Plastic Biodegradation
Bhupender Singu, Karuna Nagula, Pravin D. Patil, Manishkumar S. Tiwari
Plastics that are degraded by microbial or enzymatic activity are known as biodegradable plastics. Biodegradable plastics are an alternative to conventional plastics that are chemically synthesized and are responsible for causing environmental pollution due to unwanted accumulation occurring via disposal practices. There was a serious need to introduce biodegradable plastics in the market since the level of plastic pollution in the air, water, and soil has reached its threshold values. The non-biodegradable plastics are increasingly accumulating in the environment, which can be a threat to the planet in the coming future. This chapter provides detailed insight into biodegradables polymers, mostly aliphatic polyesters that are considered as a solution against synthetic plastic. It also gives brief information on the current scenario of plastic biodegradation, recent advancements, opportunities, and future challenges. Also, it comprises precise strategies currently used at a laboratory scale to enhance biodegradation of classical synthetic plastics (e.g., polyethylene, polystyrene, etc.). Moreover, the factors affecting the biodegradation process and the characterization techniques being employed to assess degradation extent are also discussed. The overall work focuses on thrust areas to be improved concerning environmental safety and sustainable vision.
Keywords
Bioremediation, Bio-Degradation, Plastics, Bio-Degradable Plastics, Bio-Based Polymers, Enzymes
Published online 4/1/2021, 34 pages
Citation: Bhupender Singu, Karuna Nagula, Pravin D. Patil, Manishkumar S. Tiwari, Plastic Biodegradation, Materials Research Foundations, Vol. 99, pp 111-144, 2021
DOI: https://doi.org/10.21741/9781644901335-5
Part of the book on Degradation of Plastics
References
[1] L.C.M. Lebreton, S.D. Greer, J.C. Borrero, Numerical modelling of floating debris in the world’s oceans, Mar. Pollut. Bull. 64 (2012) 653-661. https://doi.org/10.1016/j.marpolbul.2011.10.027
[2] J.A. Glaser, Biological degradation of polymers in the environment, in: J.A. Glaser (Eds.), Plastics in the environment 2019. Intech Open, London, 2019, pp.1-23. https://doi.org/10.5772/intechopen.85124
[3] S.L. Wright, R.C. Thompson, T.S. Galloway, The physical impacts of microplastics on marine organisms: a review, Environ. Pollut. 178 (2013) 483-492. https://doi.org/10.1016/j.envpol.2013.02.031
[4] A. Collingnon, J.H. Hecq, F. Glagani, P. Voisin, F. Collard, A. Goffart, Neustonic microplastic and zooplankton in the north western Mediterranean sea, Mar. Pollut. Bull. 64 (2012) 861-864. https://doi.org/10.1016/j.marpolbul.2012.01.011
[5] R.G. Asch, P. Davidson, Plastic ingestion by mesopelagic fishes in the North Pacific Subtropic Gyre, Mar. Ecol. Prog. 423 (2011) 173-180. https://doi.org/10.3354/meps09142
[6] D. Lithner, A. Larsson, G. Dave, Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition, Sci. Total Environ. 409 (2011) 3309-3324. https://doi.org/10.1016/j.scitotenv.2011.04.038
