Aerogels for Sensor Application

$30.00

Aerogels for Sensor Application

Sapna Raghav, Pallavi Jain, Praveen Kumar Yadav, Dinesh Kumar

Aerogels with air-filled pores and interconnected 3D solid networks show unique characteristics and, therefore, have tremendous applications in various fields. Integrating specific characteristics of aerogels, large surface area, low density, and high porosity are included which opens up possibilities for new application areas. Aerogels’ advanced features provide high selectivity and sensitivity, fast recovery and response to sensing materials in sensors such as biosensors, gas, pressure, and strain sensors. In recent years significant work has been done regarding the development of aerogel-based sensors. In this chapter, recent challenges and some approaches to high-performance aerogel-based sensor development are summarized.

Keywords
Aerogel, Sensors, Stress, Electrochemical Sensors, Strain

Published online 2/25/2021, 23 pages

Citation: Sapna Raghav, Pallavi Jain, Praveen Kumar Yadav, Dinesh Kumar, Aerogels for Sensor Application, Materials Research Foundations, Vol. 98, pp 145-167, 2021

DOI: https://doi.org/10.21741/9781644901298-8

Part of the book on Aerogels II

References
[1] R.W. Pekala, S.T. Mayer, J.L. Kaschmitter, F.M. Kong, Attia, Y.A., Carbon aerogels: an update on structure, properties, and applications. In Sol−gel processing and applications; Ed.; Plenum Press: New York, (1994) p 369. https://doi.org/10.1007/978-1-4615-2570-7_32
[2] Y. Hanzawa, K. Kaneko, R.W. Pekala, M.S. Dresselhaus, Activated carbon aerogels, Langmuir 12 (1996) 6167-6169. https://doi.org/10.1021/la960481t
[3] S.S. Kistler, Coherent expanded aerogels, J. Phys. Chem. 36 (1932) 52-60-64. https://doi.org/10.1021/j150331a003
[4] A. García, F. Carrillo, J. Oliva, T. Esquivel, S. Díaz, Effects of Eu content on the luminescent properties of Y2O3:Eu3+ aerogels and Y(OH)3/Y2O3:Eu3+@SiO2 glassy aerogels, Ceram. Int. 43 (2017) 12196-12204. https://doi.org/10.1016/j.ceramint.2017.06.079
[5] S.S. Kistler, Coherent expanded aerogels and jellies, Nature 127 (1931) 741. https://doi.org/10.1038/127741a0
[6] N. Hüsing, U. Schubert, Aerogels-airy materials: chemistry, structure, and properties, Angew. Chem., Int. Ed. 1998, 37, 22. https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I.
[7] S.B. Riffat, G. Qiu, A review of state-of-the-art aerogel applications in buildings, Int. J. Low-Carbon Technol. 8 (2013) 1-6 https://doi.org/10.1093/ijlct/cts001
[8] S.M. Jones, Aerogel: space exploration applications, J. Sol-Gel Sci. Technol. 2006, 40, 351-357. https://doi.org/10.1007/s10971-006-7762-7.
[9] S.M. Jones, A method for producing gradient density aerogel, J. Sol-Gel Sci. Technol. 2007, 44, 255-258. https://doi.org/10.1007/s10971-007-1618-7
[10] Y. Lee, J.W. Choi, D.J. Suh, J.M. Ha, C.H. Lee, Ketonization of hexanoic acid to diesel-blendable 6-undecanone on the stable zirconia aerogel catalyst, Appl. Catal. A-Gen. 506 (2015) 288-293. https://doi.org/10.1016/j.apcata.2015.09.008
[11] M.T. Noman, M.A. Ashraf, A. Ali, Synthesis and applications of nano-TiO2: a review, Environ. Sci. Pollut. Res. 26 (2019) 3262-3291. https://doi.org/10.1007/s11356-018-3884-z
[12] X. Peng, X. Zhang, L. Wang, L. Hu, S.H.S. Cheng, C. Huang, B. Gao, F. Ma, K. Huo, P. K. Chu, Vanadium carbide nanoparticles encapsulated in graphitic carbon network nanosheets: A high-efficiency electrocatalyst for hydrogen evolution reaction, Nano Energy. 26 (2016) 603-609. https://doi.org/10.1016/j.nanoen.2016.06.020
[13] F. Maroni, A. Birrozzi, G. Carbonari, F. Croce, R. Tossici, S. Passerini, F. Nobili, Graphene/V2O5 cryogelcomposite as a high-energy cathode material for lithium-ion batteries,, Chem. Electro. Chem. 26 (2017) 613-619. https://doi.org/10.1002/celc.201600798
[14] Q. An, Y. Li, H. DeogYoo, S. Chen, Q. Ru, L. Mai, Y. Yao, Graphene decorated vanadium oxide nanowire aerogel for long-cycle-life magnesium battery cathodes, Nano Energy 18 (2015) 265-272. https://doi.org/10.1016/j.nanoen.2015.10.029
[15] N. Leventis, N. Chandrasekaran, A. G. Sadekar, S. Mulik, C. Sotiriou-Leventis, The effect of compactness on the carbothermal conversion of interpenetrating metal oxide/resorcinol-formaldehyde nanoparticle networks to porous metals and carbides, J. Mater. Chem. 20 (2010) 7456-7471. https://doi.org/10.1039/C0JM00856G.
