Aerogels Materials for Applications in Thermal Energy Storage
Sapna Nehra, Rekha Sharma, Dinesh Kumar
Over the years, aerogel materials reduced thermal conductivity, so proved to be the key method for preventing large consumption of thermal energy. In the class of insulating materials, aerogels have been found, these materials reduce the intermorphosis of heat between ambient sol−gel and various drying methods. Due to Aerogel’s tremendous qualities, researchers and engineers showed keen interest in its construction. It showed various characteristics such as nano dimensions, minimum density, narrow, structured, small zero and exposed pore structure, forming through sol components in an arbitrary three-dimensional network. Notable, related to aerogel components, involves storage due to the significant capacity of thermal insulation and its minimum power of operation which means that heat can be stored for a longer period. Due to narrow structural entities, it easily captures light in the meso and nanoporous structure. Aerogels have a greater tendency regarding its heat storing efficacy, creating a simple nature, working consistency other than a commercial insulator. Therefore, this chapter focuses on aerogel’s new strategy, which is constantly trending to increase the efficiency of aerogels and improving diverse structurally designed openings, especially insulation effectiveness and low thermal conductivity. Herein, we reviewed the formation of porous aerogels by using carbon nanomaterials, and their corresponding materials comprise GO, rGO, and fabrication with polymer, biomaterial which intrinsically embedded in the aerogel structure to achieve outstanding thermal storage characteristics for higher thermal behavior.
Keywords
Carbon Nanotube, Reduced Graphene Oxide, Polymerization, Thermal Conductivity, Thermochemical, Composite
Published online 2/25/2021, 24 pages
Citation: Sapna Nehra, Rekha Sharma, Dinesh Kumar, Aerogels Materials for Applications in Thermal Energy Storage, Materials Research Foundations, Vol. 98, pp 121-144, 2021
DOI: https://doi.org/10.21741/9781644901298-7
Part of the book on Aerogels II
References
[1] Midilli, M. Ay, I. Dincer, M. A. Rosen, On hydrogen and hydrogen energy strategies: I: current status and needs, Renew. Sustain. Energy Rev. 9 (2005) 255−271. https://doi.org/10.1016 rser.2004.05.003
[2] L. Yang, Z.G. Chen, M.S. Dargusch, J. Zou, High performance thermoelectric materials: progress and their applications, Adv. Energy Mater. 8 (2018) 1701797−1701797. https://doi.org/10.1002/aenm.201701797
[3] Y. Yang, W.X. Guo, K.C. Pradel, G. Zhu, Y. Zhou, Y. Zhang, Y. Hu, L. Lin, Z.L. Wang, Pyroelectric nanogenerators for harvesting thermoelectric energy, Nano Lett. 12 (2012) 2833−2838. https://doi.org/10.1021/nl3003039
[4] Y.M. Wang, B.T. Tang, S.F. Zhang, Single-walled carbon nanotube/phase change material composites: sunlight-driven, reversible, form-stable phase transitions for solar thermal energy storage, Adv. Funct. Mater. 23 (2013) 4354−4360. https://doi.org/10.1002/adfm.201203728
[5] T.Y. Kim, J. Kwak, B. Kim, Energy harvesting performance of hexagonal shaped thermoelectric generator for passenger vehicle applications: an experimental approach, Energy Convers. Manage. 160 (2018) 14−21. https://doi.org/10.1016/j.enconman.2018.01.032
[6] C.B. Vining, An inconvenient truth about thermoelectrics, Nat. Mater. 8 (2009) 83−85. https://doi.org/10.1038/nmat2361
[7] P. Zhang, X. Xiao, Z.W. Ma, A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement, Appl. Energy,165 (2016) 472−510. https://doi.org/10.1016/j.apenergy.2015.12.043
[8] Z.F. Liu, Z.H. Chen, F. Yu, Preparation and characterization of microencapsulated phase change materials containing inorganic hydrated salt with silica shell for thermal energy storage, Sol. Energy Mater. Sol. Cells, 200 (2019) 110004. https://doi.org/10.1016/j.solmat.2019.110004
[9] J. Wang, H. Xie, Z. Xin, Thermal properties of paraffin-based composites containing multi-walled carbon nanotubes, Thermochim. Acta 488 (2009) 39−42. https://doi.org/10.1016/ j.tca.2009.01.022
[10] Y. Jiang, E. Ding, G. Li, Study on transition characteristics of PEG/CDA solid-solid phase change materials, Polymer, 43 (2002) 117−122. https://doi.org/10.1016/S0032-3861(01)00613-9
[11] D. Feldman, M.M. Shapiro, P. Fazio, A heat storage module with a polymer structural matrix, Polym. Eng. Sci. 25 (1985) 406−411. https://doi.org/10.1002/pen.760250705
