Structural Modifications of Carbon Nitride for Photocatalytic Applications
Ajay Kumar, Manisha Chandel, Manita Thakur
The current research on photocatalysis is totally focused on the designing and innovation of various low cost materials. For an efficient photocatalyst, there are some aspects which are to be assessed before practical use, such as optical activity, thermal and chemical stability, easy and availability of raw material, biocompatibility, etc. Fortunately, g-C3N4 offers most of these qualities to behave as a star photocatalyst. g-C3N4 could be easily prepared from low cost precursor materials such as urea, melamine, cyanimide and dicyandiamide by simple thermal treatment. Furthermore, larger surface area and two-dimensional planar conjugation structure of g-C3N4 can provide a large platform for anchoring various substrates. Various researchers have utilized g-C3N4 for varieties of applications such as green energy production, energy storage devices, biomedical application, wastewater treatment via photocatalysis and adsorption, photo sensors, etc. Although there are some disadvantages associated with use of g-C3N4 when utilized for various applications. To overcome such hitches various structural modifications have been applied to g-C3N4. The current chapter summarizes a wide mode of applications of g-C3N4 along with various structural modifications which were recently applied to improve the photocatalytic efficacy.
Keywords
g-C3N4, Modification, Energy, Wastewater, Photocatalysts
Published online 4/1/2021, 33 pages
Citation: Ajay Kumar, Manisha Chandel, Manita Thakur, Structural Modifications of Carbon Nitride for Photocatalytic Applications, Materials Research Foundations, Vol. 100, pp 299-331, 2021
DOI: https://doi.org/10.21741/9781644901359-10
Part of the book on Photocatalysis
References
[1] A. Kumar, G. Sharma, M. Naushad, A.H. Al-Muhtaseb, A. García-Peñas, G.T. Mola, C. Si, F.J. Stadler, Bio-inspired and biomaterials-based hybrid photocatalysts for environmental detoxification: A review, Chem. Eng. J. 382 (2020) 122937. https://doi.org/10.1016/j.cej.2019.122937
[2] A. Kumar, G. Sharma, M. Naushad, A.H. Al-Muhtaseb, A. Kumar, I. Hira, T. Ahamad, A.A. Ghfar, F.J. Stadler, Visible photodegradation of ibuprofen and 2,4-D in simulated waste water using sustainable metal free-hybrids based on carbon nitride and biochar, J. Environ. Manage. 231 (2019) 1164–1175. https://doi.org/10.1016/j.jenvman.2018.11.015
[3] A. Kumar, S.K. Sharma, G. Sharma, M. Naushad, F.J. Stadler, CeO2/g-C3N4/V2O5 ternary nano hetero-structures decorated with CQDs for enhanced photo-reduction capabilities under different light sources: Dual Z-scheme mechanism, J. Alloys Compd. 838 (2020) 155692. https://doi.org/10.1016/j.jallcom.2020.155692
[4] A. Kumar, G. Sharma, A. Kumari, C. Guo, M. Naushad, D.-V.N. Vo, J. Iqbal, F.J. Stadler, Construction of dual Z-scheme g-C3N4/Bi4Ti3O12/Bi4O5I2 heterojunction for visible and solar powered coupled photocatalytic antibiotic degradation and hydrogen production: Boosting via I-/I3- and Bi3+/Bi5+ redox mediators, Appl. Catal. B Environ. (2020) 119808. https://doi.org/10.1016/j.apcatb.2020.119808
[5] A. Kumar, S.K. Sharma, G. Sharma, C. Guo, D.V.N. Vo, J. Iqbal, M. Naushad, F.J. Stadler, Silicate glass matrix@Cu2O/Cu2V2O7 p-n heterojunction for enhanced visible light photo-degradation of sulfamethoxazole: High charge separation and interfacial transfer, J. Hazard. Mater. 402 (2021) 123790. https://doi.org/10.1016/j.jhazmat.2020.123790
[6] R. Ravindranath, P. Roy, A.P. Periasamy, H.T. Chang, Effects of deposited ions on the photocatalytic activity of TiO2-Au nanospheres, RSC Adv. 4 (2014) 57290–57296. https://doi.org/10.1039/C4RA10192H
[7] D. Ma, J. Wu, M. Gao, Y. Xin, T. Ma, Y. Sun, Fabrication of Z-scheme g-C3N4/RGO/Bi2WO6 photocatalyst with enhanced visible-light photocatalytic activity, Chem. Eng. J. 290 (2016) 136–146. https://doi.org/10.1016/j.cej.2016.01.031
[8] L.K. Putri, L.L. Tan, W.J. Ong, W.S. Chang, S.P. Chai, Graphene oxide: Exploiting its unique properties toward visible-light-driven photocatalysis, Appl. Mater. Today. 4 (2016) 9–16. https://doi.org/10.1016/j.apmt.2016.04.001
