125003. https://doi.org/10.1016/j.chemosphere.2019.125003
[2] Z. Song, C.J. Williams, R.G.J. Edyvean, Treatment of tannery wastewater by chemical coagulation, Desalination 164 (2004) 249-259. https://doi.org/10.1016/S0011-9164(04)00193-6
[3] S.N. Jain, Z. Shaikh, V.S.Mane, S. Vishnoi, V.N. Mawal, O.R.Patel, P.S. Bhandari, M.S. Gaikwad, Nonlinear regression approach for acid dye remediation using activated adsorbent: Kinetic, isotherm, thermodynamic and reusability studies, Microchem. J. 148 (2019) 605-615. https://doi.org/10.1016/j.microc.2019.05.024
[4] A.S. Costa, L.P.C. Romão, B.R. Araújo, S.C.O. Lucas, S.T.A. Maciel, A. Wisniewski Jr, M.D.R. Alexandre, Environmental strategies to remove volatile aromatic fractions (BTEX) from petroleum industry wastewater using biomass, Bioresour. Technol. 105 (2012) 31-39. https://doi.org/10.1016/j.biortech.2011.11.096
[5] D. Chen, C. Zhang, H. Rong, M. Zhao, S. Gou, Treatment of electroplating wastewater using the freezing method, Sep. Purif. Technol. 234 (2020) 116043. https://doi.org/10.1016/j.seppur.2019.116043
[6] C. Gadipelly, A. Pérez-González, G.D. Yadav, I. Ortiz, R. Ibáñez, V.K. Rathod, K.V. Marathe, Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse, Ind. Eng. Chem. Res. 53(2014) 11571-11592. https://doi.org/10.1021/ie501210j
[7] F.A. Nasr, H.S. Doma, H.S. Abdel-Halim, S.A. El-Shafai, Chemical industry wastewater treatment, The Environmentalist 27 (2007) 275-286. https://doi.org/10.1007/s10669-007-9004-0
[8] M.I. Pariente, J.A. Siles, R. Molina, J.A. Botas, J.A. Melero, F. Martinez, Treatment of an agrochemical wastewater by integration of heterogeneous catalytic wet hydrogen peroxide oxidation and rotating biological contactors, Chem. Eng. J. 226 (2013) 409-415. https://doi.org/10.1016/j.cej.2013.04.081
[9] H.F. Shaalan, M.Y. Ghaly, J.Y. Farah, Techno economic evaluation for the treatment of pesticide industry effluents using membrane schemes, Desalination 204 (2007) 265-276. https://doi.org/10.1016/j.desal.2006.04.032
[10] Z.V.P. Murthy, M.S. Gaikwad, Separation of praseodymium (III) from aqueous solutions by nanofiltration. Can. Metall. Q. 52 (2013) 18-22. https://doi.org/10.1179/1879139512Y.0000000042
[11] B. Van der Bruggen, C. Vandecasteele, T. Van Gestel, W. Doyen, R. Leysen, A review of pressure‐driven membrane processes in wastewater treatment and drinking water production. Environ. Prog. 22 (2003) 46-56. https://doi.org/10.1002/ep.670220116
[12] M.S. Gaikwad, A.R. Deshmukh, S. Saudagar, V. Kulkarni, Synthesis and characterization of CS/MWCNTs/ES composites and its performance in removal of Cu (II) from aqueous solution, Inorg. Nano-Met. Chem. 47 (2017) 568-575. https://doi.org/10.1080/15533174.2016.1186090
[13] J.R. de Andrade, M.F. Oliveira, M.G. da Silva, M.G. Vieira, Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: a review, Ind. Eng. Chem. Res. 57 (2018) 3103-3127. https://doi.org/10.1021/acs.iecr.7b05137
[14] M.S. Oncel, A. Muhcu, E. Demirbas, M., Kobya, A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater, J. Environ. Chem. Eng. 1 (2013) 989-995. https://doi.org/10.1016/j.jece.2013.08.008
[15] T.C. Jorgensen, L.R. Weatherley, Ammonia removal from wastewater by ion exchange in the presence of organic contaminants, Water Res.37 (2003) 1723-1728. https://doi.org/10.1016/S0043-1354(02)00571-7
[16] M.S. Gaikwad, C. Balomajumder, A.K., Tiwari, Acid treated RHWBAC electrode performance for Cr (VI) removal by capacitive deionization and CFD analysis study, Chemosphere 254 (2020)126781. https://doi.org/10.1016/j.chemosphere.2020.126781
[17] M.S. Gaikwad, C. Balomajumder, Removal of Cr (VI) and fluoride by membrane capacitive deionization with nanoporous and microporous Limonia acidissima (wood apple) shell activated carbon electrode, Sep. Purif. Technol. 195 (2018) 305-313. https://doi.org/10.1016/j.seppur.2017.12.006
[18] N. Singh, C. Balomajumder, Simultaneous biosorption and bioaccumulation of phenol and cyanide using coconut shell activated carbon immobilized Pseudomonas putida (MTCC 1194), J. Environ. Chem. Eng. 4 (2016) 1604-1614. https://doi.org/10.1016/j.jece.2016.02.011
[19] R. Mudliar, S.S. Umare, D.S. Ramteke, S.R. Wate, Energy efficient—Advanced oxidation process for treatment of cyanide containing automobile industry wastewater, J. Hazard. Mater. 164 (2009) 1474-1479. https://doi.org/10.1016/j.jhazmat.2008.09.118