[7] E.L. Teuten, J.M. Saquing, D.R.U. Knappe, M.A. Barlaz, S. Jonsson, A. Björn, S.J. Rowland, R.C. Thompson, T.S. Galloway, R. Yamashita, D. Ochi, Y. Watanuki, C. Moore, P.H. Viet, T.S. Tana, M. Prudente, R. Boonyatumanond, M.P. Zakaria, K. Akkhavong, Y. Ogata, H. Hirai, S. Iwasa, K. Mizukawa, Y. Hagino, A. Imamura, M. Saha, H. Takada, Transport and release of chemicals from plastics to the environment and to wildlife, Philos. Trans. R. Soc. B Biol. Sci. 364 (2009) 2027–2045. https://doi.org/10.1098/rstb.2008.0284
[8] A.L. Andrady, Microplastics in the marine environment, Mar. Pollut. Bull. 62 (2011) 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030
[9] G. Caruso, Microplastics as vectors of contaminants, Mar. Pollut. Bull. 146 (2019) 921–924. https://doi.org/10.1016/j.marpolbul.2019.07.052
[10] E.R. Zettler, T.J. Mincer, L.A. Amaral-Zettler, Life in the “plastisphere”: microbial communities on plastic marine debris, Environ. Sci. Technol. 47 (2013) 7137–7146. https://doi.org/10.1021/es401288x
[11] J.N. Hahladakis, C.A. Velis, R. Weber, E. Iacovidou, P. Purnell, An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling, J. Hazard. Mater. 344 (2018) 179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014
[12] J.P. Harrison, C. Boardman, O. Callaghan, A. Delort, J. Song, J.P. Harrison, Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review, R. Soc. Open Sci. 65 (2018) 1-18. https://doi.org/10.1098/rsos.171792
[13] S.M. Al-Salem, A.Y. Al-Nasser, M.H. Behbehani, H.H. Sultan, H.J. Karam, M.H. Al-Wadi, A.T. Al-Dhafeeri, Z. Rasheed, M. Al-Foudaree, Thermal response and degressive reaction study of oxo-biodegradable plastic products exposed to various degradation media, Int. J. Polym. Sci. (2019). https://doi.org/10.1155/2019/9612813
[14] J.M.R. da Luz, S.A. Paes, M.D. Nunes, M. de C.S. da Silva, M.C.M. Kasuya, Degradation of oxo-biodegradable plastic by Pleurotus ostreatus, PLoS One. 8 (2013) e69386. https://doi.org/10.1371/journal.pone.0069386
[15] R. Pantani, A. Sorrentino, Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions, Polym. Degrad. Stab. 98 (2013) 1089–1096. https://doi.org/10.1016/j.polymdegradstab.2013.01.005
[16] V.M. Pathak, Navneet, Review on the current status of polymer degradation: a microbial approach, Bioresour. Bioprocess. 4 (2017) 1-31. https://doi.org/10.1186/s40643-017-0145-9
[17] B. Azimi, P. Nourpanah, M. Rabiee, S. Arbab, Poly (ε-caprolactone) fiber: an overview, J. Eng. Fiber. Fabr. 9 (2014) 74–90. https://doi.org/10.1177/155892501400900309
[18] E. Rudnik, Compostable polymer materials – definitions, structures and methods of preparation, in E. Rudnik (Eds.) Compostable Polymer Materials (Second Edition), Elsevier, Netherlands, 2019 pp. 11-48. https://doi.org/10.1016/B978-0-08-099438-3.00002-1
[19] Z. Qiu, S. Fujinami, M. Komura, K. Nakajima, T. Ikehara, T. Nishi, Non-isothermal crystallization kinetics of poly(butylene succinate) and poly(ethylene succinate), Polym. J. 36 (2004) 642–646. https://doi.org/10.1295/polymj.36.642
[20] Y. Tokiwa, B.P. Calabia, C.U. Ugwu, S. Aiba, Biodegradability of plastics, Int. J. Mol. Sci. 10 (2009) 3722–3742. https://doi.org/10.3390/ijms10093722
