Introduction, Past and Present Scenarios of Plastic Degradation

$30.00

Introduction, Past and Present Scenarios of Plastic Degradation

Neema Pandey, Bhashkar Singh Bohra, Chetna Tewari, S.P.S. Mehta, Nanda Gopal Sahoo

The fascinating properties of plastic make its use widely possible in every field for the ease of human life. On the other hand, these properties make plastic non-biodegradable in nature. Hence the increasing accumulation of plastic in the environment is the arising concern for environmentalists and human society. This growing concern has motivated researchers and technologist to promote research activity for finding new degradation methods for plastics, synthesis of new plastic with biodegradable nature or find alternatives to plastics. Considering these facts, this book chapter briefly discusses the management of post-consumer plastic products and all the possible methods for plastic degradation such as photo and thermo-oxidative, catalytic, mechano-chemical and chemical along with the factors affecting these degradation methods.

Keywords
Plastics, Degradation, Biodegradation, Thermo-Oxidative, Photo-Oxidative, Catalytic Degradation

Published online 4/1/2021, 36 pages

Citation: Neema Pandey, Bhashkar Singh Bohra, Chetna Tewari, S.P.S. Mehta, Nanda Gopal Sahoo, Introduction, Past and Present Scenarios of Plastic Degradation, Materials Research Foundations, Vol. 99, pp 1-36, 2021

DOI: https://doi.org/10.21741/9781644901335-1

Part of the book on Degradation of Plastics

References
[1] H. K. Webb, J. Arnott, R. J. Crawford, E. P. Ivanova, Plastic degradation and its environmental implications with special reference to poly (ethylene terephthalate), Polymers. 5 (2013) 1-18. https://doi.org/10.3390/polym5010001
[2] V. M. Pathak, Navneet, Review on the current status of polymer degradation: a microbial approach, Bioresour. Bioprocess. 4 (2017) 1-31. https://doi.org/10.1186/s40643-017-0145-9
[3] J. R. Fried, Polymer science & technology: Introduction to polymer science, third ed., New Jersey, 1995.
[4] G. Scott, Polymers and the Environment: Polymers in modern life, first ed., Cambridge, UK, 1999.
[5] R. B. Seymour, Polymer science before and after 1899: notable developments during the lifetime of Maurits Dekker, J. Macromol. Sci. Chem. 26 (1989) 1023-1032. https://doi.org/10.1080/00222338908052032
[6] S. Mukherjee, S. Chatterjee, A comparative study of commercially available plastic carry bag biodegradation by microorganisms isolated from hydrocarbon effluent enriched soil. Int. J. Curr. Microbiol. App. Sci. 3(2014) 318-325.
[7] J. G. Speight, Handbook of industrial hydrocarbon processes, first ed., USA,2011
[8] L. Andrady, M. A. Neal, Applications and societal benefits of plastics, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364(2009) 1977-1984. https://doi.org/10.1098/rstb.2008.0304
[9] M. Tosin, M. Weber, M. Siotto, C.Lott, F. Degli-Innocenti, Laboratory test methods to determine the degradation of plastics in marine environmental conditions, Front. Microbiol. 3 (2012)1-9. https://doi.org/ 10.3389/fmicb.2012.00225
[10] D. W. Laist, Overview of the biological effects of lost and discarded plastic debris in the marine environment, Mar. Pollut. Bull.18 (1987) 319-326. https://doi.org/10.1016/S0025-326X(87)80019-X
[11] A. T. Pruter, Sources, quantities and distribution of persistent plastics in the marine environment. Mar. Pollut. Bill. 18(1987) 305-310. https://doi.org/ 10.1016/S0025-326X(87)80016-4
[12] C.J. Moore, S.L. Moore, M. K. Leecaster, S.B. Weisberg, A comparison of plastic and plankton in the North Pacific Central Gyre, Mar. Pollut. Bull. 42(2001) 1297–1300. https://doi.org/10.1016/s0025-326x(01)00114-x