[16] N.C. Bigall, A.K. Herrmann, M. Vogel, M. Rose, P. Simon, W. Carrillo-Cabrera, D. Dorfs, S. Kaskel, N. Gaponik, A. Eychmüller, Hydrogels and aerogels from noble metal nanoparticles, Angew. Chem. Int. Ed. 48 (2009) 9731-9734. https://doi.org/10.1002/anie.200902543
[17] W. Liu, A.K. Herrmann, D. Geiger, L. Borchardt, F. Simon, S. Kaskel, N. Gaponik, A. Eychmüller, High performance electrocatalysis on palladium aerogels, Angew. Chem. Int. Ed. 51 (2012) 5743-5747. https://doi.org/10.1002/anie.201108575
[18] A. Freytag, S. Sanchez-Paradinas, S. Naskar, N. Wendt, M. Colombo, G. Pugliese, J. Poppe, C. Demirci, I. Kretschmer, D.W. Bahnemann, P. Behrens,Versatile aerogel fabrication by freezing and subsequent freeze-drying of colloidal nanoparticle solutions, Angew. Chem. Int. Ed. 55 (2016) 1200-1203. https://doi.org/10.1002/anie.201508972
[19] W. Liu, P. Rodriguez, L. Borchardt, A. Foelske, J. Yuan, A.K. Herrmann, D. Geiger, Z. Zheng, S. Kaskel, N. Gaponik, R. Kotz, T.J. Schmidt, A. Eychmüller, High performance electrocatalysts for the oxygen reduction reaction, Angew. Chem. Int. Ed. 52 (2013) 9849-9852. https://doi.org/10.1002/anie.201303109
[20] C. Zhu, D. Wen, M. Oschatz, M. Holzschuh, W. Liu, A.K. Herrmann, F. Simon, S. Kaskel, A. Eychmüller, Kinetically controlled synthesis of PdNi bimetallic porous nanostructures with enhanced electrocatalytic activity, Small 11 (2015) 1430-1434. https://doi.org/10.1002/smll.201401432
[21] A.S. Douk, M. Farsadrooh, F. Damanigol, A.A. Moghaddam, H. Saravani, M. Noroozifar, Porous three-dimensional network of Pd–Cu aerogel toward formic acid oxidation, RSC Adv. 8 (2018) 23539-23545. https://doi.org/10.1039/C8RA03718C
[22] D. Wen, W. Liu, D. Haubold, C. Zhu, M. Oschatz, M. Holzschuh, A. Wolf, F. Simon, S. Kaskel, A. Eychmüller, Gold aerogels: three-dimensional assembly of nanoparticles and their use as electrocatalytic interfaces, ACS Nano 10 (2016) 2559-2567. https://doi.org/10.1021/acsnano.5b07505
[23] F. Qian, P.C. Lan, M.C. Freyman, W. Chen, T. Kou, T.Y. Olson, C. Zhu, M.A. Worsley, E.B. Duoss, C.M. Spadaccini, Qian, Ultralight conductive silver nanowire aerogels, Nano Lett. 17 (2017) 7171-7176. https://doi.org/10.1021/acs.nanolett.7b02790
[24] L. Lu, X.F. Sun, J. Ma, D.X. Yang, H.H. Wu, B.X. Zhang, J.L. Zhang, B.X. Han, Highly efficient electroreduction of CO2 to methanol on palladium–copper bimetallic aerogels, Angew. Chem. Int. Ed. 57 (2018) 14149-14349. https://doi.org/10.1002/ange.201808964-14349
[25] Z.L. Yu, B. Qin, Z.Y. Ma, J. Huang, S.C. Li, H.Y. Zhao, H. Li, Y.B. Zhu, H.A. Wu, S.H. Yu, Superelastic hard carbon nanofiber aerogels, Adv. Mater. 31 (2019) 1900651 https://doi.org/10.1002/adma.201900651
[26] S.C. Li, B.C. Hu, Y.W. Ding, H.W. Liang, C. Li, Z.Y. Yu, Z.Y. Wu, W.S. Chen, S.H. Yu, Wood-derived ultrathin carbon nanofiber aerogels, Angew. Chem., Int. Ed. 57 (2018) 7085-7090. https://doi.org/10.1002/anie.201802753