[21] L. W. McKeen, Introduction to the physical, mechanical, and thermal properties of plastics and elastomers, L. W. McKeen (Eds.) in: Plastics Design Library, The Effect of UV Light and Weather on Plastics and Elastomers (Fourth Edition), William Andrew Publishing, Norwich, 2019, pp 49-76. https://doi.org/10.1016/B978-0-12-816457-0.00003-4
[22] T. Ahmed, M. Shahid, F. Azeem, I. Rasul, A.A. Shah, M. Noman, A. Hameed, N. Manzoor, I. Manzoor, S. Muhammad, Biodegradation of plastics: current scenario and future prospects for environmental safety, Environ. Sci. Pollut. Res. 25 (2018) 7287–7298. https://doi.org/10.1007/s11356-018-1234-9
[23] Y. Zheng, E.K. Yanful, A.S. Bassi, A review of plastic waste biodegradation, Crit. Rev. Biotechnol. 25 (2005) 243–250. https://doi.org/10.1080/07388550500346359
[24] N. Lucas, C. Bienaime, C. Belloy, M. Queneudec, F. Silvestre, J. E. Nava-Saucedo, Polymer biodegradation: mechanisms and estimation techniques – a review, Chemosphere. 73 (2008) 429–442. https://doi.org/10.1016/j.chemosphere.2008.06.064
[25] N. Wierckx, T. Narancic, C. Eberlein, R. Wei, O. Drzyzga, A. Magnin, H. Ballerstedt, S.T. Kenny, E. Pollet, L. Avérous, K.E.O’Connor, W. Zimmermann, H.J. Heipieper, A. Prieto, J. Jiménez, L.M. Blank, Plastic biodegradation: Challenges and Opportunities, In: Steffan R. (eds) Consequences Microbial Interactions with Hydrocarbons Oils, Lipids Biodegradation and Bioremediation, Springer International Publishing, Cham, 2018: pp. 1–29. https://doi.org/10.1007/978-3-319-44535-9_23-1
[26] M. Shimao, Biodegradation of plastics, Curr. Opin. Biotechnol. 12 (2001) 242–247. https://doi.org/10.1016/S0958-1669(00)00206-8
[27] N.S. Panikov, Microbial growth kinetics, Spinger Netherlands 1995, pp-378.
[28] A.A. Shah, F. Hasan, A. Hameed, S. Ahmed, Biological degradation of plastics: A comprehensive review, Biotechnol. Adv. 26 (2008) 246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005
[29] M.A. Barlaz, R.K. Ham, D.M. Schaefer, Mass‐Balance analysis of anaerobically decomposed refuse, J. Environ. Eng. 115 (1989) 1088–1102. https://doi.org/10.1061/(ASCE)0733-9372(1989)115:6(1088)
[30] A. Sheel, D. Pant, Microbial depolymerization, in: Waste Bioremediation. Energy, Environment, and Sustainability. Springer, Singapore (2018) pp 61-103. https://doi.org/10.1007/978-981-10-7413-4_4
[31] S.K. Ghosh, S. Pal, S. Ray, Study of microbes having potentiality for biodegradation of plastics, Environ. Sci. Pollut. Res. 20 (2013) 4339–4355. https://doi.org/10.1007/s11356-013-1706-x
[32] R. Devi, V. Kannan, K. Natarajan, D. Nivas, K. Kannan, S. Chandru, A. Antony, The role of microbes in plastic degradation, in: R. Chandra (Eds.), Environ. Waste Management, 1st edition Taylor & Francis Group, LLC, Milton, 2015, pp 341-370. https://doi.org/10.1201/b19243-13
[33] B. Singh, N. Sharma, Mechanistic implications of plastic degradation, Polym. Degrad. Stab. 93 (2008) 561–584. https://doi.org/10.1016/j.polymdegradstab.2007.11.008