[13] J. G. Derraik, The pollution of the marine environment by plastic debris: a review, Mar. Pollut. Bull. 44(2002) 842-852. https://doi.org/ 10.1016/S0025-326X(02)00220-5
[14] R. C. Thompson, Y. Olsen, R. P. Mitchell, A. Davis, S. J. Rowland, A. W. G. John, D. McGonigle, A. E. Russell, Lost at sea: where is all the plastic?, Science. 304(2004) 838-838. https://doi.org/10.1126/science.1094559
[15] C. J. Moore, Synthetic polymers in the marine environment: a rapidly increasing, long-term threat, Environ. Res. 108 (2008)131-139. https://doi.org/10.1016/j.envres.2008.07.025
[16] D. K. A. Barnes, F. Galgani, R. C. Thompson, M. Barlaz, Accumulation and fragmentation of plastic debris in global environments,Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364 (2009) 1985–1998. https://doi.org/10.1098/rstb.2008.0205
[17] M. R. Gregory, Environmental implications of plastic debris in marine settings—entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364 (2009) 2013–2025. https://doi.org/ 10.1098/rstb.2008.0265
[18] K. L. Law, S. Morét-Ferguson, N.A. Maximenko, G. Proskurowski, E. E. Peacock, J. Hafner , C. M. Reddy, Plastic accumulation in the North Atlantic Subtropical Gyre, Science.329(2010) 1185–1188. https://doi.org/10.1126/science.1192321
[19] Regional consumption of plastic materials per capita 2015. https://www.statista.com/statistics/270312/consumption-of-plastic-materials-per-capita-since-1980/, 2016 (accessedMarch 2016).
[20] Plastic pollution- Our world in data. https://ourworldindata.org/plastic-pollution, 2018 (accessed September 2018)
[21] R. Chandra, Environmental waste management: The role of microbes in plastic degradation. first ed., India, 2015.
[22] S. Goel, Advances in solid and hazardous waste management: degradation of plastics, first ed.,Capital Publishing Company, New Delhi, India, 2017.
[23] The plastics industry in India: An overview. https://www.bpf.co.uk/article/the-plastics-industry-in-india-an-overview-446. aspx, 2010 (accessed 2010).
[24] An Indian consumes 11kg plastic every year and an average American 109 kg. https://www.downtoearth.org.in/news/waste/an-indian-consumes-11-kg-plastic-every year-and-an-average-american-109-kg-60745, 2018, (accessed June 2018).
[25] Tackling increasing plastic waste- World Bank Group. https://datatopics.worldbank.org/whatawaste/tackling_increasing_plastic_waste.html, 2018, (accessed 2018).
[26] Beat plastic pollution: This world environment day. https://www.unenvironment.org/interactive/beat-plastic-pollution/, 2018 (accessed 2018).
[27] M. Eriksen, L. C. Lebreton, H. S. Carson, M. Thiel, C. J. , Moore, J. C. Borerro, F. Galgani, P. G. Ryan, J. Reisser, Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea, PlOS ONE. 9(2014). https://doi.org/10.1371/journal.pone.0111913
[28] S. Doetsch-Kidder, Social change and intersectional activism: The spirit of social movement, US, 2012.
[29] A.A. Shah, F. Hasan, A. Hameed, S. Ahmed, Biological degradation of plastics: A comprehensive review, Biotechnol. Adv.26 (2008) 246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005
[30] B. Singh, N. Sharma, Mechanistic implications of plastic degradation, Polym. Degrad. Stab., 93(2008) 561-584. https://doi.org/10.1016/j.polymdegradstab.2007.11.008
[31] S. K. Kale, A. G. Deshmukh, M. S. Dudhare, V. B. Patil, Microbial degradation of plastic: a review, J. Biochem. Technol. 6 (2015) 952-961.
[32] Ejim, E. Patrick, J. Eze, Plastic pollution management: a panacea for nigeria’s untapped waste to wealth growth; a study of some selected urban cities in south east nigeria-enugu, owerri, awka and umuahia, Adv. J. Man. Acc. Fin. 4 (2019) 21-30.