[9] T. Wang, X. Liu, C. Ma, Z. Zhu, Y. Liu, Z. Liu, M. Wei, X. Zhao, H. Dong, P. Huo, C. Li, Y. Yan, Bamboo prepared carbon quantum dots (CQDs) for enhancing Bi3Ti4O12 nanosheets photocatalytic activity, J. Alloys Compd. 752 (2018) 106–114. https://doi.org/10.1016/j.jallcom.2018.04.085
[10] R. Saravanan, E. Sacari, F. Gracia, M.M. Khan, E. Mosquera, V.K. Gupta, Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes, J. Mol. Liq. 221 (2016) 1029–1033. https://doi.org/10.1016/j.molliq.2016.06.074
[11] W. Zhao, Y. Guo, S. Wang, H. He, C. Sun, S. Yang, A novel ternary plasmonic photocatalyst: Ultrathin g-C3N4 nanosheet hybrided by Ag/AgVO3 nanoribbons with enhanced visible-light photocatalytic performance, Appl. Catal. B Environ. 165 (2015) 335–343. https://doi.org/10.1016/j.apcatb.2014.10.016
[12] Y. Gong, C. Fu, G. Zhang, H. Zhou, Y. Kuang, Three-dimensional Porous C3N4 Nanosheets@Reduced Graphene Oxide Network as Sulfur Hosts for High Performance Lithium-Sulfur Batteries, Electrochim. Acta. 256 (2017) 1–9. https://doi.org/10.1016/j.electacta.2017.10.032
[13] J. Yang, X. Wu, X. Li, Y. Liu, M. Gao, X. Liu, L. Kong, S. Yang, Synthesis and characterization of nitrogen-rich carbon nitride nanobelts by pyrolysis of melamine, Appl. Phys. A Mater. Sci. Process. 105 (2011) 161–166. https://doi.org/10.1007/s00339-011-6471-4
[14] E.G. Gillan, Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor, Chem. Mater. 12 (2000) 3906–3912. https://doi.org/10.1021/cm000570y
[15] J.P. Zou, L.C. Wang, J. Luo, Y.C. Nie, Q.J. Xing, X.B. Luo, H.M. Du, S.L. Luo, S.L. Suib, Synthesis and efficient visible light photocatalytic H2 evolution of a metal-free g-C3N4/graphene quantum dots hybrid photocatalyst, Appl. Catal. B Environ. 193 (2016) 103–109. https://doi.org/10.1016/j.apcatb.2016.04.017
[16] X. Ma, Y. Lv, J. Xu, Y. Liu, R. Zhang, Y. Zhu, A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: A first-principles study, J. Phys. Chem. C. 116 (2012) 23485–23493. https://doi.org/10.1021/jp308334x
[17] G. Fanchini, A. Tagliaferro, N.M.J. Conway, C. Godet, Role of lone-pair interactions and local disorder in determining the interdependency of optical constants of (formula presented) thin films, Phys. Rev. B – Condens. Matter Mater. Phys. 66 (2002) 1–9. https://doi.org/10.1103/PhysRevB.66.195415
[18] J. Zhang, X. Chen, K. Takanabe, K. Maeda, K. Domen, J.D. Epping, X. Fu, M. Antonieta, X. Wang, Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization, Angew. Chemie – Int. Ed. 49 (2010) 441–444. https://doi.org/10.1002/anie.200903886
[19] Q. Wei, X. Yan, Z. Kang, Z. Zhang, S. Cao, Y. Liu, Y. Zhang, Carbon Quantum Dots Decorated C3N4/TiO2 Heterostructure Nanorod Arrays for Enhanced Photoelectrochemical Performance , J. Electrochem. Soc. 164 (2017) H515–H520. https://doi.org/10.1149/2.1281707jes
[20] P. Niu, L. Zhang, G. Liu, H.M. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities, Adv. Funct. Mater. 22 (2012) 4763–4770. https://doi.org/10.1002/adfm.201200922
[21] S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P.M. Ajayan, Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light, Adv. Mater. 25 (2013) 2452–2456. https://doi.org/10.1002/adma.201204453
[22] J. Feng, T. Chen, S. Liu, Q. Zhou, Y. Ren, Y. Lv, Z. Fan, Improvement of g-C3N4 photocatalytic properties using the Hummers method, J. Colloid Interface Sci. 479 (2016) 1–6. https://doi.org/10.1016/j.jcis.2016.06.040
[23] M. Faisal, A.A. Ismail, F.A. Harraz, S.A. Al-Sayari, A.M. El-Toni, A.E. Al-Salami, M.S. Al-Assiri, Fabrication of highly efficient TiO2/C3N4 visible light driven photocatalysts with enhanced photocatalytic activity, J. Mol. Struct. 1173 (2018) 428–438. https://doi.org/10.1016/j.molstruc.2018.07.014
[24] M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A.W. Daud, Application of doped photocatalysts for organic pollutant degradation – A review, J. Environ. Manage. 198 (2017) 78–94. https://doi.org/10.1016/j.jenvman.2017.04.099
[25] Y.P. Zhu, T.Z. Ren, Z.Y. Yuan, Mesoporous Phosphorus-Doped g-C3N4 Nanostructured Flowers with Superior Photocatalytic Hydrogen Evolution Performance, ACS Appl. Mater. Interfaces. 7 (2015) 16850–16856. https://doi.org/10.1021/acsami.5b04947
[26] Z. Li, C. Kong, G. Lu, Visible Photocatalytic Water Splitting and Photocatalytic Two-Electron Oxygen Formation over Cu- and Fe-Doped g-C3N4, J. Phys. Chem. C. 120 (2016) 56–63. https://doi.org/10.1021/acs.jpcc.5b09469