[34] G. O’Toole, H.B. Kaplan, R. Kolter, Biofilm formation as microbial development, Annu. Rev. Microbiol. 54 (2000) 49–79. doi.org/10.1146/annurev.micro.54.1.49
[35] J.D. Gu, Microbial colonization of polymeric materials for space applications and mechanisms of biodeterioration: A review, Int. Biodeterior. Biodegradation. 59 (2007) 170–179. https://doi.org/10.1016/j.ibiod.2006.08.010
[36] H.C. Flemming, Relevance of biofilms for the biodeterioration of surfaces of polymeric materials, Polym. Degrad. Stab. 59 (1998) 309–315. https://doi.org/10.1016/S0141-3910(97)00189-4
[37] S. Bonhomme, A. Cuer, A.M. Delort, J. Lemaire, M. Sancelme, G. Scott, Environmental biodegradation of polyethylene, Polym. Degrad. Stab. 81 (2003) 441–452. https://doi.org/10.1016/S0141-3910(03)00129-0
[38] A. Lugauskas, L. Levinskait, D. Pečiulyt, Micromycetes as deterioration agents of polymeric materials, Int. Biodeterior. Biodegradation. 52 (2003) 233–242. https://doi.org/10.1016/S0964-8305(03)00110-0
[39] W. Guo, J. Tao, C. Yang, C. Song, W. Geng, Q. Li, Y. Wang, M. Kong, S. Wang, Introduction of environmentally degradable parameters to evaluate the biodegradability of biodegradable polymers, PLoS One. 7 (2012) e38341. https://doi.org/10.1371/journal.pone.0038341
[40] S. Muenmee, W. Chiemchaisri, C. Chiemchaisri, Enhancement of biodegradation of plastic wastes via methane oxidation in semi-aerobic landfill, Int. Biodeterior. Biodegradation. 113 (2016) 244–255. https://doi.org/10.1016/j.ibiod.2016.03.016
[41] P. Tribedi, A.K. Sil, Bioaugmentation of polyethylene succinate-contaminated soil with Pseudomonas sp. AKS2 results in increased microbial activity and better polymer degradation, Environ. Sci. Pollut. Res. 20 (2013) 1318–1326. https://doi.org/10.1007/s11356-012-1080-0
[42] P.P. Vimala, L. Mathew, Biodegradation of Polyethylene Using Bacillus Subtilis, Procedia Technol. 24 (2016) 232–239. https://doi.org/10.1016/j.protcy.2016.05.031
[43] V.M. Pathak, N. Kumar, Dataset on the impact of UV, nitric acid and surfactant treatments on low-density polyethylene biodegradation, Data Br. 14 (2017) 393–411. https://doi.org/10.1016/j.dib.2017.07.073
[44] Č. Novotný, K. Malachová, G. Adamus, M. Kwiecień, N. Lotti, M. Soccio, V. Verney, F. Fava, Deterioration of irradiation/high-temperature pretreated, linear low-density polyethylene (LLDPE) by Bacillus amyloliquefaciens, Int. Biodeterior. Biodegrad. 132 (2018) 259–267. https://doi.org/10.1016/j.ibiod.2018.04.014
[45] Y. Sameshima-Yamashita, H. Ueda, M. Koitabashi, H. Kitamoto, Pre-treatment with an esterase from the yeast Pseudozyma antarctica accelerates biodegradation of plastic mulch film in soil under laboratory conditions, J. Biosci. Bioeng. 127 (2019) 93–98. https://doi.org/10.1016/j.jbiosc.2018.06.011
[46] D. Jeyakumar, J. Chirsteen, M. Doble, Synergistic effects of pre-treatment and blending on fungi mediated biodegradation of polypropylenes, Bioresour. Technol. 148 (2013) 78–85. https://doi.org/10.1016/j.biortech.2013.08.074
[47] D. Dussault, B.F. Mayer, A. Jaouich, A. Karam, Biodegradation of a synthetic textile containing pvc, Int. J. Adv. Sci. Eng. Tech. (2017) 74–77.