[20] X. Li, Y. Mo, W. Qing, S. Shao, C.Y. Tang, J. Li, Membrane-based technologies for lithium recovery from water lithium resources: A review, J. Memb. Sci. 591 (2019) 117317. https://doi.org/10.1016/j.memsci.2019.117317
[21] W. Eykamp, Chapter 1. Microfiltration and ultrafiltration, in: R.D. Noble, S.A. Stern (Eds.), Membrane Science and Technology, Elsevier, 1995, pp. 1 –43. https://doi.org/10.1016/S0927-5193(06)80003-3
[22] S.F. Anis, R. Hashaikeh, N. Hilal, Microfiltration membrane processes: A review of research trends over the past decade, J. Water Process Eng. 32 (2019) 100941. https://doi.org/10.1016/j.jwpe.2019.100941
[23] A. Ismail, P. Goh, Microfiltration membrane, Encycl. Polymer. Nanomater. (2015) 1250 –1255. https://doi.org/10.1007/978-3-642-29648-2_159
[24] X. Qu, P. Alvarez, J.R. Werber, A. Deshmukh, M. Elimelech, The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Technol. Lett. 3 (2016) 112-120. https://doi.org/10.1021/acs.estlett.6b00050
[25] Q. Xiaolei, P.J.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Res. 47 (2013) 3931-3946. https://doi.org/10.1016/j.watres.2012.09.058
[26] G.K. Pearce, UF/MF pre-treatment to RO in seawater and wastewater reuse applications: a comparison of energy costs, Desalination 222 (2008) 66-73. https://doi.org/10.1016/j.desal.2007.05.029
[27] F. Qu, H. Liang, J. Zhou, J. Nan, S. Shao, J. Zhang, G. Li, Ultrafiltration membrane fouling caused by extracellular organic matter (EOM) from Microcystis aeruginosa: Effects of membrane pore size and surface hydrophobicity, J. Memb. Sci., 449 (2014) 58-66. https://doi.org/10.1016/j.memsci.2013.07.070
[28] R. Krüger, D. Vial, D. Arifin, M.Weber, M. Heijnen, Novel ultrafiltration membranes from low-fouling copolymers for RO pretreatment applications, Desalination and Water Treat. 57 (2016) 23185-23. https://doi.org/10.1080/19443994.2016.1153906
[29] L. Zhang, P. Zhang, M. Wang, K. Yang, J. Liu, Research on the experiment of reservoir water treatment applying ultrafiltration membrane technology of different processes, J. Environ. Biol. 37 (2016)1007.
[30] D.L. Oatley-Radcliffe, M. Walters, T.J. Ainscough, P.M. Williams, A.W. Mohammad, N. Hilal, Nanofiltration membranes and processes: A review of research trends over the past decade, J. Water Process Eng. 19 (2017)164-171. https://doi.org/10.1016/j.jwpe.2017.07.026
[31] K.L., McMordie-Stoughton, X. Duan, E.M. Wendel, Reverse Osmosis Optimization, U.S. Department of Energy, 2013.
[32] R.H. Hailemariam, Y.C. Woo, M.M. Damtie, B.C. Kim, K.D. Park, J.S. Choi, Reverse osmosis membrane fabrication and modification technologies and future trends: A review, Adv. Colloid Interface Sci. 276 (2019) 102100. https://doi.org/10.1016/j.cis.2019.102100
[33] M. Asadollahi, D. Bastani, S.A. Musavi, Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: a review. Desalination 420 (2017) 330 –383. https://doi.org/10.1016/j.desal.2017.05.027
[34] S. Ba, L. Haroune, L. Soumano, J.P. Bellenger, J.P. Jones, H. Cabana, A hybrid bioreactor based on insolubilized tyrosinase and laccase catalysis and microfiltration membrane remove pharmaceuticals from wastewater, Chemosphere 201 (2018) 749–755. https://doi.org/10.1016/j.chemosphere.2018.03.022
[35] L. Goswami, R.V. Kumar, K. Pakshirajan, G. Pugazhenthi, A novel integrated biodegradation—microfiltration system for sustainable wastewater treatment and energy recovery, J. Hazard. Mater. 365 (2019) 707–715. https://doi.org/10.1016/j.jhazmat.2018.11.029
[36] B. Jafari, M. Abbasi, S.A. Hashemifard, Development of new tubular ceramic microfiltration membranes by employing activated carbon in the structure of membranes for treatment of oily wastewater, J. Clean. Prod. 244 (2020) 118720. https://doi.org/10.1016/j.jclepro.2019.118720
[37] S. Saja, A. Bouazizi, B. Achiou, M. Ouammou, A. Albizane, J. Bennazha, S.A. Younssi, Elaboration and characterization of low-cost ceramic membrane made from natural Moroccan perlite for treatment of industrial wastewater, J. Environ. Chem. Eng. 6 (2018) 451–458. https://doi.org/10.1016/j.jece.2017.12.004
[38] Z. Pan, F. Yu, L. Li, C. Song, J. Yang, C. Wang, Y. Pan, T. Wang, Electrochemical microfiltration treatment of bisphenol A wastewater using coal-based carbon membrane, Sep. Purif. Technol. 227 (2019) 115695. https://doi.org/10.1016/j.seppur.2019.115695