[27] J. Mu, J. Li, X. Zhao, E.C. Yang, X.J. Zhao, Cobalt-doped graphitic carbon nitride with enhanced peroxidase-like activity for wastewater treatment, RSC Adv. 6 (2016) 35568–35576. https://doi.org/10.1039/C6RA02911F
[28] K. Li, S. Gao, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai, J. Lu, In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation, ACS Appl. Mater. Interfaces. 7 (2015) 9023–9030. https://doi.org/10.1021/am508505n
[29] J. Gao, Y. Wang, S. Zhou, W. Lin, Y. Kong, A Facile One-Step Synthesis of Fe-Doped g-C3N4 Nanosheets and Their Improved Visible-Light Photocatalytic Performance, ChemCatChem. 9 (2017) 1708–1715. https://doi.org/10.1002/cctc.201700492
[30] J.C. Wang, C.X. Cui, Y. Li, L. Liu, Y.P. Zhang, W. Shi, Porous Mn doped g-C3N4 photocatalysts for enhanced synergetic degradation under visible-light illumination, J. Hazard. Mater. 339 (2017) 43–53. https://doi.org/10.1016/j.jhazmat.2017.06.011
[31] Y. Wang, S. Zhao, Y. Zhang, J. Fang, Y. Zhou, S. Yuan, C. Zhang, W. Chen, One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation, Appl. Surf. Sci. 440 (2018) 258–265. https://doi.org/10.1016/j.apsusc.2018.01.091
[32] X. Zou, R. Silva, A. Goswami, T. Asefa, Cu-doped carbon nitride: Bio-inspired synthesis of H2 -evolving electrocatalysts using graphitic carbon nitride (g-C3N4 ) as a host material, Appl. Surf. Sci. 357 (2015) 221–228. https://doi.org/10.1016/j.apsusc.2015.08.197
[33] M. Faisal, A.A. Ismail, F.A. Harraz, S.A. Al-Sayari, A.M. El-Toni, M.S. Al-Assiri, Synthesis of highly dispersed silver doped g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity, Mater. Des. 98 (2016) 223–230. https://doi.org/10.1016/j.matdes.2016.03.019
[34] Y. Wang, Y. Wang, Y. Li, H. Shi, Y. Xu, H. Qin, X. Li, Y. Zuo, S. Kang, L. Cui, Simple synthesis of Zr-doped graphitic carbon nitride towards enhanced photocatalytic performance under simulated solar light irradiation, Catal. Commun. 72 (2015) 24–28. https://doi.org/10.1016/j.catcom.2015.08.022
[35] Y. Wang, Y. Li, X. Bai, Q. Cai, C. Liu, Y. Zuo, S. Kang, L. Cui, Facile synthesis of Y-doped graphitic carbon nitride with enhanced photocatalytic performance, Catal. Commun. 84 (2016) 179–182. https://doi.org/10.1016/j.catcom.2016.06.020
[36] M. Wang, P. Guo, Y. Zhang, C. Lv, T. Liu, T. Chai, Y. Xie, Y. Wang, T. Zhu, Synthesis of hollow lantern-like Eu(III)-doped g-C3N4 with enhanced visible light photocatalytic perfomance for organic degradation, J. Hazard. Mater. 349 (2018) 224–233. https://doi.org/10.1016/j.jhazmat.2018.01.058
[37] N. Wang, J. Wang, J. Hu, X. Lu, J. Sun, F. Shi, Z.H. Liu, Z. Lei, R. Jiang, Design of Palladium-Doped g-C3N4 for Enhanced Photocatalytic Activity toward Hydrogen Evolution Reaction, ACS Appl. Energy Mater. 1 (2018) 2866–2873. https://doi.org/10.1021/acsaem.8b00526
[38] Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang, J. Shi, N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light, Carbon N. Y. 99 (2016) 111–117. https://doi.org/10.1016/j.carbon.2015.12.008
[39] L. Jiang, X. Yuan, G. Zeng, J. Liang, Z. Wu, H. Yu, D. Mo, H. Wang, Z. Xiao, C. Zhou, Nitrogen self-doped g-C3N4 nanosheets with tunable band structures for enhanced photocatalytic tetracycline degradation, J. Colloid Interface Sci. 536 (2019) 17–29. https://doi.org/10.1016/j.jcis.2018.10.033
[40] K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho, J. Yu, Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance, Appl. Catal. B Environ. 176–177 (2015) 44–52. https://doi.org/10.1016/j.apcatb.2015.03.045
[41] N.D. Shcherban, S.M. Filonenko, M.L. Ovcharov, A.M. Mishura, M.A. Skoryk, A. Aho, D.Y. Murzin, Simple method for preparing of sulfur-doped graphitic carbon nitride with superior activity in CO2 photoreduction, ChemistrySelect. 1 (2016) 4987–4993. https://doi.org/10.1002/slct.201601283
[42] S. Guo, Y. Tang, Y. Xie, C. Tian, Q. Feng, W. Zhou, B. Jiang, P-doped tubular g-C3N4 with surface carbon defects: Universal synthesis and enhanced visible-light photocatalytic hydrogen production, Appl. Catal. B Environ. 218 (2017) 664–671. https://doi.org/10.1016/j.apcatb.2017.07.022
[43] M. Bellardita, E.I. García-López, G. Marcì, I. Krivtsov, J.R. García, L. Palmisano, Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4, Appl. Catal. B Environ. 220 (2018) 222–233. https://doi.org/10.1016/j.apcatb.2017.08.033