[48] J.M.R. da Luz, S.A. Paes, K.V.G. Ribeiro, I.R. Mendes, M.C.M. Kasuya, Degradation of green polyethylene by Pleurotus ostreatus, PLoS One. 10 (2015) e0126047. https://doi.org/10.1371/journal.pone.0126047
[49] Y. Yang, J. Wang, M. Xia, Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus, Sci. Total Environ. 708 (2020) 135233. https://doi.org/10.1016/j.scitotenv.2019.135233
[50] A.M. Brandon, S.H. Gao, R. Tian, D. Ning, S.S. Yang, J. Zhou, W.M. Wu, C.S. Criddle, Biodegradation of polyethylene and plastic mixtures in mealworms (larvae of Tenebrio molitor) and effects on the gut microbiome, Environ. Sci. Technol. 52 (2018) 6526–6533. https://doi.org/10.1021/acs.est.8b02301
[51] D. Moog, J. Schmitt, J. Senger, J. Zarzycki, K.H. Rexer, U. Linne, T. Erb, U.G. Maier, Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation. Microb Cell Fact. 18 (2019) 171. https://doi.org/10.1186/s12934-019-1220-z
[52] A. Pischedda, M. Tosin, F. Degli-Innocenti, Biodegradation of plastics in soil: the effect of temperature, Polym. Degrad. Stab. 170 (2019) 109017. https://doi.org/10.1016/j.polymdegradstab.2019.109017
[53] J. Suzuki, K. Hukushima, S. Suzuki, Effect of ozone treatment upon biodegradability of water-soluble polymers, Environ. Sci. Technol. 12 (1978) 1180–1183. https://doi.org/10.1021/es60146a002
[54] T.K. Chua, M. Tseng, M.K. Yang, Degradation of Poly(ε-caprolactone) by thermophilic Streptomyces thermoviolaceus sub sp. thermoviolaceus 76T-2, AMB Express. 3 (2013) 8. https://doi.org/10.1186/2191-0855-3-8
[55] A. Wcisłek, A.S. Olalla, A. McClain, A. Piegat, P. Sobolewski, J. Puskas, M.E. Fray, Enzymatic Degradation of Poly(butylene succinate) copolyesters synthesized with the use of Candida antarctica lipase B, Polymers (Basel). 10 (2018) 688. https://doi.org/10.3390/polym10060688
[56] Y. Tezuka, N. Ishii, K.I. Kasuya, H. Mitomo, Degradation of poly(ethylene succinate) by mesophilic bacteria, Polym. Degrad. Stab. 84 (2004) 115–121. https://doi.org/10.1016/j.polymdegradstab.2003.09.018
[57] T. Kobayashi, A. Sugiyama, Y. Kawase, T. Saito, J. Mergaert, J. Swings, Biochemical and genetic characterization of an extracellular poly(3-hydroxybutyrate) depolymerase from Acidovorax sp. strain TP4, J. Environ. Polym. Degrad. 7 (1999) 9–18. https://doi.org/10.1023/A:1021885901119
[58] S.H. Lee, I.Y. Kim, W.S. Song, Biodegradation of polylactic acid (PLA) fibers using different enzymes, Macromol. Res. 22 (2014) 657–663. https://doi.org/10.1007/s13233-014-2107-9
[59] J.G. Gu, J.D. Gu, Methods currently used in testing microbiological degradation and deterioration of a wide range of polymeric materials with various degree of degradability: A review, J. Polym. Environ. 13 (2005) 65–74. https://doi.org/10.1007/s10924-004-1230-7
[60] K.L.G. Ho, A.L. Pometto, A. Gadea-Rivas, J.A. Briceño, A. Rojas, Degradation of polylactic acid (PLA) plastic in Costa Rican soil and Iowa State University compost rows, J. Environ. Polym. Degrad. 7 (1999) 173–177. https://doi.org/10.1023/A:1022874530586
[61] M.K. Sangale, A review on biodegradation of polythene: the microbial approach, J. Bioremediation Biodegrad. 03 (2012) 1-9. https://doi.org/10.4172/2155-6199.1000164
[62] J.G. Voet, Mechanism of enzyme action, in: D. Voet, J.G. Voet, C.W. Pratt (Eds.), Fundamentals of Biochemistry: Life At The Molecular Level, John Wiley and Sons, New Jersey, 2016, pp-322-345.
[63] T. Nakajima-Kambe, Y. Shigeno-Akutsu, N. Nomura, F. Onuma, T. Nakahara, Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes, Appl. Microbiol. Biotechnol. 51 (1999) 134–140. https://doi.org/10.1007/s002530051373
[64] J. D. GU, Microbial degradation of materials: general processes (Eds.) R. Winston, Uhlig Corros. Handb. John Wiley and Sons, New Jersey, 2000 pp 349–365.
[65] H. Tsuji, S. Miyauchi, Poly(l-lactide): VI Effects of crystallinity on enzymatic hydrolysis of poly(l-lactide) without free amorphous region, Polym. Degrad. Stab. 71 (2001) 415–424. https://doi.org/10.1016/S0141-3910(00)00191-9
[66] H. Morawetz, Macromolecules, an introduction to polymer science, J. Polym. Sci. Polym. Lett. Ed. 18 (1980) 153–154. https://doi.org/10.1002/pol.1980.130180225
[67] Y. Orhan, J. Hrenović, H. Büyükgüngör, Biodegradation of plastic compost bags under controlled soil conditions, Acta Chim. Slov. 51 (2004) 579-588.