[33] T. Bond, V. Ferrandiz-Mas, M. Felipe-Sotelo, E. van Sebille, The occurrence and degradation of aquatic plastic litter based on polymer physicochemical properties: a review, Crit. Rev. Env. Sci. Tec. 48 (2018) 685-722. https://doi.org/10.1080/10643389.2018.1483155
[34] R. K. Singh, B. Ruj, Plastic waste management and disposal techniques-Indian scenario, Int. J. Plast. Technol. 19 (2015) 211-226. https://doi.org/10.1007/s12588-015-9120-5
[35] Y. Tokiwa, B. P. Calabia, C. U. Ugwu, S. Aiba, Biodegradability of plastics, ‎Int. J. Mol. Sci. 10 (2009) 3722-3742. https://doi.org/10.3390/ijms10093722
[36] Y. Zheng, E. K. Yanful, A. S. Bassi, A review of plastic waste biodegradation,
Crit. Rev. Biotechnol., 25 (2005) 243-250. https://doi.org/10.1080/07388550500346359
[37] A. Kulkarni, H. Dasari, Current status of methods used in degradation of polymers: A review, In. MATEC Web of Conferences. 144 (2018) 02023. https://doi.org/10.1051/matecconf/201814402023
[38] D. Hosler, S. L. Burkett, M. J. Tarkanian, Prehistoric polymers: rubber processing in ancient Mesoamerica, Science. 284 (1999) 1988-1991. https://doi.org/10.1126/science.284.5422.1988
[39] Celluloid. https://www.merriam-webster.com/dictionary/celluloid
[40] S. Tripathi, A. Yadav, Bioremediation of industrial pollutants: plastic waste: envirnomental pollution, health hazards and biodegradtion strategies, New Delhi, India, 2016.
[41] M. Raziyafathima, P. K. Praseetha, I. R. S. Rimal, Microbial degradation of plastic waste: a review, J. Pharm. Chem. Biol. Sci. 4 (2016) 231-242. https://doi.org/ 10.17352/ojeb.000010
[42] R. Premraj, M. Doble, Biodegradation of polymer, Indian J. Biotechnol. 4 (2005) 186-193.
[43] Plastics-the Facts 2019. An analysis of European plastics production, demand and waste data.
[44] N. Pandey, C. Tewari, S. Dhali, B. S. Bohra, S. Rana, S. P. S. Mehta, S. Singhal, A. Chaurasia, N. G. Sahoo, Effect of graphene oxide on the mechanical and thermal properties of graphene oxide/hytrel nanocomposites, J. Thermoplast. Compos. Mater. (2019) 1-13. https://doi.org/ 10.1177/0892705719838010.
[45] I. L. Nerland, C. Halsband, I. Allan, K. V. Thomas, Microplastics in marine environments: Occurrence, distribution and effects, (2014) 1-71.