[44] Y. Zhou, L. Zhang, J. Liu, X. Fan, B. Wang, M. Wang, W. Ren, J. Wang, M. Li, J. Shi, Brand new P-doped g-C3N4: Enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light, J. Mater. Chem. A. 3 (2015) 3862–3867. https://doi.org/10.1039/C4TA05292G
[45] J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You, J. Yu, Hierarchical Porous O‐Doped g‐C3N4 with Enhanced Photocatalytic CO2 Reduction Activity, Small. 13 (2017). https://doi.org/10.1002/smll.201603938
[46] J. Li, B. Shen, Z. Hong, B. Lin, B. Gao, Y. Chen, A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity, Chem. Commun. 48 (2012) 12017–12019. https://doi.org/10.1039/c2cc35862j
[47] P. Chen, P. Xing, Z. Chen, H. Lin, Y. He, Rapid and energy-efficient preparation of boron doped g-C3N4 with excellent performance in photocatalytic H2-evolution, Int. J. Hydrogen Energy. 43 (2018) 19984–19989. https://doi.org/10.1016/j.ijhydene.2018.09.078
[48] Q. Yan, G.F. Huang, D.F. Li, M. Zhang, A.L. Pan, W.Q. Huang, Facile synthesis and superior photocatalytic and electrocatalytic performances of porous B-doped g-C3N4 nanosheets, J. Mater. Sci. Technol. 34 (2018) 2515–2520. https://doi.org/10.1016/j.jmst.2017.06.018
[49] C. Yang, W. Teng, Y. Song, Y. Cui, C-I codoped porous g-C3N4 for superior photocatalytic hydrogen evolution, Cuihua Xuebao/Chinese J. Catal. 39 (2018) 1615–1624. https://doi.org/10.1016/S1872-2067(18)63131-6
[50] Y. Ji, J. Cao, L. Jiang, Y. Zhang, Z. Yi, g-C3N4/BiVO4 composites with enhanced and stable visible light photocatalytic activity, J. Alloys Compd. 590 (2014) 9–14. https://doi.org/10.1016/j.jallcom.2013.12.050
[51] A. Kumar, A. Kumar, G. Sharma, A.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, F.J. Stadler, Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment, Chem. Eng. J. 334 (2018) 462–478. https://doi.org/10.1016/j.cej.2017.10.049
[52] A. Kumar, A. Kumar, G. Sharma, A.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, C. Guo, F.J. Stadler, Biochar-templated g-C3N4/Bi2O2CO3/CoFe2O4 nano-assembly for visible and solar assisted photo-degradation of paraquat, nitrophenol reduction and CO2 conversion, Chem. Eng. J. 339 (2018) 393–410. https://doi.org/10.1016/j.cej.2018.01.105
[53] J.S. Jang, H.G. Kim, J.S. Lee, Heterojunction semiconductors: A strategy to develop efficient photocatalytic materials for visible light water splitting, in: Catal. Today, Elsevier, 2012: pp. 270–277. https://doi.org/10.1016/j.cattod.2011.07.008
[54] A. Kumar, A. Kumar, G. Sharma, M. Naushad, F.J. Stadler, A.A. Ghfar, P. Dhiman, R. V. Saini, Sustainable nano-hybrids of magnetic biochar supported g-C3N4/FeVO4 for solar powered degradation of noxious pollutants- Synergism of adsorption, photocatalysis & photo-ozonation, J. Clean. Prod. 165 (2017) 431–451. https://doi.org/10.1016/j.jclepro.2017.07.117
[55] E. Liu, J. Chen, Y. Ma, J. Feng, J. Jia, J. Fan, X. Hu, Fabrication of 2D SnS2/g-C3N4 heterojunction with enhanced H2 evolution during photocatalytic water splitting, J. Colloid Interface Sci. 524 (2018) 313–324. https://doi.org/10.1016/j.jcis.2018.04.038
[56] Z. Jiang, W. Wan, H. Li, S. Yuan, H. Zhao, P.K. Wong, A Hierarchical Z‑Scheme α-Fe2O3/g-C3N4 Hybrid for Enhanced Photocatalytic CO2 Reduction, Adv. Mater. 30 (2018). https://doi.org/10.1002/adma.201706108
[57] Y. Zhang, Q. Zhang, Q. Shi, Z. Cai, Z. Yang, Acid-treated g-C3N4 with improved photocatalytic performance in the reduction of aqueous Cr(VI) under visible-light, Sep. Purif. Technol. 142 (2015) 251–257. https://doi.org/10.1016/j.seppur.2014.12.041
[58] X.H. Jiang, Q.J. Xing, X.B. Luo, F. Li, J.P. Zou, S.S. Liu, X. Li, X.K. Wang, Simultaneous photoreduction of Uranium(VI) and photooxidation of Arsenic(III) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation, Appl. Catal. B Environ. 228 (2018) 29–38. https://doi.org/10.1016/j.apcatb.2018.01.062
[59] F. Chang, J. Zheng, F. Wu, X. Wang, B. Deng, Binary composites WO3/g-C3N4 in porous morphology: Facile construction, characterization, and reinforced visible light photocatalytic activity, Colloids Surfaces A Physicochem. Eng. Asp. 563 (2019) 11–21. https://doi.org/10.1016/j.colsurfa.2018.11.058