[27] P. Hao, Z.H. Zhao, Y.H. Leng, J. Tian, Y.H. Sang, R.I. Boughton, C.P. Wong, H. Liu, B. Yang,Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors, Nano. Energy 15 (2015) 9-23. https://doi.org/10.1016/j.nanoen.2015.02.035
[28] Y. Xu, K. Sheng, C. Li, G. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process, ACS Nano 4 (2010) 4324-4330. https://doi.org/10.1021/nn101187z
[29] F. Guo, Y. Jiang, Z. Xu, Y. Xiao, B. Fang, Y. Liu, W. Gao, P. Zhao, H. Wang, C. Gao, Highly stretchable carbon aerogels, Nat. Commun. 9 (2018) 881. https://doi.org/10.1038/s41467-018-03268-y
[30] M. Salzano de Luna, Y. Wang, T. Zhai, L. Verdolotti, G.G. Buonocore, M. Lavorgna, H. Xia, Nanocomposite polymeric materials with 3D graphene-based architectures: from design strategies to tailored properties and potential applications, Prog. Polym. Sci. 89 (2019) 213-249. https://doi.org/10.1016/j.progpolymsci.2018.11.002
[31] H. Zhuo, Y. Hu, X. Tong, Z. Chen, L. Zhong, H. Lai, L. Liu, S. Jing, Q. Liu, C. Liu, X. Peng, R. Sun, A super compressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle, Adv. Mater. 30 (2018) 1706705. https://doi.org/10.1002/adma.201706705
[32] T. Gacoin, L. Malier, J.P. Boilot, New transparent chalcogenide materials using a sol-gel process, Chem. Mater. 9 (1997) 1502-1504. https://doi.org/10.1021/cm970103p
[33] V. Sayevich, B. Cai, A. Benad, D. Haubold, L. Sonntag, N. Gaponik, V. Lesnyak, A. Eychmüller, 3D assembly of all-inorganic colloidal nanocrystals into gels and aerogels, Angew. Chem. Int. Ed. 55 (2016) 6334-6338. https://doi.org/10.1002/anie.201600094
[34] S. Naskar, J.F. Miethe, S. Sánchez-Paradinas, N. Schmidt, K. Kanthasamy, P. Behrens, H. Pfnür, N.C. Bigall, Photoluminescent aerogels from quantum wells, Chem. Mater. 28 (2016) 2089-2099. https://doi.org/10.1021/acs.chemmater.5b04872
[35] A. Du, B. Zhou, J.Y. Gui, G.W. Liu, Y.N. Li, G.M. Wu, J. Shen, Z.H. Zhang, Thermal and mechanical properties of density-gradient aerogels for outer-space hypervelocity particle capture, Acta Phys.-Chim. Sin. 28 (2012) 1189-1196. https://doi.org/10.3866/PKU.WHXB201202292
[36] H. Nawaz, P.A.R. Pires, O.A. El Seoud, Kinetics and mechanism of imidazole-catalyzed acylation of cellulose in LiCl/N, N-dimethylacetamide, Carbohydr. Polym. 92 (2013) 997-1005. https://doi.org/10.1016/j.carbpol.2012.10.009
[37] T. Hongo, M. Inamoto, M. Iwata, T. Matsui, K. Okajima, Morphological and structural formation of the regenerated cellulose membranes recovered from its cuprammonium solution using aqueous sulfuric acid, J. Appl. Polym. Sci. 72 (1999) 1669-1678. https://doi.org/10.1002/(SICI)1097-4628(19990624)72:13<1669::AID-APP3>3.0.CO;2-L
[38] D.A. Osorio, B.E.J. Lee, J.M. Kwiecien, X. Wang, I. Shahid, A.L. Hurley, E.D. Cranston, K. Grandfield, Cross-linked cellulose nanocrystal aerogels as viable bone tissue scaffolds, Acta Biomater. 87 (2019) 152-165. https://doi.org/10.1016/j.actbio.2019.01.049