[46] D. Danso, J. Chow, W. R. Streita, Plastics: environmental and biotechnological perspectives on microbial degradation, Appl. Environ. Microbiol. 85 (2019) 1-14. https://doi.org/ 10.1128/AEM.01095-19
[47] R. E. Hester, R. M. Harrison, Marine Pollution and Human Health, first ed., 2011
[48] V. Koushal, R. Sharma, M. Sharma, R. Sharma, V. Sharma, Plastics: Issues challenges and remediation, Int. J. Waste Resources. 4 (2014) 2-6. https://doi.org/10.4172/2252-5211.1000134
[49] P. Pavani, T. R. Rajeswari, Impact of plastics on environmental pollution, J. chem. pharm. sci. (2014) 87-93
[50] R. Proshad, T. Kormoker, M. S. Islam, M. A. Haque, M. M. Rahman, M. M. R. Mithu, Toxic effects of plastic on human health and environment: A consequences of health risk assessment in Bangladesh, ‎Int. J. Health Serv. 6 (2018) 1-5. https://doi.org/10.14419/ijh.v6i1.8655
[51] R. Mohee, G. D. Unmar, A. Mudhoo, P. Khadoo, Biodegradability of biodegradable/degradable plastic materials under aerobic and an aerobic conditions, Waste Manag. 28 (2008) 1624- 1629. https://doi.org/10.1016/j.wasman.2007.07.003
[52] J. P. Eubeler, S. Zok, M. Bernhard, T. P. Knepper, Environmental biodegradation of synthetic polymers I. Test methodologies and procedures, Trends Anal. Chem. 28 (2009) 1057-1072. https://doi.org/10.1016/j.trac.2009.06.007
[53] S. M. Al-Salem, A. Al-Hazza’a, H. J. Karam, M. H. Al-Wadi, A. T. Al-Dhafeeri, A. A. Al-Rowaih, Insights into the evaluation of the abiotic and biotic degradation rate of commercial pro-oxidant filled polyethylene (PE) thin films, J Environ. Manage. 250 (2019). https://doi.org/10.1016/j.jenvman.2019.109475
[54] J. Pospisil, S. Nespurek, R. Pfaendner, H. Zweifel, Material recycling of plastics waste for demanding applications: upgrading by restabilization and compatibilization. Trends Polym. Sci. 5 (1997) 294-300.
[55] J. A. Glaser, Biological degradation of polymers in the environment, Intech Open. 2019. https://doi.org/ 10.5772/intechopen.85124
[56] A. Sivan, New perspectives in plastic biodegradation, Curr. Opin. Biotech. 22(2011) 422-426. https://doi.org/10.1016/j.copbio.2011.01.013
[57] P. K. Roy, M. Hakkarainen, I. K. Varma, A. C. Albertsson, Degradable Polyethylene: Fantasy or Reality, Environ. Sci. Technol. 45 (2011) 4217–4227. https://doi.org/10.1021/es104042f
[58] Y. G. Ángeles-López, A. M. Gutiérrez-Mayen, M. Velasco-Pérez, M. Beltrán-Villavicencio, A. Vázquez-Morillas, M. Cano-Blanco, Abiotic degradation of plastic films, ‎J. Phys. Conf. Ser, 792 (2017).
[59] P. Nayak A. Tiwari, Biodegradability of polythene and plastic by the help of microorganism: A way for brighter future, J. Environ Anal. Toxicol.1 (2011). https://doi.org/10.4172/2161-0525.1000111
[60] J. D. Gu, Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances, Int. Biodeter. Biodegr. 52 (2003) 69-91. https://doi.org/10.1016/S0964-8305(02)00177-4
[61] P.S. Chahal, D. S. Chahal, G. André, Cellulase production profile of Trichodermareeseion different cellulosic substrates at various pH levels, JFerment. Bioeng. 74 (1992) 126–128. https://doi.org/10.1016/0922-338X(92)80015-B
[62] J. D. Gu, R. Mitchell, Biodeterioration, in M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, E. Stackebrandt (Eds.), The Prokaryotes, Springer, New York, 2006, pp.864-903.