[60] X. Zhou, Y. Chen, C. Li, L. Zhang, X. Zhang, X. Ning, L. Zhan, J. Luo, Construction of LaNiO3 nanoparticles modified g-C3N4 nanosheets for enhancing visible light photocatalytic activity towards tetracycline degradation, Sep. Purif. Technol. 211 (2019) 179–188. https://doi.org/10.1016/j.seppur.2018.09.075
[61] F. Chang, J. Zheng, X. Wang, Q. Xu, B. Deng, X. Hu, X. Liu, Heterojuncted non-metal binary composites silicon carbide/g-C3N4 with enhanced photocatalytic performance, Mater. Sci. Semicond. Process. 75 (2018) 183–192. https://doi.org/10.1016/j.mssp.2017.11.043
[62] F. Dong, Z. Zhao, T. Xiong, Z. Ni, W. Zhang, Y. Sun, W.K. Ho, In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis, ACS Appl. Mater. Interfaces. 5 (2013) 11392–11401. https://doi.org/10.1021/am403653a
[63] R. Ye, H. Fang, Y.Z. Zheng, N. Li, Y. Wang, X. Tao, Fabrication of CoTiO3/g-C3N4 Hybrid Photocatalysts with Enhanced H2 Evolution: Z-Scheme Photocatalytic Mechanism Insight, ACS Appl. Mater. Interfaces. 8 (2016) 13879–13889. https://doi.org/10.1021/acsami.6b01850
[64] Z. Wang, Y. Huang, W. Ho, J. Cao, Z. Shen, S.C. Lee, Fabrication of Bi2O2CO3/g-C3N4 heterojunctions for efficiently photocatalytic NO in air removal: In-situ self-sacrificial synthesis, characterizations and mechanistic study, Appl. Catal. B Environ. 199 (2016) 123–133. https://doi.org/10.1016/j.apcatb.2016.06.027
[65] M. Reli, P. Huo, M. Šihor, N. Ambrožová, I. Troppová, L. Matějová, J. Lang, L. Svoboda, P. Kuśtrowski, M. Ritz, P. Praus, K. Kočí, Novel TiO2/C3N4 Photocatalysts for Photocatalytic Reduction of CO2 and for Photocatalytic Decomposition of N2O, J. Phys. Chem. A. 120 (2016) 8564–8573. https://doi.org/10.1021/acs.jpca.6b07236
[66] N. Tian, H. Huang, Y. Guo, Y. He, Y. Zhang, A g-C3N4/Bi2O2CO3 composite with high visible-light-driven photocatalytic activity for rhodamine B degradation, Appl. Surf. Sci. 322 (2014) 249–254. https://doi.org/10.1016/j.apsusc.2014.10.071
[67] C. Han, L. Ge, C. Chen, Y. Li, X. Xiao, Y. Zhang, L. Guo, Novel visible light induced Co3O4-g-C3N4 heterojunction photocatalysts for efficient degradation of methyl orange, Appl. Catal. B Environ. 147 (2014) 546–553. https://doi.org/10.1016/j.apcatb.2013.09.038
[68] X. jing Wang, Q. Wang, F. tang Li, W. yan Yang, Y. Zhao, Y. juan Hao, S. jun Liu, Novel BiOCl-C3N4 heterojunction photocatalysts: In situ preparation via an ionic-liquid-assisted solvent-thermal route and their visible-light photocatalytic activities, Chem. Eng. J. 234 (2013) 361–371. https://doi.org/10.1016/j.cej.2013.08.112
[69] H. Li, J. Liu, W. Hou, N. Du, R. Zhang, X. Tao, Synthesis and characterization of g-C3N4/Bi2MoO6 heterojunctions with enhanced visible light photocatalytic activity, Appl. Catal. B Environ. 160–161 (2014) 89–97. https://doi.org/10.1016/j.apcatb.2014.05.019
[70] X. Hao, J. Zhou, Z. Cui, Y. Wang, Y. Wang, Z. Zou, Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production, Appl. Catal. B Environ. 229 (2018) 41–51. https://doi.org/10.1016/j.apcatb.2018.02.006
[71] S. Liang, D. Zhang, X. Pu, X. Yao, R. Han, J. Yin, X. Ren, A novel Ag2O/g-C3N4 p-n heterojunction photocatalysts with enhanced visible and near-infrared light activity, Sep. Purif. Technol. 210 (2019) 786–797. https://doi.org/10.1016/j.seppur.2018.09.008
[72] S. Balu, S. Velmurugan, S. Palanisamy, S.W. Chen, V. Velusamy, T.C.K. Yang, E.S.I. El-Shafey, Synthesis of α-Fe2O3 decorated g-C3N4/ZnO ternary Z-scheme photocatalyst for degradation of tartrazine dye in aqueous media, J. Taiwan Inst. Chem. Eng. 99 (2019) 258–267. https://doi.org/10.1016/j.jtice.2019.03.011
[73] H. Liu, H. Zhou, X. Liu, H. Li, C. Ren, X. Li, W. Li, Z. Lian, M. Zhang, Engineering design of hierarchical g-C3N4@Bi/BiOBr ternary heterojunction with Z-scheme system for efficient visible-light photocatalytic performance, J. Alloys Compd. 798 (2019) 741–749. https://doi.org/10.1016/j.jallcom.2019.05.303
[74] K. Dai, J. Lv, J. Zhang, C. Liang, G. Zhu, Band structure engineering design of g-C3N4/ZnS/SnS2 ternary heterojunction visible-light photocatalyst with ZnS as electron transport buffer material, J. Alloys Compd. 778 (2019) 215–223. https://doi.org/10.1016/j.jallcom.2018.11.127