[39] C.A. García-González, M. Alnaief, I. Smirnova, Polysaccharide-based aerogels-Promising biodegradable carriers for drug delivery systems, Carbohydr. Polym. 86 (2011) 1425-1438. https://doi.org/10.1016/j.carbpol.2011.06.066
[40] J. Wang, X. Wang, X. Zhang, Cyclic molecule aerogels: a robust cyclodextrin monolith with hierarchically porous structures for removal of micropollutants from water, J. Mater. Chem. A 5 (2017) 4308-4313. https://doi.org/10.1039/C6TA09677H
[41] Y. Liu, Y. Su, J. Guan, J. Cao, R. Zhang, M. He, Z. Jiang, Asymmetric aerogel membranes with ultrafast water permeation for the separation of oil-in-water emulsion, ACS Appl. Mater. Interfaces 10 (2018) 26546-26554. https://doi.org/10.1021/acsami.8b09362
[42] G. Zu, T. Shimizu, K. Kanamori, Y. Zhu, A. Maeno, H. Kaji, J. Shen, K. Nakanishi, Transparent, super flexible doubly cross-linked polyvinyl polymethyl siloxane aerogel super insulators via ambient pressure drying, ACS Nano 12 (2018) 521-532. https://doi.org/10.1021/acsnano.7b07117
[43] H. Long, A. Harley‐Trochimczyk, T. Pham, Z. Tang, Tielin Shi, A. Zettl, C. Carraro, M. A. Worsley, R. Maboudian, High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection, Adv. Funct. Mater. 26 (2016) 5158–5165. https://doi.org/10.1002/adfm.201601562
[44] L. Li, M. Liu, S. He, W. Chen, Freestanding 3D mesoporous Co3O4 @ carbon foam nanostructures for ethanol gas sensing, Anal. Chem. 86 (2014) 7996-8002. https://doi.org/10.1021/ac5021613
[45] S. Dolai, S.K. Bhunia, R. Jelinek, Carbon-dot-aerogel sensor for aromatic volatile organic compounds, Sens. Actuators B 241 (2017) 607. https://doi.org/10.1016/j.snb.2016.10.124
[46] J. Wu, Z. Li, X. Xie, K. Tao, C. Liu, K.A. Khor, J. Miao, L.K. Norford, 3D super hydrophobic reduced graphene oxide for activated NO2 sensing with enhanced immunity to humidity, J. Mater. Chem. A 6 (2018) 478-488. https://doi.org/10.1039/C7TA08775F
[47] D.L. Plata, Y.J. Briones, R.L. Wolfe, M.K. Carroll, S.D. Bakrania, S.G. Mandel, A.M. Anderson, Aerogel-platform optical sensor for oxygen gas, J. Non-Cryst. Solids 350 (2004) 326-335. https://doi.org/10.1016/j.jnoncrysol.2004.06.046
[48] J.T. Korhonen, P. Hiekkataipale, J. Malm, M. Karppinen, O. Ikkala, R.H.A. Ras, Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates, ACS Nano 5 (2011) 1967-1974. https://doi.org/10.1021/nn200108s
[49] F. Yang, J. Zhu, X. Zou, X. Pang, R. Yang, S. Chen, Y. Fang, T. Shao, X. Luo, L. Zhang, Three-dimensional TiO2/SiO2 composite aerogel films via atomic layer deposition with enhanced H2S gas sensing performance, Ceram. Int. 44 (2018) 1078-1085. https://doi.org/10.1016/j.ceramint.2017.10.052
[50] T.T. Li, R.R. Zheng, H. Yu, Y. Yang, T.T. Wang, X.T. Dong, Versatile aerogels for sensors, RSC Adv. 7 (2017) 39334. https://doi.org/10.1002/smll.201902826
[51] E. Barrios, D. Fox, Y.Y.L.Sip, R.Catarata, J.E. Calderon,N. Azim,S. Afrin, Z. Zhang, L. Zha, Nanomaterials in advanced, high-performance aerogel composites: a review, Polymers (Basel) 11 (2019) 726. https://doi.org/10.3390/polym11040726