[63] S. K. Mohan, T. Srivastava ,Microbial deterioration and degradation of polymeric materials, J. Biochem. Technol. 2(2011) 210–215. https://doi.org/10.12691/jaem-5-1-2
[64] A. Kulkarni, H. Dasari, Current status of methods used in degradation of polymers: A review, MATEC Web of Conf. 144 (2018) 02023. https://doi.org/10.1051/matecconf/201814402023
[65] I. Kyrikou, B. Briassoulis, Biodegradation of agricultural plastic films: a critical review, J. Polym. Environ.15(2007) 125-150. https://doi.org/10.1007/s10924-007-0053-8
[66] B. Rånby, Photodegradation and photo-oxidation of synthetic polymers, J. Ana.l Appl. Pyrol. 15 (1989) 237-247. https://doi.org/10.1016/0165-2370(89)85037-5
[67] J. T. Jensen, J. Kops, Photochemical degradation of blends of polystyrene and poly (2, 6-dimethyl-1, 4-phenylene oxide), J. Polym. Sci. Polym. Chem. 18 (1980) 2737-2746. https://doi.org/10.1002/pol.1980.170180830
[68] G. E. Sheldrick, O. Vogl, Induced photodegradation of styrene polymers: a survey, J.Polym. Eng. Sci. 16 (2004) 65- 73. https://doi.org/10.1002/pen.760160202
[69] J. W. Martin, J. W. Chin, T. Nguyen, Reciprocity law experiments in polymeric photodegradation: a critical review, Prog. Org. Coat. 47 (2003) 292-311. https://doi.org/10.1016/j.porgcoat.2003.08.002
[70] J. Czerný, Thermo-oxidative and photo-oxidative aging of polypropylene under simultaneous tensile stress, J. Appl. Polym. Sci. 16 (1972) 2623-2632. https://doi.org/10.1002/app.1972.070161015
[71] M. Obadal, R. Čermák, M. Raab, V. Verney, S. Commereuc, F. Fraïsse, Study on photodegradation of injection-moulded β-polypropylenes, Polym. Degrad. Stab. 91 (2006) 459-463. https://doi.org/10.1016/j.polymdegradstab.2005.01.046
[72] S. H. Hamid, W. H. Prichard, Mathematical modeling of weather-induced degradation of polymer properties, J. Appl. Polym. Sci., 43 (1991) 651-678. https://doi.org/10.1002/app.1991.070430404
[73] A. Marek, L. Kaprálková, P. Schmidt, J. Pfleger, J. Humlíček, J. Pospíšil, J. Pilař, Spatial resolution of degradation in stabilized polystyrene and polypropylene plaques exposed to accelerated photodegradation or heat aging, Polym. Degrad. Stab. 91(2006) 444-458. https://doi.org/10.1016/j.polymdegradstab. 2005.01.048
[74] A. L. Andrady, J. E. Pegram, Y. Tropsha, Changes in carbonyl index and average molecular weight on embrittlement of enhanced-photodegradable polyethylenes, J. Environ. Polym. Degrad. 1 (1993) 171-179. https://doi.org/10.1007/BF01458025
[75] A. Ghaffar, A. Scott, G. Scott, G., The chemical and physical changes occurring during UV degradation of high impact polystyrene, Eur. Polym. J., 11 (1975) 271-275. https://doi.org/10.1016/0014-3057(75)90075-0
[76] Y. Nagai, T. Ogawa, Y. Nishimoto, F. Ohishi, Analysis of weathering of a thermoplastic polyester elastomer II. Factors affecting weathering of a polyether–polyester elastomer, Polym. Degrad. Stab. 65 (1999) 217-224. https://doi.org/10.1016/S0141-3910(99)00007-5
[77] A. Torikai, Wavelength sensitivity of photodegradation of polymer, in: S. H. Hamid (Eds.), Handbook of polymer degradation, New York: Markel Dekker; 2000, pp. 573- 604
[78] K. Yamada-Onodera, H. Mukumoto, Y. Katsuyaya, A. Saiganji, Y. Tani, Degradation of polyethylene by a fungus, Penicilliumsimplicissimum YK, Polym. Degrad. Stab. 72 (2001) 323-327. https://doi.org/10.1016/S0141-3910(01)00027-1
[79] Y. Zheng, E. K. Yanful, A. S. Bassi, A review of plastic waste biodegradation, Crit. Rev. Biotechnol.,25 (2005) 243-250. https://doi.org/10.1080/07388550500346359
[80] A. L. Andrady, Microplastics in the marine environment, Mar. Pollut. Bull., 62 (2011) 1596-1605. https://doi.org/10.1016/j.marpolbul.2011.05.030
[81] J. M. Raquez, A. Bourgeois, H. Jacobs, P. Degée, M. Alexandre, P. Dubois, Oxidative degradations of oxodegradable LDPE enhanced with thermoplastic pea starch: Thermo‐mechanical properties, morphology, and UV‐ageing studies, J. Appl. Polym. Sci. 122 (2011) 489-496. https://doi.org/10.1002/app.34190
[82] R. J. Müller, I. Kleeberg, W. D. Deckwer, Biodegradation of polyesters containing aromatic constituents, J. Biotechnol. 86 (2001) 87-95. https://doi.org/10.1016/S0168-1656(00)00407-7
[83] Y. Nagai, D. Nakamura, T. Miyake, H. Ueno, N. Matsumoto, A. Kaji, Photo degradation mechanisms in poly(2,6-butylenenaphthalate-co tetramethyleneglycol) (PBN–PTMG). II: wavelength sensitivity of the photodegradation, Polym. Degrad. Stab.88 (2005) 251-255
[84] O. Chiantore, L. Trossarelli, M. Lazzari, Photooxidative degradation of acrylic and methacrylic polymers, Polymer, 41 (2000) 1657-1668. https://doi.org/10.1016/S0032-3861(99)00349-3
[85] Thermal Degradation of plastic. https://www.appstate.edu/~clementsjs/polymer properties/zeus_thermal_degradation.pdf, 2005 (accessed 2005).