[39] D. Beqqour, B. Achiou, A. Bouazizi, H. Ouaddari, H. Elomari, M. Ouammou, J. Bennazha, S. Alami Younssi, Enhancement of microfiltration performances of pozzolan membrane by incorporation of micronized phosphate and its application for industrial wastewater treatment, J. Environ. Chem. Eng. 7 (2019) 102981. https://doi.org/10.1016/j.jece.2019.102981
[40] M. Mouiya, A. Abourriche, A. Bouazizi, A. Benhammou, Y. El Hafiane, Y. Abouliatim, L. Nibou, M. Oumam, M. Ouammou, A. Smith, H. Hannache, Flat ceramic microfiltration membrane based on natural clay and Moroccan phosphate for desalination and industrial wastewater treatment, Desalination. 427 (2018) 42–50. https://doi.org/10.1016/j.desal.2017.11.005
[41] P. Arribas, M.C. García-Payo, M. Khayet, L. Gil, Heat-treated optimized polysulfone electrospun nanofibrous membranes for high performance wastewater microfiltration, Sep. Purif. Technol. 226 (2019) 323–336. https://doi.org/10.1016/j.seppur.2019.05.097
[42] C. Li, G. Feng, Z. Pan, C. Song, X. Fan, P. Tao, T. Wang, M. Shao, S. Zhao, High-performance electrocatalytic microfiltration CuO/Carbon membrane by facile dynamic electrodeposition for small-sized organic pollutants removal, J. Memb. Sci. 601 (2020) 117913. https://doi.org/10.1016/j.memsci.2020.117913
[43] M. Sheikhi, M. Arzani, H.R. Mahdavi, T. Mohammadi, Kaolinitic clay-based ceramic microfiltration membrane for oily wastewater treatment: Assessment of coagulant addition, Ceram. Int. 45 (2019) 17826–17836. https://doi.org/10.1016/j.ceramint.2019.05.354
[44] B. Hatimi, J. Mouldar, A. Loudiki, H. Hafdi, M. Joudi, E.M. Daoudi, H. Nasrellah, I.-T. Lançar, M.A. El Mhammedi, M. Bakasse, Low cost pyrrhotite ash/clay-based inorganic membrane for industrial wastewaters treatment, J. Environ. Chem. Eng. 8 (2020) 103646. https://doi.org/10.1016/j.jece.2019.103646
[45] A. Manni, B. Achiou, A. Karim, A. Harrati, C. Sadik, M. Ouammou, S. Alami Younssi, A. El Bouari, New low-cost ceramic microfiltration membrane made from natural magnesite for industrial wastewater treatment, J. Environ. Chem. Eng. 8 (2020) 103906. https://doi.org/10.1016/j.jece.2020.103906
[46] X. Zhang, B. Zhang, Y. Wu, T. Wang, J. Qiu, Preparation and characterization of a diatomite hybrid microfiltration carbon membrane for oily wastewater treatment, J. Taiwan Inst. Chem. Eng. 89 (2018) 39–48. https://doi.org/10.1016/j.jtice.2018.04.035
[47] N.C. Homem, N. de Camargo Lima Beluci, S. Amorim, R. Reis, A.M.S. Vieira, M.F. Vieira, R. Bergamasco, M.T.P. Amorim, Surface modification of a polyethersulfone microfiltration membrane with graphene oxide for reactive dyes removal, Appl. Surf. Sci. 486 (2019) 499–507. https://doi.org/10.1016/j.apsusc.2019.04.276
[48] M. Mouiya, A. Bouazizi, A. Abourriche, A. Benhammou, Y. El Hafiane, M. Ouammou, Y. Abouliatim, S.A. Younssi, A. Smith, H. Hannache, Fabrication and characterization of a ceramic membrane from clay and banana peel powder: Application to industrial wastewater treatment, Mater. Chem. Phys. 227 (2019) 291–301. https://doi.org/10.1016/j.matchemphys.2019.02.011
[49] X. Liu, B. Jiang, X. Yin, H. Ma, B.S. Hsiao, Highly permeable nanofibrous composite microfiltration membranes for removal of nanoparticles and heavy metal ions, Sep. Purif. Technol. 233 (2020) 115976. https://doi.org/10.1016/j.seppur.2019.115976
[50] H. Abadikhah, J.W. Wang, X. Xu, S. Agathopoulos, SiO2 nanoparticles modified Si3N4 hollow fiber membrane for efficient oily wastewater microfiltration, J. Water Process Eng. 29 (2019) 100799. https://doi.org/10.1016/j.jwpe.2019.100799
[51] M. Chen, L. Zhu, J. Chen, F. Yang, C.Y. Tang, M.D. Guiver, Y. Dong, Spinel-based ceramic membranes coupling solid sludge recycling with oily wastewater treatment, Water Res. 169 (2020) 115180. https://doi.org/10.1016/j.watres.2019.115180
[52] K.V. Plakas, A. Mantza, S.D. Sklari, V.T. Zaspalis, A.J. Karabelas, Heterogeneous Fenton-like oxidation of pharmaceutical diclofenac by a catalytic iron-oxide ceramic microfiltration membrane, Chem. Eng. J. 373 (2019) 700–708. https://doi.org/10.1016/j.cej.2019.05.092
[53] P. Bhattacharya, D. Mukherjee, N. Deb, S. Swarnakar, S. Banerjee, Application of green synthesized ZnO nanoparticle coated ceramic ultrafiltration membrane for remediation of pharmaceutical components from synthetic water: Reusability assay of treated water on seed germination, J. Environ. Chem. Eng. 8 (2020) 103803. https://doi.org/10.1016/j.jece.2020.103803