[75] S. Bellamkonda, G. Ranga Rao, Nanojunction-mediated visible light photocatalytic enhancement in heterostructured ternary BiOCl/CdS/g-C3N4 nanocomposites, Catal. Today. 321–322 (2019) 18–25. https://doi.org/10.1016/j.cattod.2018.03.025
[76] M. Mousavi, A. Habibi-Yangjeh, D. Seifzadeh, Novel ternary g-C3N4/Fe3O4/MnWO4 nanocomposites: Synthesis, characterization, and visible-light photocatalytic performance for environmental purposes, J. Mater. Sci. Technol. 34 (2018) 1638–1651. https://doi.org/10.1016/j.jmst.2018.05.004
[77] J. Barzegar, A. Habibi-Yangjeh, A. Akhundi, S. Vadivel, Novel ternary g-C3N4/Ag3VO4/AgBr nanocomposites with excellent visible-light-driven photocatalytic performance for environmental applications, Solid State Sci. 78 (2018) 133–143. https://doi.org/10.1016/j.solidstatesciences.2018.03.001
[78] W. Liu, J. Shen, X. Yang, Q. Liu, H. Tang, Dual Z-scheme g-C3N4/Ag3PO4/Ag2MoO4 ternary composite photocatalyst for solar oxygen evolution from water splitting, Appl. Surf. Sci. 456 (2018) 369–378. https://doi.org/10.1016/j.apsusc.2018.06.156
[79] F. Cheng, H. Yin, Q. Xiang, Low-temperature solid-state preparation of ternary CdS/g-C3N4/CuS nanocomposites for enhanced visible-light photocatalytic H2 -production activity, Appl. Surf. Sci. 391 (2017) 432–439. https://doi.org/10.1016/j.apsusc.2016.06.169
[80] D. Lu, H. Wang, X. Zhao, K.K. Kondamareddy, J. Ding, C. Li, P. Fang, Highly efficient visible-light-induced photoactivity of Z-scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen, ACS Sustain. Chem. Eng. 5 (2017) 1436–1445. https://doi.org/10.1021/acssuschemeng.6b02010
[81] Y. Yuan, G.F. Huang, W.Y. Hu, D.N. Xiong, B.X. Zhou, S. Chang, W.Q. Huang, Construction of g-C3N4/CeO2/ZnO ternary photocatalysts with enhanced photocatalytic performance, J. Phys. Chem. Solids. 106 (2017) 1–9. https://doi.org/10.1016/j.jpcs.2017.02.015
[82] X. Rong, F. Qiu, Z. Jiang, J. Rong, J. Pan, T. Zhang, D. Yang, Preparation of ternary combined ZnO-Ag2O/porous g-C3N4 composite photocatalyst and enhanced visible-light photocatalytic activity for degradation of ciprofloxacin, Chem. Eng. Res. Des. 111 (2016) 253–261. https://doi.org/10.1016/j.cherd.2016.05.010
[83] M. Mousavi, A. Habibi-Yangjeh, Magnetically separable ternary g-C3N4/Fe3O4/BiOI nanocomposites: Novel visible-light-driven photocatalysts based on graphitic carbon nitride, J. Colloid Interface Sci. 465 (2016) 83–92. https://doi.org/10.1016/j.jcis.2015.11.057
[84] A. Habibi-Yangjeh, A. Akhundi, Novel ternary g-C3N4/Fe3O4/Ag2CrO4 nanocomposites: Magnetically separable and visible-light-driven photocatalysts for degradation of water pollutants, J. Mol. Catal. A Chem. 415 (2016) 122–130. https://doi.org/10.1016/j.molcata.2016.01.032
[85] A. Akhundi, A. Habibi-Yangjeh, Ternary magnetic g-C3N4/Fe3O4/AgI nanocomposites: Novel recyclable photocatalysts with enhanced activity in degradation of different pollutants under visible light, Mater. Chem. Phys. 174 (2016) 59–69. https://doi.org/10.1016/j.matchemphys.2016.02.052
[86] M. Mousavi, A. Habibi-Yangjeh, Ternary g-C3N4/Fe3O4/Ag3VO4 nanocomposites: Novel magnetically separable visible-light-driven photocatalysts for efficiently degradation of dye pollutants, Mater. Chem. Phys. 163 (2015) 421–430. https://doi.org/10.1016/j.matchemphys.2015.07.061
[87] A. Kumar, A. Kumar, G. Sharma, M. Naushad, R.C. Veses, A.A. Ghfar, F.J. Stadler, M.R. Khan, Solar-driven photodegradation of 17-β-estradiol and ciprofloxacin from waste water and CO2 conversion using sustainable coal-char/polymeric-g-C3N4/RGO metal-free nano-hybrids, New J. Chem. 41 (2017) 10208–10224. https://doi.org/10.1039/C7NJ01580A
[88] Y. Li, H. Zhang, P. Liu, D. Wang, Y. Li, H. Zhao, Cross-Linked g-C3N4/rGO Nanocomposites with Tunable Band Structure and Enhanced Visible Light Photocatalytic Activity, Small. 9 (2013). https://doi.org/10.1002/smll.201203135
[89] J. Wan, C. Pu, R. Wang, E. Liu, X. Du, X. Bai, J. Fan, X. Hu, A facile dissolution strategy facilitated by H2SO4 to fabricate a 2D metal-free g-C3N4/rGO heterojunction for efficient photocatalytic H2 production, Int. J. Hydrogen Energy. 43 (2018) 7007–7019. https://doi.org/10.1016/j.ijhydene.2018.02.134
[90] H. Wang, Y. Liang, L. Liu, J. Hu, W. Cui, Highly ordered TiO2 nanotube arrays wrapped with g-C3N4 nanoparticles for efficient charge separation and increased photoelectrocatalytic degradation of phenol, J. Hazard. Mater. 344 (2018) 369–380. https://doi.org/10.1016/j.jhazmat.2017.10.044