[52] A. Walcarius, M.M. Collinson, Analytical chemistry with silica sol-gels: traditional routes to new materials for chemical analysis, Annu. Rev. Anal. Chem. 2 (2009) 121-143. https://doi.org/10.1146/annurev-anchem-060908-155139
[53] M.K. Carroll, A.M. Anderson, In: M.A. Aegerter, N. Leventis, M.M. Koebel (Eds.), Aerogels handbook, Springer, New York, 2011, pp. 637-650 https://doi.org/10.1007/978-1-4419-7589-8_27
[54] T. Wagner, S. Haffer, C. Weinberger, D. Klaus, M. Tiemann, Mesoporous materials as gas sensors, Chem. Soc. Rev. 42 (2013) 4036-4053 https://doi.org/10.1039/C2CS35379B
[55] R. Wang, G. Li, Y. Dong, Y. Chi, and G. Chen, Carbon quantum dot-functionalized aerogels for NO2 gas sensing, Anal. Chem. 85 (2013) 8065-8069 https://doi.org/10.1021/ac401880h
[56] T. Wagner, S. Haffer, C. Weinberger, D. Klaus, M. Tiemann, Mesoporous materials as gas sensors, Chem. Soc. Rev. 42 (2013) 4036-4053. https://doi.org/10.1039/C2CS35379B
[57] M. Barczak, C. McDonagh, D. Wencel, Micro- and nanostructured sol-gel-based materials for optical chemical sensing (2005–2015), Microchim. Acta 183 (2016) 2085-2109. https://doi.org/10.1007/s00604-016-1863-y
[58] C.T. Wang, C.L. Wu, I.C. Chen, Y.H. Huang, Humidity sensors based on silica nanoparticle aerogel thin films, Sens. Actuators B 107 (2005) 402–410. https://doi.org/10.1016/j.snb.2004.10.034
[59] J.E. Amonette, J. Matyas, Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review, Micropor. Mesopor. Mat. 250 (2017) 100-119. https://doi.org/10.1016/j.micromeso.2017.04.055
[60] C.T. Wang, C.L. Wu, Electrical sensing properties of silica aerogel thin films to humidity, Thin Solid Films 496 (2006) 658-664. https://doi.org/10.1016/j.tsf.2005.09.001
[61] M.R. Ayers, A.J. Hunt, Molecular oxygen sensors based on photoluminescent silica aerogels, J Non-Cryst. Solids 225 (1998) 343-347. https://doi.org/10.1016/S0022-3093(98)00051-9
[62] N. Leventis, I.A. Elder, D.R. Rolison, M.L. Anderson, C.I. Merzbacher, Silica nano architectures incorporating self-organized protein superstructures with gas-phase bioactivity, Chem. Mater. 11 (1999) 2837-2845. https://doi.org/10.1021/nl034646b
[63] N. Leventis, A.M.M. Rawashdeh, I.A. Elder, J. Yang, A. Dass, C. Sotiriou-Leventis, Synthesis and characterization of Ru(II) tris(1,10-phenanthroline)-electron acceptor dyads incorporating the 4-benzoyl-N-methylpyridinium cation or N-benzyl-N‘-methyl viologen. Improving the dynamic range, sensitivity, and response time of sol−gel-based optical oxygen sensors, Chem. Mater. 16 (2004) 1493-1506. https://doi.org/10.1021/cm034999b
[64] X. Xu, R. Wang, P. Nie, Y. Cheng, X. Lu, L. Shi, J. Sun, Copper nanowire-based aerogel with tunablepore structure and its application as flexible pressure sensor, ACS Appl. Mater. Interface, 9 (2017) 14273−14280. https://doi.org/10.1021/acsami.7b02087