[54] Z. Isik, E.B. Arikan, H.D. Bouras, N. Dizge, Bioactive ultrafiltration membrane manufactured from Aspergillus carbonarius M333 filamentous fungi for treatment of real textile wastewater, Bioresour. Technol. Reports. 5 (2019) 212–219. https://doi.org/10.1016/j.biteb.2019.01.020
[55] P. Bhattacharya, D. Mukherjee, S. Dey, S. Ghosh, S. Banerjee, Development and performance evaluation of a novel CuO/TiO 2 ceramic ultrafiltration membrane for ciprofloxacin removal, Mater. Chem. Phys. 229 (2019) 106–116. https://doi.org/10.1016/j.matchemphys.2019.02.094
[56] G. Derouich, S. Alami Younssi, J. Bennazha, J.A. Cody, M. Ouammou, M. El Rhazi, Development of low-cost polypyrrole/sintered pozzolan ultrafiltration membrane and its highly efficient performance for congo red dye removal, J. Environ. Chem. Eng. 8 (2020) 103809. https://doi.org/10.1016/j.jece.2020.103809
[57] T. Li, W. Zhang, S. Zhai, G. Gao, J. Ding, W. Zhang, Y. Liu, X. Zhao, B. Pan, L. Lv, Efficient removal of nickel(II) from high salinity wastewater by a novel PAA/ZIF-8/PVDF hybrid ultrafiltration membrane, Water Res. 143 (2018) 87–98. https://doi.org/10.1016/j.watres.2018.06.031
[58] M. Shakak, R. Rezaee, A. Maleki, A. Jafari, M. Safari, B. Shahmoradi, H. Daraei, S.M. Lee, Synthesis and characterization of nanocomposite ultrafiltration membrane (PSF/PVP/SiO2) and performance evaluation for the removal of amoxicillin from aqueous solutions, Environ. Technol. Innov. 17 (2020) 100529. https://doi.org/10.1016/j.eti.2019.100529
[59] W. Ye, K. Ye, F. Lin, H. Liu, M. Jiang, J. Wang, R. Liu, J. Lin, Enhanced fractionation of dye/salt mixtures by tight ultrafiltration membranes via fast bio-inspired co-deposition for sustainable textile wastewater management, Chem. Eng. J. 379 (2020) 122321. https://doi.org/10.1016/j.cej.2019.122321
[60] H. Isawi, Evaluating the performance of different nano-enhanced ultrafiltration membranes for the removal of organic pollutants from wastewater, J. Water Process Eng. 31 (2019) 100833. https://doi.org/10.1016/j.jwpe.2019.100833
[61] C. Yang, W. Xu, Y. Nan, Y. Wang, Y. Hu, C. Gao, X. Chen, Fabrication and characterization of a high performance polyimide ultrafiltration membrane for dye removal, J. Colloid Interface Sci. 562 (2020) 589–597. https://doi.org/10.1016/j.jcis.2019.11.075
[62] L. Liu, Y. Xu, K. Wang, K. Li, L. Xu, J. Wang, J. Wang, Fabrication of a novel conductive ultrafiltration membrane and its application for electrochemical removal of hexavalent chromium, J. Memb. Sci. 584 (2019) 191–201. https://doi.org/10.1016/j.memsci.2019.05.018
[63] M.S. Algamdi, I.H. Alsohaimi, J. Lawler, H.M. Ali, A.M. Aldawsari, H.M.A. Hassan, Fabrication of graphene oxide incorporated polyethersulfone hybrid ultrafiltration membranes for humic acid removal, Sep. Purif. Technol. 223 (2019) 17–23. https://doi.org/10.1016/j.seppur.2019.04.057
[64] S. Saja, A. Bouazizi, B. Achiou, H. Ouaddari, A. Karim, M. Ouammou, A. Aaddane, J. Bennazha, S. Alami Younssi, Fabrication of low-cost ceramic ultrafiltration membrane made from bentonite clay and its application for soluble dyes removal, J. Eur. Ceram. Soc. 40 (2020) 2453–2462. https://doi.org/10.1016/j.jeurceramsoc.2020.01.057
[65] S. Arefi-Oskoui, A. Khataee, M. Safarpour, V. Vatanpour, Modification of polyethersulfone ultrafiltration membrane using ultrasonic-assisted functionalized MoS2 for treatment of oil refinery wastewater, Sep. Purif. Technol. 238 (2020) 116495. https://doi.org/10.1016/j.seppur.2019.116495
[66] G.P.S. Ibrahim, A.M. Isloor, Inamuddin, A.M. Asiri, A.F. Ismail, R. Kumar, M.I. Ahamed, Performance intensification of the polysulfone ultrafiltration membrane by blending with copolymer encompassing novel derivative of poly(styrene-co-maleic anhydride) for heavy metal removal from wastewater, Chem. Eng. J. 353 (2018) 425–435. https://doi.org/10.1016/j.cej.2018.07.098
[67] X. Huang, C. Tian, H. Qin, W. Guo, P. Gao, H. Xiao, Preparation and characterization of Al3+-doped TiO2 tight ultrafiltration membrane for efficient dye removal, Ceram. Int. 46 (2020) 4679–4689. https://doi.org/10.1016/j.ceramint.2019.10.199
[68] S. Benkhaya, B. Achiou, M. Ouammou, J. Bennazha, S. Alami Younssi, S. M’rabet, A. El Harfi, Preparation of low-cost composite membrane made of polysulfone/polyetherimide ultrafiltration layer and ceramic pozzolan support for dyes removal, Mater. Today Commun. 19 (2019) 212–219. https://doi.org/10.1016/j.mtcomm.2019.02.002