[91] F. Hussin, H.O. Lintang, L. Yuliati, Enhanced Activity of C3N4 with Addition of ZnO for Photocatalytic Removal of Phenol under Visible Light 4G-PHOTOCAT View project vapochromic chemosensor of VOCs View project, Artic. Malaysian J. Anal. Sci. (2016). https://doi.org/10.17576/mjas-2016-2001-11
[92] A. Kumar, A. Kumari, G. Sharma, B. Du, M. Naushad, F.J. Stadler, Carbon quantum dots and reduced graphene oxide modified self-assembled S@C3N4/B@C3N4 metal-free nano-photocatalyst for high performance degradation of chloramphenicol, J. Mol. Liq. 300 (2020) 112356. https://doi.org/10.1016/j.molliq.2019.112356
[93] L. Chen, Y. Man, Z. Chen, Y. Zhang, Ag/g-C3N4 layered composites with enhanced visible light photocatalytic performance, Mater. Res. Express. 3 (2016) 115003. https://doi.org/10.1088/2053-1591/3/11/115003
[94] B. Yuan, J. Wei, T. Hu, H. Yao, Z. Jiang, Z. Fang, Z. Chu, Simple synthesis of g-C3N4/rGO hybrid catalyst for the photocatalytic degradation of rhodamine B, Cuihua Xuebao/Chinese J. Catal. 36 (2015) 1009–1016. https://doi.org/10.1016/S1872-2067(15)60844-0
[95] W.J. Ong, L.L. Tan, S.P. Chai, S.T. Yong, A.R. Mohamed, Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane, Nano Energy. 13 (2015) 757–770. https://doi.org/10.1016/j.nanoen.2015.03.014
[96] Q. Sun, P. Wang, H. Yu, X. Wang, In situ hydrothermal synthesis and enhanced photocatalytic H2-evolution performance of suspended rGO/g-C3N4 photocatalysts, J. Mol. Catal. A Chem. 424 (2016) 369–376. https://doi.org/10.1016/j.molcata.2016.09.015
[97] L. Ge, C. Han, J. Liu, In situ synthesis and enhanced visible light photocatalytic activities of novel PANI-g-C3N4 composite photocatalysts, J. Mater. Chem. 22 (2012) 11843–11850. https://doi.org/10.1039/c2jm16241e
[98] F. He, G. Chen, Y. Yu, S. Hao, Y. Zhou, Y. Zheng, Facile approach to synthesize g-PAN/g-C3N4 composites with enhanced photocatalytic H2 evolution activity, ACS Appl. Mater. Interfaces. 6 (2014) 7171–7179. https://doi.org/10.1021/am500198y
[99] L. Pi, R. Jiang, W. Zhou, H. Zhu, W. Xiao, D. Wang, X. Mao, g-C3N4 Modified biochar as an adsorptive and photocatalytic material for decontamination of aqueous organic pollutants, in: Appl. Surf. Sci., Elsevier B.V., 2015: pp. 231–239. https://doi.org/10.1016/j.apsusc.2015.08.176
[100] L. Tang, C. tao Jia, Y. cheng Xue, L. Li, A. qi Wang, G. Xu, N. Liu, M. hong Wu, Fabrication of compressible and recyclable macroscopic g-C3N4/GO aerogel hybrids for visible-light harvesting: A promising strategy for water remediation, Appl. Catal. B Environ. 219 (2017) 241–248. https://doi.org/10.1016/j.apcatb.2017.07.053
[101] X. Wang, S. Wang, W. Hu, J. Cai, L. Zhang, L. Dong, L. Zhao, Y. He, Synthesis and photocatalytic activity of SiO2/g-C3N4 composite photocatalyst, Mater. Lett. 115 (2014) 53–56. https://doi.org/10.1016/j.matlet.2013.10.016
[102] M. Shen, L. Zhang, J. Shi, Converting CO2 into fuels by graphitic carbon nitride-based photocatalysts, Nanotechnology. 29 (2018) 412001. https://doi.org/10.1088/1361-6528/aad4c8
[103] S. Fang, Y. Xia, K. Lv, Q. Li, J. Sun, M. Li, Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4, Appl. Catal. B Environ. 185 (2016) 225–232. https://doi.org/10.1016/j.apcatb.2015.12.025
[104] K. Li, F.Y. Su, W. De Zhang, Modification of g-C3N4 nanosheets by carbon quantum dots for highly efficient photocatalytic generation of hydrogen, Appl. Surf. Sci. 375 (2016) 110–117. https://doi.org/10.1016/j.apsusc.2016.03.025
[105] G. Dong, L. Yang, F. Wang, L. Zang, C. Wang, Removal of Nitric Oxide through Visible Light Photocatalysis by g-C3N4 Modified with Perylene Imides, ACS Catal. 6 (2016) 6511–6519. https://doi.org/10.1021/acscatal.6b01657
[106] P. Zhang, T. Wang, H. Zeng, Design of Cu-Cu2O/g-C3N4 nanocomponent photocatalysts for hydrogen evolution under visible light irradiation using water-soluble Erythrosin B dye sensitization, Appl. Surf. Sci. 391 (2017) 404–414. https://doi.org/10.1016/j.apsusc.2016.05.162
[107] Y. Wang, J. Hong, W. Zhang, R. Xu, Carbon nitride nanosheets for photocatalytic hydrogen evolution: Remarkably enhanced activity by dye sensitization, Catal. Sci. Technol. 3 (2013) 1703–1711. https://doi.org/10.1039/c3cy20836b