[86] MSDS- Nylon 6. https://skipper.physics.sunysb.edu/HBD/MSDS/NylonMSDS. pdf, 2001. (accessed 2001).
[87] D. R. Tayler, Mechanistic aspects of the effect of stress on the rate of photochemical degradation reactions in polymers, J Macromol. Sci. Part C.
Polym. Rev. 44 (2004) 351-388. https://doi.org/10.1081/MC-200033682
[88] F. Khabbaz, A. C. Albertsson, S. Karlsson, Chemical and morphological changes of environmentally degradable polyethylene films exposed to thermo-oxidation. Polym. Degrad. Stab. 63(1999) 127-138. https://doi.org/10.1016/S0141-3910(98)00082-2
[89] H. V. Boenig, Unsaturated polyesters: structure and properties, London, New York, 1964.
[90] J. Li, S. Guo, X. Li, Degradation kinetics of polystyrene and EPDM melts under ultrasonic irradiation, Polym. Degrad. Stab. 89 (2006) 6-14. https://doi.org/10.1016/j.polymdegradstab.2004.12.017
[91] K. Baranwal, Mechanochemical degradation of an EPDM polymer, J. Appl. Polym. Sci. 12 (2003) 1459-1469. https://doi.org/10.1002/app.1968.070120617
[92] L. C. Bateman, Chemistry and physics of rubber-like substances, first ed., (1963)
[93] P. Ghosh, Polymer science and technology of plastics, rubbers, blends and composites, third ed.,New Delhi,1990.
[94] G. Schmidt-Naake, M. Drache, M. Weber, Combination of Mechanochemical Degradation of Polymers with Controlled Free-Radical Polymerization, Macromol. Chem. Phys. 203(2002) 2232-2238. https://doi.org/10.1002/1521-3935(200211)203:15<2232::AID-MACP2232>3.0.CO;2-N
[95] Y. H. Lin, H. Y. Yen, Fluidised bed pyrolysis of polypropylene over cracking catalysts for producing hydrocarbons, Polym. Degrad. Stab. 89 (2005) 101-108. https://doi.org/10.1016/j.polymdegradstab.2005.01.006
[96] P. T. Williams, R. Bagri, Hydrocarbon gases and oils from the recycling of
polystyrene waste by catalytic pyrolysis, Int. J. Energy Res. 28 (2003) 31-44. https://doi.org/10.1002/er.949
[97] J. R. Kim, J. H. Van, D. W. Park, M. H. Lee, Catalytic degradation of mixed plastics using natural clinoptilolite catalyst. React. Kinet. Catal. Lett. 81 (2004) 73- 81. https://doi.org/10.1023/B:REAC.0000016519.59458.08
[98] W. Kaminsky, F. Hartmann, New pathways in plastics recycling, Angew. Chem. Int. Ed., 39 (2000) 331-333. https://doi.org/10.1002/(SICI)1521-3773(20000117)39:2%3C331::AID-ANIE331%3E3.0.CO;2-H
[99] X. Jia, C. Qin, T. Friedberger, Z. Guan, Z. Huang, Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions, Sci. Adv., 2 (2016) 1501-1591. https://doi.org/ 10.1126/sciadv.1501591
[100] D. C. Tiwari, E. Ahmad, K. K. Singh, Catalytic degradation of waste plastic into fuel range hydrocarbons, Int. J. Chem. Res. 1 (2009) 31-36. https://doi.org/ 10.9735/0975-3699.1.2.31-36
[101] Y. Zhang, M. A. Nahil, C. Wu, P. T. Williams, Pyrolysis–catalysis of waste plastic using a nickel–stainless-steel mesh catalyst for high-value carbon products, Environ. Technol. 38 (2017) 2889-2897. https://doi.org/10.1080/09593330.2017.1281351