[68] L. Tang, Q. Wu, B. Qu, The effects of chemical structure and synthesis method on photodegradation of polypropylene, J. Appl. Polym. Sci. 95 (2005) 270–279. https://doi.org/10.1002/app.21272
[69] F. Carrasco, P. Pagès, Thermogravimetric analysis of polystyrene: influence of sample weight and heating rate on thermal and kinetic parameters, J. Appl. Polym. Sci. 61 (1996) 187–197. https://doi.org/10.1002/(SICI)1097-4628(19960705)61:1<187::AID-APP20>3.0.CO;2-3
[70] I.S. Elashmawi, N.A. Hakeem, E.M. Abdelrazek, Spectroscopic and thermal studies of PS/PVAc blends, Phys. B Condens. Matter. 403 (2008) 3547–3552. https://doi.org/10.1016/j.physb.2008.05.024
[71] A. Mohamed, S.H. Gordon, G. Biresaw, Polycaprolactone/polystyrene bio-blends characterized by thermogravimetry, modulated differential scanning calorimetry and infrared photoacoustic spectroscopy, Polym. Degrad. Stab. 92 (2007) 1177–1185. https://doi.org/10.1016/j.polymdegradstab.2007.04.012
[72] G. Kale, R. Auras, S.P. Singh, Degradation of commercial biodegradable packages under real composting and ambient exposure conditions, J. Polym. Environ. 14 (2006) 317–334. https://doi.org/10.1007/s10924-006-0015-6
[73] X. Peng, J. Shen, Preparation and biodegradability of polystyrene having pyridinium group in the main chain, Eur. Polym. J. 35 (1999) 1599–1605. https://doi.org/10.1016/S0014-3057(98)00253-5
[74] F. Beltrametti, A.M. Marconi, G. Bestetti, C. Colombo, E. Galli, M. Ruzzi, E. Zennaro, Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST, Appl. Environ. Microbiol. 63 (1997) 2232–2239. https://doi.org/10.1128/AEM.63.6.2232-2239.1997
[75] M. Koutny, J. Lemaire, A.-M. Delort, Biodegradation of polyethylene films with pro-oxidant additives, Chemosphere. 64 (2006) 1243–1252. https://doi.org/10.1016/j.chemosphere.2005.12.060
[76] M. Koutny, M. Sancelme, C. Dabin, N. Pichon, J. Lemaire, M. Koutny, M. Sancelme, C. Dabin, N. Pichon, A.M. Delort, Acquired biodegradability of polyethylenes containing pro-oxidant additives to cite this version: HAL Id : hal-00021890, Polym. Degrad. Stabilty. 91 (2006) 1495–1503. https://doi.org/10.1016/j.polymdegradstab.2005.10.007
[77] I.G. Orr, Y. Hadar, A. Sivan, Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber, Appl. Microbiol. Biotechnol. 65 (2004) 97-104. https://doi.org/10.1007/s00253-004-1584-8
[78] T. Gutierrez, J.F. Biddle, A. Teske, M.D. Aitken, Cultivation-dependent and cultivation-independent characterization of hydrocarbon-degrading bacteria in Guaymas Basin sediments, Front. Microbiol. 6 (2015) 1-12. https://doi.org/10.3389/fmicb.2015.00695
[79] D.K. Allen, B.S. Evans, I.G.L. Libourel, Analysis of isotopic labeling in peptide fragments by tandem mass spectrometry, PLoS One. 9 (2014) e91537. https://doi.org/10.1371/journal.pone.0091537
[80] M. Vaverková, F. Toman, D. Adamcová, J. Kotovicová, Study of the biodegrability of degradable/biodegradable plastic material in a controlled composting environment, Ecol. Chem. Eng. S. (2012). https://doi.org/10.2478/v10216-011-0025-8.