[69] S. Yu, X. Zhang, F. Li, X. Zhao, Poly(vinyl pyrrolidone) modified poly(vinylidene fluoride) ultrafiltration membrane via a two-step surface grafting for radioactive wastewater treatment, Sep. Purif. Technol. 194 (2018) 404–409. https://doi.org/10.1016/j.seppur.2017.10.051
[70] S. Benkhaya, S. M’rabet, R. Hsissou, A. El Harfi, Synthesis of new low-cost organic ultrafiltration membrane made from Polysulfone/Polyetherimide blends and its application for soluble azoic dyes removal, J. Mater. Res. Technol. 9 (2020) 4763-4772. https://doi.org/10.1016/j.jmrt.2020.02.102
[71] T. Ahmad, C. Guria, A. Mandal, Synthesis, characterization and performance studies of mixed-matrix poly(vinyl chloride)-bentonite ultrafiltration membrane for the treatment of saline oily wastewater, Process Saf. Environ. Prot. 116 (2018) 703–717. https://doi.org/10.1016/j.psep.2018.03.033
[72] M. Malmali, J. Askegaard, K. Sardari, S. Eswaranandam, A. Sengupta, S.R. Wickramasinghe, Evaluation of ultrafiltration membranes for treating poultry processing wastewater, J. Water Process Eng. 22 (2018) 218–226. https://doi.org/10.1016/j.jwpe.2018.02.010
[73] C. Cojocaru, L. Clima, Polymer assisted ultrafiltration of AO7 anionic dye from aqueous solutions: Experimental design, multivariate optimization, and molecular docking insights, J. Memb. Sci. 604 (2020) 118054. https://doi.org/10.1016/j.memsci.2020.118054
[74] S. Zhao, H. Zhu, Z. Wang, P. Song, M. Ban, X. Song, A loose hybrid nanofiltration membrane fabricated via chelating-assisted in-situ growth of Co/Ni LDHs for dye wastewater treatment, Chem. Eng. J. 353 (2018) 460–471. https://doi.org/10.1016/j.cej.2018.07.081
[75] S. Zhao, P. Song, Z. Wang, H. Zhu, The PEGylation of plant polyphenols/polypeptide-mediated loose nanofiltration membrane for textile wastewater treatment and antibacterial application, J. Taiwan Inst. Chem. Eng. 82 (2018) 42–55. https://doi.org/10.1016/j.jtice.2017.11.005
[76] Q. Zhang, S. Chen, X. Fan, H. Zhang, H. Yu, X. Quan, A multifunctional graphene-based nanofiltration membrane under photo-assistance for enhanced water treatment based on layer-by-layer sieving, Appl. Catal. B Environ. 224 (2018) 204–213. https://doi.org/10.1016/j.apcatb.2017.10.016
[77] B. Maryam, V. Buscio, S.U. Odabasi, H. Buyukgungor, A study on behavior, interaction and rejection of Paracetamol, Diclofenac and Ibuprofen (PhACs) from wastewater by nanofiltration membranes, Environ. Technol. Innov. 18 (2020) 100641. https://doi.org/10.1016/j.eti.2020.100641
[78] M.T. Tsehaye, J. Wang, J. Zhu, S. Velizarov, B. Van der Bruggen, Development and characterization of polyethersulfone-based nanofiltration membrane with stability to hydrogen peroxide, J. Memb. Sci. 550 (2018) 462–469. https://doi.org/10.1016/j.memsci.2018.01.022
[79] T.D. Kusworo, N. Ariyanti, D.P. Utomo, Effect of nano-TiO2 loading in polysulfone membranes on the removal of pollutant following natural-rubber wastewater treatment, J. Water Process Eng. 35 (2020) 101190. https://doi.org/10.1016/j.jwpe.2020.101190
[80] D. Guo, Y. Xiao, T. Li, Q. Zhou, L. Shen, R. Li, Y. Xu, H. Lin, Fabrication of high-performance composite nanofiltration membranes for dye wastewater treatment: mussel-inspired layer-by-layer self-assembly, J. Colloid Interface Sci. 560 (2020) 273–283. https://doi.org/10.1016/j.jcis.2019.10.078
[81] S. Bandehali, F. Parvizian, A. Moghadassi, S.M. Hosseini, High water permeable PEI nanofiltration membrane modified by L-cysteine functionalized POSS nanoparticles with promoted antifouling/separation performance, Sep. Purif. Technol. 237 (2020) 116361. https://doi.org/10.1016/j.seppur.2019.116361
[82] C.Y. Wang, W.J. Zeng, T.T. Jiang, X. Chen, X.L. Zhang, Incorporating attapulgite nanorods into graphene oxide nanofiltration membranes for efficient dyes wastewater treatment, Sep. Purif. Technol. 214 (2019) 21–30. https://doi.org/10.1016/j.seppur.2018.04.079
[83] S.M. Abtahi, L. Marbelia, A.Y. Gebreyohannes, P. Ahmadiannamini, C. Joannis-Cassan, C. Albasi, W.M. de Vos, I.F.J. Vankelecom, Micropollutant rejection of annealed polyelectrolyte multilayer based nanofiltration membranes for treatment of conventionally-treated municipal wastewater, Sep. Purif. Technol. 209 (2019) 470–481. https://doi.org/10.1016/j.seppur.2018.07.071