[102] V. Sinha, M. R. Patel, J. V. Patel, PET waste management by chemical recycling: a review. J. Polym. Environ.18 (2010) 8-25. https://doi.org/10.1007/s10924-008-0106-7
[103] D. Simón, A. M. Borreguero, A. De Lucas, and J. F. Rodríguez, Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability, J. Waste Manag.76 (2018) 147-171. https://doi.org/ 10.1016/j.wasman.2018.03.041
[104] W. Yang, Q. Dong, S. Liu, H. Xie, L. Liu, J. Li, Recycling and disposal methods for polyurethane foam wastes, Procedia Environ. Sci. 16 (2012) 167-175. https://doi.org/10.1016/j.proenv.2012.10.023
[105] S. Thomas, A. V. Rane, K. Kanny, V. K. Abitha, M. G. Thomas, Recycling of Polyurethane Foams. William Andrew, first ed., 2018
[106] F. Cataldo, G. Angelini, Some aspects of the ozone degradation of poly (vinyl alcohol), Polym. Degrad. Stab. 91 (2006) 2793-2800. https://doi.org/10.1016/ j.polymdegradstab.2006.02.018.
[107] S. Chattopadhyay, G. Madras, Kinetics of the enzymatic degradation of poly(vinyl acetate) in solution, J. Appl. Polym. Sci. 89 (2003) 2579-2582. https://doi.org/10.1002/app.12403
[108] M. Vaverková, D. Adamcová, J. Kotovicová, F. Toman, Evaluation of biodegradability of plastics bags in composting conditions, Ecol. Chem. Eng., S , 21 (2014) 45-57. https://doi.org/10.2478/eces-2014-0004
[109] Y. Tokiwa, T. Suzuki, Hydrolysis of Polyesters by Rhizopusdelemar Lipase, Agric. Biol. Chem., 42 (1978) 1071- 1072. https://doi.org/10.1271/bbb1961.42.1071
[110] F. Kawai, M. Watanabe, M. Shibata, S. Yokoyama, Y. Sudate, S. Hayashi, Comparative study on biodegradability of polyethylene wax by bacteria and fungi, Polym. Degrad. Stab. 86 (2004) 105-114. https://doi.org/10.1016/j.polymdegradstab.2004.03.015
[111] M. Mierzwa-Hersztek, K. Gondek, M. Kopeć, Degradation of polyethylene and biocomponent-derived polymer materials: An Overview, J Polym. Environ. 27 (2012) 600-611. https://doi.org/10.1007/s10924-019-01368-4
[112] I. Jakubowicz, Evaluation of degradability of biodegradable polyethylene (PE), Polym. Degrad. Stabil. 80 (2003) 39-43. https://doi.org/10.1016/S0141-3910(02)00380-4
[113] R. K. Singh, B. Ruj, Plasticwaste management and disposal techniques-Indian scenario, Int. J. Plast. Technol. 19 (2015) 211-226. https://doi.org/10.1007/s12588-015-9120-5
[114] B. Tansel, B.S. Yildiz, Goal-based waste management strategy to reduce persistence of contaminants in leachate at municipal solid waste landfills, Environ. Dev. Sustain. 13(2011). 821-831. https://doi.org/10.1007/s10668-011-9290-z
[115] E.W. Tollner, P.A. Annis, K.C. Das, Evaluation of strength properties of polypropylene-basedpolymers in simulated landfill and oven conditions,J. Environ. Eng. 137 (2011) 291–296