[65] X. Chen, H. Liu, Y. Zheng, Y. Zhai, X. Liu, C. Liu, L. Mi, Z. Guo, C. Shen, Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor, ACS Appl. Mater. Interface, 11 (2019) 42594-42606. https://doi.org/10.1021/acsami.9b14688
[66] J. Kehrle, T.K. Purkait, S. Kaiser, K.N. Raftopoulos, M. Winnacker, T. Ludwig, M. Aghajamali, M. Hanzlik, K. Rodewald, T. Helbich, Christine M. Papadakis, J.G.C. Veinot, B. Rieger, Superhydrophobic silicon nanocrystal−silica aerogel hybrid materials: synthesis, properties, and sensing application, Langmuir, 34 (2018) 4888-4896. https://doi.org/10.1021/acs.langmuir.7b03746
[67] Q. Luo, H. Zheng, Y. Hu, H. Zhuo, Z. Chen, X. Peng, L. Zhong, Carbon nanotube/chitosan-based elastic carbon aerogel for pressure sensing, industrial and engineering chemical research, 58 (2019) 17768−17775. https://doi.org/10.1021/acs.iecr.9b02847
[68] I. Ali, L. Chen, Y. Huang, L. Song, X. Lu, B. Liu, L. Zhang, J. Zhang, L. Hou, T. Chen, Humidity-responsive gold aerogel for real-time monitoring of human breath, Langmuir 34 (2018) 4908−4913. https://doi.org/10.1021/acs.langmuir.8b00472
[69] H. Zhuo, Y. Hu, Z. Chen, X. Peng, L. Liu, Q. Luo, J. Yi, C. Liu, L. Zhong, A carbon aerogel with super mechanical and sensing performances for wearable piezoresistive sensors, J. Mater. Chem. 7 (2019) 8092-8100. https://doi.org/10.1039/C9TA00596J
[70] S. Han, F. Jiao, Z.U. Khan, J. Edberg, S. Fabiano, X. Crispin, Thermoelectric polymer aerogels for ressure-temperature sensing applications, Adv. Funct. Mater. 27 (2017) 1703549. https://doi.org/10.1002/adfm.201703549
[71] T. Alizadeh, F. Ahmadian, Thiourea-treated graphene aerogel as a highly selective gas sensor for sensing of trace level of ammonia, Anal. Chim. Acta897 (2015) 87-95. https://doi.org/10.1016/j.aca.2015.09.031
[72] I. Plesco, M. Dragoman, J. Strobel, L. Ghimpu, F. Schütt, A. Dinescu, V. Ursaki, L. Kienle, R. Adelung, I. Tiginyanu, Flexible pressure sensor based on graphene aerogel microstructures functionalized with CdS nanocrystalline thin film, Superlattice Microst. 117 (2018) 418-422 https://doi.org/10.1016/j.spmi.2018.03.064
[73] H. Hosseinia, M. Kokabi, S. Mohammad Mousavi, BC/rGO conductive nanocomposite aerogel as a strain sensor, Polymer 137 (2017) 82-96. https://doi.org/10.1016/j.polymer.2017.12.068
[74] X. Houa, R. Zhanga, D. Fang, Super elastic, fatigue resistant and heat insulated carbon nanofiber aerogels for piezo resistive stress sensors, Ceramics Inter. 46 (2020) 2122-2127. https://doi.org/10.1016/j.ceramint.2019.09.195
[75] D. Yin, X. Bo, J. Liu, L. Guo, A novel enzyme-free glucose and H2O2 sensor based on 3D graphene aerogels decorated with Ni3N nanoparticles, Anal. Chim. Acta 1038 (2018) 1-10. https://doi.org/10.1016/j.aca.2018.06.086
[76] L. Ruiyi , C. Fangchao , Z. Haiyan , S. Xiulan , L. Zaijun, Electrochemical sensor for detection of cancer cell based on folic acid and octadecylamine-functionalized graphene aerogel microspheres, Biosens. Bioelectron. 119 (2018)156-162. https://doi.org/ 10.1016/j.bios.2018.07.060