[84] D.I. De Souza, E.M. Dottein, A. Giacobbo, M.A. Siqueira Rodrigues, M.N. De Pinho, A.M. Bernardes, Nanofiltration for the removal of norfloxacin from pharmaceutical effluent, J. Environ. Chem. Eng. 6 (2018) 6147–6153. https://doi.org/10.1016/j.jece.2018.09.034
[85] C. Wang, Y. Feng, J. Chen, X. Bai, L. Ren, C. Wang, K. Huang, H. Wu, Nanofiltration membrane based on graphene oxide crosslinked with zwitterion-functionalized polydopamine for improved performances, J. Taiwan Inst. Chem. Eng. 110 (2020) 153–162. https://doi.org/10.1016/j.jtice.2020.03.009
[86] K. Sangeetha, A.V. P., P.N. Sudha, A. Faleh A., A. Sukumaran, Novel chitosan based thin sheet nanofiltration membrane for rejection of heavy metal chromium, Int. J. Biol. Macromol. 132 (2019) 939–953. https://doi.org/10.1016/j.ijbiomac.2019.03.244
[87] H. Qin, W. Guo, X. Huang, P. Gao, H. Xiao, Preparation of yttria-stabilized ZrO2 nanofiltration membrane by reverse micelles-mediated sol-gel process and its application in pesticide wastewater treatment, J. Eur. Ceram. Soc. 40 (2020) 145–154. https://doi.org/10.1016/j.jeurceramsoc.2019.09.023
[88] X.L. Cao, Y.N. Yan, F.Y. Zhou, S.P. Sun, Tailoring nanofiltration membranes for effective removing dye intermediates in complex dye-wastewater, J. Memb. Sci. 595 (2020) 117476. https://doi.org/10.1016/j.memsci.2019.117476
[89] T. Tavangar, M. Karimi, M. Rezakazemi, K.R. Reddy, T.M. Aminabhavi, Textile waste, dyes/inorganic salts separation of cerium oxide-loaded loose nanofiltration polyethersulfone membranes, Chem. Eng. J. 385 (2020) 123787. https://doi.org/10.1016/j.cej.2019.123787
[90] T. Yun, J.W. Chung, S.Y. Kwak, Recovery of sulfuric acid aqueous solution from copper-refining sulfuric acid wastewater using nanofiltration membrane process, J. Environ. Manage. 223 (2018) 652–657. https://doi.org/10.1016/j.jenvman.2018.05.069
[91] R. Pang, K. Zhang, Fabrication of hydrophobic fluorinated silica-polyamide thin film nanocomposite reverse osmosis membranes with dramatically improved salt rejection, J. Colloid Interface Sci. 510 (2018) 127–132. https://doi.org/10.1016/j.jcis.2017.09.062
[92] T. Fujioka, H. Aizawa, H. Kodamatani, Fouling substances causing variable rejection of a small and uncharged trace organic chemical by reverse osmosis membranes, Environ. Technol. Innov. 17 (2020) 100576. https://doi.org/10.1016/j.eti.2019.100576
[93] S.M. Ghaseminezhad, M. Barikani, M. Salehirad, Development of graphene oxide-cellulose acetate nanocomposite reverse osmosis membrane for seawater desalination, Compos. Part B Eng. 161 (2019) 320–327. https://doi.org/10.1016/j.compositesb.2018.10.079
[94] T. Fujioka, K.P. Ishida, T. Shintani, H. Kodamatani, High rejection reverse osmosis membrane for removal of N-nitrosamines and their precursors, Water Res. 131 (2018) 45–51. https://doi.org/10.1016/j.watres.2017.12.025
[95] E. Sahinkaya, S. Tuncman, I. Koc, A.R. Guner, S. Ciftci, A. Aygun, S. Sengul, Performance of a pilot-scale reverse osmosis process for water recovery from biologically-treated textile wastewater, J. Environ. Manage. 249 (2019) 109382. https://doi.org/10.1016/j.jenvman.2019.109382
[96] S. Qi, W. Fang, W. Siti, W. Widjajanti, X. Hu, R. Wang, Polymersomes-based high-performance reverse osmosis membrane for desalination, J. Memb. Sci. 555 (2018) 177–184. https://doi.org/10.1016/j.memsci.2018.03.052
[97] A. Egea-Corbacho Lopera, S. Gutiérrez Ruiz, J.M. Quiroga Alonso, Removal of emerging contaminants from wastewater using reverse osmosis for its subsequent reuse: Pilot plant, J. Water Process Eng. 29 (2019) 100800. https://doi.org/10.1016/j.jwpe.2019.100800
[98] P.D.A. Bastos, M.A. Santos, P.J. Carvalho, J.G. Crespo, Reverse osmosis performance on stripped phenolic sour water treatment – A study on the effect of oil and grease and osmotic pressure, J. Environ. Manage. 261 (2020) 110229. https://doi.org/10.1016/j.jenvman.2020.110229
[99] J.M. Ochando-Pulido, A. Martinez-Ferez, Optimization of the fouling behaviour of a reverse osmosis membrane for purification of olive-oil washing wastewater, Process Saf. Environ. Prot. 114 (2018) 323–333. https://doi.org/10.1016/j.psep.2018.01.004
[100] Q. Gu, T.C.A. Ng, I. Zain, X. Liu, L. Zhang, Z. Zhang, Z. Lyu, Z. He, H.Y. Ng, J. Wang, Chemical-grafting of graphene oxide quantum dots (GOQDs) onto ceramic microfiltration membranes for enhanced water permeability and anti-organic fouling potential, Appl. Surf. Sci. 502 (2020) 144128. https://doi.org/10.1016/j.apsusc.2019.144128