[108] S. Buddee, S. Wongnawa, P. Sriprang, C. Sriwong, Curcumin-sensitized TiO2 for enhanced photodegradation of dyes under visible light, J. Nanoparticle Res. 16 (2014) 1–21. https://doi.org/10.1007/s11051-014-2336-z
[109] A. Zyoud, N. Zaatar, I. Saadeddin, M.H. Helal, G. Campet, M. Hakim, D. Park, H.S. Hilal, Alternative natural dyes in water purification: Anthocyanin as TiO2-sensitizer in methyl orange photo-degradation, Solid State Sci. 13 (2011) 1268–1275. https://doi.org/10.1016/j.solidstatesciences.2011.03.020
[110] K. Takanabe, K. Kamata, X. Wang, M. Antonietti, J. Kubota, K. Domen, Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine, Phys. Chem. Chem. Phys. 12 (2010) 13020–13025. https://doi.org/10.1039/c0cp00611d
[111] H. Zhang, S. Li, R. Lu, A. Yu, Time-Resolved Study on Xanthene Dye-Sensitized Carbon Nitride Photocatalytic Systems, ACS Appl. Mater. Interfaces. 7 (2015) 21868–21874. https://doi.org/10.1021/acsami.5b06309
[112] J. Xu, Y. Li, S. Peng, G. Lu, S. Li, Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: The effect of the pyrolysis temperature of urea, Phys. Chem. Chem. Phys. 15 (2013) 7657–7665. https://doi.org/10.1039/c3cp44687e
[113] S. Min, G. Lu, Enhanced electron transfer from the excited eosin y to mpg-C3N4 for highly efficient hydrogen evolution under 550 nm irradiation, J. Phys. Chem. C. 116 (2012) 19644–19652. https://doi.org/10.1021/jp304022f
[114] J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst, Appl. Catal. B Environ. 243 (2019) 556–565. https://doi.org/10.1016/j.apcatb.2018.11.011
[115] X. She, L. Liu, H. Ji, Z. Mo, Y. Li, L. Huang, D. Du, H. Xu, H. Li, Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light, Appl. Catal. B Environ. 187 (2016) 144–153. https://doi.org/10.1016/j.apcatb.2015.12.046
[116] B. Tahir, M. Tahir, N.A.S. Amin, Photo-induced CO2 reduction by CH4/H2O to fuels over Cu-modified g-C3N4 nanorods under simulated solar energy, Appl. Surf. Sci. 419 (2017) 875–885. https://doi.org/10.1016/j.apsusc.2017.05.117
[117] D.A. Giannakoudakis, N.A. Travlou, J. Secor, T.J. Bandosz, Oxidized g-C3N4 Nanospheres as Catalytically Photoactive Linkers in MOF/g-C3N4 Composite of Hierarchical Pore Structure, Small. 13 (2017) 1601758. https://doi.org/10.1002/smll.201601758
[118] J. Kavil, S. Pilathottathil, M.S. Thayyil, P. Periyat, Development of 2D nano heterostructures based on g-C3N4 and flower shaped MoS2 as electrode in symmetric supercapacitor device, Nano-Structures and Nano-Objects. 18 (2019) 100317. https://doi.org/10.1016/j.nanoso.2019.100317
[119] X. Bai, L. Wang, R. Zong, Y. Zhu, Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods, J. Phys. Chem. C. 117 (2013) 9952–9961. https://doi.org/10.1021/jp402062d
[120] J. Meng, Y. Tian, C. Li, X. Lin, Z. Wang, L. Sun, Y. Zhou, J. Li, N. Yang, Y. Zong, F. Li, Y. Cao, H. Song, A thiophene-modified doubleshell hollow g-C3N4 nanosphere boosts NADH regeneration: Via synergistic enhancement of charge excitation and separation, Catal. Sci. Technol. 9 (2019) 1911–1921. https://doi.org/10.1039/C9CY00180H
[121] Y. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Helical Graphitic Carbon Nitrides with Photocatalytic and Optical Activities, Angew. Chemie. 126 (2014) 12120–12124. https://doi.org/10.1002/ange.201407319
[122] C.Q. Xu, K. Li, W. De Zhang, Enhancing visible light photocatalytic activity of nitrogen-deficient g-C3N4 via thermal polymerization of acetic acid-treated melamine, J. Colloid Interface Sci. 495 (2017) 27–36. https://doi.org/10.1016/j.jcis.2017.01.111
[123] J. Ding, W. Xu, H. Wan, D. Yuan, C. Chen, L.W.-A.C.B., undefined 2018, Nitrogen vacancy engineered graphitic C3N4-based polymers for photocatalytic oxidation of aromatic alcohols to aldehydes, Elsevier. (n.d.). (accessed August 28, 2020). https://doi.org/10.1016/j.apcatb.2017.09.048
[124] B. Liu, M. Qiao, Y. Wang, L. Wang, Y. Gong, T. Guo, X. Zhao, Persulfate enhanced photocatalytic degradation of bisphenol A by g-C3N4 nanosheets under visible light irradiation, Chemosphere. 189 (2017) 115–122. https://doi.org/10.1016/j.chemosphere.2017.08.169
[125] J.Y. Hu, K. Tian, H. Jiang, Improvement of phenol photodegradation efficiency by a combined g-C3N4/Fe(III)/persulfate system, Chemosphere. 148 (2016) 34–40. https://doi.org/10.1016/j.chemosphere.2016.01.002