[116] N. Miskolczi, L. Bartha, A. Angyal, High energy containing fractions from plastic wastes by their chemical recycling, Macromol. Symp. 245-246 (2006) 599-606. https://doi.org/ 10.1002/masy.200651386
[117] E. Butler, G. Devlin, K. McDonnell,Waste polyolefins to liquid fuels via pyrolysis: review ofcommercial state-of-the-art and recent laboratory research, Waste Biomass Valor., 2 (2011) 227-255. https://doi.org/10.1007/s12649-011-9067-5
[118] B. Herman, R. Biczak, P. Rychter, M. Kowalczuk, Degradation of selected synthetic polyesters under industrial composting: impact on compost properties and phytotoxicity, Proceedings of ECOpole, 4 (2010) 133-140
[119] K. Azim, B. Soudi, S. Boukhari, C. Perissol, S. Roussos, I. T. Alami, Composting parameters and compost quality: a literature review, Org. Arg.8(2018) 141-158. https://doi.org/10.1007/s13165-017-0180-z
[120] T. Ishigaki, W. Sugano, A. Nakanishi, M. Tateda, M. Ike, M. Fujita, The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors, Chemosphere, 54 (2004) 225-233. https://doi.org/10.1016/S0045-6535 (03)00750-1
[121] D. Y. Kim, Y. H. Rhee, Biodegradation of microbial and synthetic polyesters by fungi, Appl. Microbiol. Biotechnol. 61 (2003) 300-308. https://doi.org/10.1007/s00253-002-1205-3
[122] D. Adamcová, M. D.Vaverková, S. Hermanová, and S. Voběrková, Ecotoxicity of composts containing aliphatic-aromatic copolyesters, Pol. J. Environ. Stud. 24 (2015)1497-505. https://doi.org/10.15244/pjoes/31227
[123] V. Koushal, R. Sharma, M. Sharma, R. Sharma, and V. Sharma, Plastics: issues challenges and remediation, International Journal of Waste Resources, 4 (2014) 2-6. https://doi.org/ 10.4172/2252-5211.1000134
[124] M. A. L. Russo, C. O’Sullivan, B. Rounsefell, P. J. Halley, R. Truss, W. P. Clarke, The anaerobic degradability of thermoplastic starch: Polyvinyl alcohol blends: Potential biodegradable food packaging materials, Bioresour. Technol. 100 (2009) 1705–1710. https://doi.org/10.1016/j.biortech.2008.09.026
[125] M. Nitschke, S.G. Costa, and J. Contiero, Rhamnolipids and PHAs: Recent reports on Pseudomonas-derived molecules of increasing industrial interest, Process Biochemistry. 46 (2011) 621-630. https://doi.org/10.1016/j.procbio.2010.12.012
[126] C. Zhuo, Y. A. Levendis, Upcycling waste plastics into carbon nanomaterials: A review, J. Appl. Polym. Sci., 131(2014) 1-14. https://doi.org/10.1002/app.39931
[127] S. Pandey, M. Karakoti, S. Dhali, N. Karki, B. SantiBhushan, C. Tewari, S. Rana, A. Srivastava, A. B. Melkani, N. G. Sahoo, Bulk synthesis of graphene nanosheets from plastic waste: An invinciblemethod of solid waste management for better tomorrow, J. Waste Manag. 88 (2019) 48-55. https://doi.org/ 10.1016/j.wasman.2019.03.023
[128] L. N. Rao, J. L. Jayanthi, D. Kamalakar , Conversion of waste plastics into alternative fuel, International journal of engineering sciences & research technology. (2015) 195-201