[101] L. Ghalamchi, S. Aber, V. Vatanpour, M. Kian, Comparison of NLDH and g-C3N4 nanoplates and formative Ag3PO4 nanoparticles in PES microfiltration membrane fouling: Applications in MBR, Chem. Eng. Res. Des. 147 (2019) 443–457. https://doi.org/10.1016/j.cherd.2019.05.033
[102] B. Kose-Mutlu, T. Turken, M.C. Guclu, S. Guclu, S. Ovez, I. Koyuncu, Effects of the post-modification using bismuth chelate (BisBAL) on the anti-biofouling and performance properties of flat-sheet microfiltration membranes, J. Water Process Eng. 23 (2018) 75–83. https://doi.org/10.1016/j.jwpe.2018.03.001
[103] J. Yang, F. Sun, L. Zhao, D.Y. Xing, W. Dong, Z. Dong, High-conductivity microfiltration membranes incorporated with ionic liquids and their superior anti-fouling effectiveness, J. Memb. Sci. 603 (2020) 117767. https://doi.org/10.1016/j.memsci.2019.117767
[104] Q. Gu, T.C.A. Ng, L. Zhang, Z. Lyu, Z. Zhang, H.Y. Ng, J. Wang, Interfacial diffusion assisted chemical deposition (ID-CD) for confined surface modification of alumina microfiltration membranes toward high-flux and anti-fouling, Sep. Purif. Technol. 235 (2020) 116177. https://doi.org/10.1016/j.seppur.2019.116177
[105] X. Zhang, M. Ping, Z. Wu, C.Y. Tang, Z. Wang, Microfiltration membranes modified by silver-decorated biomimetic silica nanopollens for mitigating biofouling: Synergetic effects of nanopollens and silver nanoparticles, J. Memb. Sci. 597 (2020) 117773. https://doi.org/10.1016/j.memsci.2019.117773
[106] X. Zhang, Z. Wang, C.Y. Tang, J. Ma, M. Liu, M. Ping, M. Chen, Z. Wu, Modification of microfiltration membranes by alkoxysilane polycondensation induced quaternary ammonium compounds grafting for biofouling mitigation, J. Memb. Sci. 549 (2018) 165–172. https://doi.org/10.1016/j.memsci.2017.12.004
[107] X. Liu, H. Yuan, C. Wang, S. Zhang, L. Zhang, X. Liu, F. Liu, X. Zhu, S. Rohani, C. Ching, J. Lu, A novel PVDF/PFSA-g-GO ultrafiltration membrane with enhanced permeation and antifouling performances, Sep. Purif. Technol. 233 (2020) 116038. https://doi.org/10.1016/j.seppur.2019.116038
[108] Z. He, T.C.A. Ng, Z. Lyu, Q. Gu, L. Zhang, H.Y. Ng, J. Wang, Alumina double-layered ultrafiltration membranes with enhanced water flux, Colloids Surfaces A Physicochem. Eng. Asp. 587 (2020) 124324. https://doi.org/10.1016/j.colsurfa.2019.124324
[109] L. Zhang, T.C.A. Ng, X. Liu, Q. Gu, Y. Pang, Z. Zhang, Z. Lyu, Z. He, H.Y. Ng, J. Wang, Hydrogenated TiO2 membrane with photocatalytically enhanced anti-fouling for ultrafiltration of surface water, Appl. Catal. B Environ. 264 (2020) 118528. https://doi.org/10.1016/j.apcatb.2019.118528
[110] X. Huang, J. Zhang, K. Peng, Y. Na, Y. Xiong, W. Liu, J. Liu, L. Lu, S. Li, Functional magnetic nanoparticles for enhancing ultrafiltration of waste cutting emulsions by significantly increasing flux and reducing membrane fouling, 573 (2019) 73-84. https://doi.org/10.1016/j.memsci.2018.11.074
[111] F. Khoerunnisa, W. Rahmah, B. Seng Ooi, E. Dwihermiati, N. Nashrah, S. Fatimah, Y.G. Ko, E.-P. Ng, Chitosan/PEG/MWCNT/Iodine composite membrane with enhanced antibacterial properties for dye wastewater treatment, J. Environ. Chem. Eng. 8 (2020) 103686. https://doi.org/10.1016/j.jece.2020.103686
[112] N. Ahmad, A. Samavati, N.A.H.M. Nordin, J. Jaafar, A.F. Ismail, N.A.N.N. Malek, Enhanced performance and antibacterial properties of amine-functionalized ZIF-8-decorated GO for ultrafiltration membrane, Sep. Purif. Technol. 239 (2020) 116554. https://doi.org/10.1016/j.seppur.2020.116554
[113] U. Sathya, M. Nithya, Keerthi, Fabrication and characterisation of fine-tuned Polyetherimide (PEI)/WO3 composite ultrafiltration membranes for antifouling studies, Chem. Phys. Lett. 744 (2020) 137201. https://doi.org/10.1016/j.cplett.2020.137201
[114] G. Zhang, M. Zhou, Z. Xu, C. Jiang, C. Shen, Q. Meng, Guanidyl-functionalized graphene/polysulfone mixed matrix ultrafiltration membrane with superior permselective, antifouling and antibacterial properties for water treatment, J. Colloid Interface Sci. 540 (2019) 295–305. https://doi.org/10.1016/j.jcis.2019.01.050
[115] R.P. Pandey, P.A. Rasheed, T. Gomez, R.S. Azam, K.A. Mahmoud, A fouling-resistant mixed-matrix nanofiltration membrane based on covalently cross-linked Ti3C2TX (MXene)/cellulose acetate, J. Memb. Sci. 607 (2020) 118139. https://doi.org/10.1016/j.memsci.2020.118139
[116] Y.F. Mi, G. Xu, Y.S. Guo, B. Wu, Q.F. An, Development of antifouling nanofiltration membrane with zwitterionic functionalized monomer for efficient dye/salt selective separation, J. Memb. Sci. 601 (2020) 117795. https://doi.org/10.1016/j.memsci.2019.117795
[117] H. Koulivand, A. Shahbazi, V. Vatanpour, M. Rahmandoust, Development of carbon dot-modified polyethersulfone membranes for enhancement of nanofiltration, permeation and antifouling performance, Sep. Purif. Technol. 230 (2020) 115895. https://doi.org/10.1016/j.seppur.2019.115895
[118] W. Shang, F. Sun, W. Jia, J. Guo, S. Yin, P.W. Wong, A.K. An, High-performance nanofiltration membrane structured with enhanced stripe nano-morphology, J. Memb. Sci. 600 (2020) 117852. https://doi.org/10.1016/j.memsci.2020.117852
[119] V. Vatanpour, N. Haghighat, Improvement of polyvinyl chloride nanofiltration membranes by incorporation of multiwalled carbon nanotubes modified with triethylenetetramine to use in treatment of dye wastewater, J. Environ. Manage. 242 (2019) 90–97. https://doi.org/10.1016/j.jenvman.2019.04.060
[120] X. Zhu, X. Tang, X. Luo, X. Cheng, D. Xu, Z. Gan, W. Wang, L. Bai, G. Li, H. Liang, Toward enhancing the separation and antifouling performance of thin-film composite nanofiltration membranes: A novel carbonate-based preoccupation strategy, J. Colloid Interface Sci. 571 (2020) 155-165. https://doi.org/10.1016/j.jcis.2020.03.044
[121] S. Li, B. Gao, Y. Wang, B. Jin, Q. Yue, Z. Wang, Antibacterial thin film nanocomposite reverse osmosis membrane by doping silver phosphate loaded graphene oxide quantum dots in polyamide layer, Desalination. 464 (2019) 94–104. https://doi.org/10.1016/j.desal.2019.04.029
[122] Z. Yang, D. Saeki, R. Takagi, H. Matsuyama, Improved anti-biofouling performance of polyamide reverse osmosis membranes modified with a polyampholyte with effective carboxyl anion and quaternary ammonium cation ratio, J. Memb. Sci. 595 (2020) 117529. https://doi.org/10.1016/j.memsci.2019.117529
[123] H. Lee, G. Amy, J. Cho, Y. Yoon, S.-H. Moon, I.S. Kim, Cleaning strategies for flx recovery of an ultrafitration membrane fouled by natural organic matter, Water Res. 35 (2001) 3301–3308. https://doi.org/10.1016/S0043-1354(01)00063-X
[124] R. Liikanen, J. Yli-Kuivila, R. Laukkanen, Effiency of various chemical cleanings for nanofitration membrane fouled by conventionally-treated surface water, J. Membr. Sci. 195 (2002) 265–276. https://doi.org/10.1016/S0376-7388(01)00569-5
[125] M. Rabiller-Baudry, L. Bégoin, D. Delaunay, L. Paugam, B. Chaufer, A dual approach of membrane cleaning based on physico-chemistry and hydrodynamics: application to PES membrane of dairy industry, Chem. Eng. Process. Process Intensif. 47 (2008) 267–275. https://doi.org/10.1016/j.cep.2007.01.026
[126] S.A. Aktij, A. Taghipour, A. Rahimpour, A. Mollahosseini, A. Tiraferri, A Critical Review on Ultrasonic-Assisted Fouling Control and Cleaning of Fouled Membranes. Ultrasonics, 108 (2020) 106228. https://doi.org/10.1016/j.ultras.2020.106228
[127] E. Alventosa-deLara, S. Barredo-Damas, M. Alcaina-Miranda, M. Iborra-Clar, Study and optimization of the ultrasound-enhanced cleaning of an ultrafitration ceramic membrane through a combined experimental–statistical approach, Ultrason. Sonochem. 21 (2014) 1222–1234. https://doi.org/10.1016/j.ultsonch.2013.10.022
[128] A. Al-Amoudi, R.W. Lovitt, Fouling strategies and the cleaning system of NF membranes and factors affcting cleaning effiency, J. Membr. Sci. 303 (2007) 4–28. https://doi.org/10.1016/j.memsci.2007.06.002
[129] C. Shorrock, M. Bird, Membrane cleaning: chemically enhanced removal of deposits formed during yeast cell harvesting, Food Bioprod. Process. 76 (1998) 30–38. https://doi.org/10.1205/096030898531729
[130] N. Porcelli, S. Judd, Chemical cleaning of potable water membranes: a review, Sep. Purif. Technol. 71 (2010) 137–143. https://doi.org/10.1016/j.seppur.2009.12.007
[131] C. Liu, S. Caothien, J. Hayes, T. Caothuy, T. Otoyo, T. Ogawa, Membrane chemical cleaning: from art to science, Pall Corporation 11050 Port Washington, NY, 2001.
[132] E. Zondervan, B. Roffl, Evaluation of diffrent cleaning agents used for cleaning ultra fitration membranes fouled by surface water, J. Membr. Sci. 304 (2007) 40–49. https://doi.org/10.1016/j.memsci.2007.06.041