[12] A. Sari, C.Alkan, U. Kolemen, O. Uzun, S. Eudragit, Methyl mathacrylate methacrylic acid copolymer)/fatty acid blends as form stable phase change material for latent heat thermal energy storage, J. Appl. Polym. Sci. 101 (2006) 1402−1406. https://doi.org/10.1002/app.23478
[13] G.Y. Fang, H. Li, Z. Chen, X. Liu, Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials, Energy, 35 (2010) 4622−4626. https://doi.org/10.1016/j.energy.2010.09.046
[14] Y. Li, Y.A.S Amad, K. Polychronopoulou, S.M. Alhassan, K. Liao, From biomass to high performance solar-thermal and electric-thermal energy conversion and storage materials, J. Mater. Chem. A, 2 (2014) 7759−7765. https://doi.org/10.1039/C4TA00839A
[15] Y. Yoo, C. Martinez, J. Youngblood, Synthesis and characterization of microencapsulated phase change materials with poly (urea- urethane) shells containing cellulose nanocrystals, ACS Appl. Mater. Inter. 9 (2017) 31763−31776. https://doi.org/10.1021/acsami.7b06970
[16] A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications, Renew. Sustain. Energy Rev. 13 (2009) 318−345. https://doi.org/10.1016/j.rser.2007.10.005
[17] J. Puig, I.E.dell’ Erba, W.F. Schroeder, C.E. Hoppe, R.J.J. Williams, Epoxy-based organogels for thermally reversible light scattering films and form-stable phase change materials, ACS Appl. Mater. Inter. 9 (2017) 11126−11133. https://doi.org/10.1021/acsami.7b00086
18] F. Agyenim, N. Hewitt, P. Eames, M. Smyth, A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS), Renew. Sustain. Energy Rev. 14 (2010) 615−628. https://doi.org/10.1016/j.rser.2009.10.015
[19] J.L. Yang, L.J. Yang, C. Xu, X.Z. Du, Experimental study on enhancement of thermal energy storage with phase-change material, Appl. Energy, 169 (2016) 164−176. https://doi.org/10.1016/j.apenergy.2016.02.028
[20] S. Wang, P. Qin, X. Fang, Z. Zhang, S. Wang, X. Liu, A novel sebacic acid/expanded graphite composite phase change material for solar thermal medium-temperature applications, Sol. Energy, 99 (2014) 283−290. https://doi.org/10.1016/j.solener.2013.11.018
[21] L.W Fan, X. Fang, X. Wang, Y. Zeng, Y.Q. Xiao, Z.T. Yu, X. Xu, Y.C. Hu, K.F. Cen, 2013. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl. Energy, 110, pp.163-172. doi.org/10.1016/j.apenergy.2013.04.043
[22] L. Chen, R.Zou, W. Xia, Z. Liu, Y. Shang, J. Zhu, Y. Wang, J. Lin, D. Xia, A. Cao, Electro-and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges, ACS Nano 6 (2012) 10884−10892. https://doi.org/10.1021/nn304310n
[23] H. Zhang, Q. Sun, Y. Yuan, Z. Zhang, X. Cao, A novel form stable phase change composite with excellent thermal and electrical conductivities, Chem. Eng. J. 336 (2018) 342−351. https://doi.org/10.1016/j.cej.2017.12.046
[24] A. Karaipekli, A. Biçer, A. Sarı, V.V. Tyagi, Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes, Energy Convers. Manage. 134 (2017) 373−381. https://doi.org/10.1016/j.enconman.2016.12.053
[25] H. Ke, M.U.H. Ghulam, Y. Li, J. Wang, B. Peng, Y. Cai, Q. Wei, Ag-coated polyurethane fibers membranes absorbed with quinary fatty acid eutectics solid-liquid phase change materials for storage and retrieval of thermal energy, Renew. Energy 99 (2016) 1−9. https://doi.org/10.1016/ j.renene.2016.06.033
[26] W.T. Wang, B.T. Tang, B.Z. Ju, Z.M. Gao, J.H. Xiu, S.F. Zhang, Fe3O4-functionalized graphene nanosheet embedded phase change material composites: efficient magnetic-and sunlight driven energy conversion and storage, J. Mater. Chem. A, 5 (2017) 958−968. https://doi.org/10.1039/C6TA07144A
[27] K.P. Chen, X.J. Yu, C.R. Tian, J.H. Wang, Preparation and characterization of form-stable paraffin/polyurethane composites as phase change materials for thermal energy storage, Energy Convers. Manage. 77, (2014) 13−21. https://doi.org/10.1016/j.enconman.2013.09.015
[28] Y. Hong, Preparation of polyethylene-paraffin compound as a form-stable solid-liquid phase change material, Sol. Energy Mater. Sol. Cells, 64 (2000) 37−44. https://doi.org/10.1016/S0927-0248(00)00041-6
[29] M.C. Li, M.D. Jean, J.H. Chou, B.T. Lin, Effect of different amounts of surfactant on characteristics of nanoencapsulated phase change materials, Mater. Sci. Forum, 675 (2011) 541. https://doi.org/10.1007/s00289-011-0492-1
[30] F. Tang, L.K. Liu, G. Alva, Y.T. Jia, G.Y. Fang, Synthesis and properties of microencapsulated octadecane with silica shell as shape-stabilized thermal energy storage materials, Sol. Energy Mater. Sol. Cells, 160 (2017) 1−6. https://doi.org/10.1016/j.solmat.2016.10.014
[31] S. Yu, S. Wang, D. Wu, Microencapsulation of N-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation, Appl. Energy, 114, (2014) 632−643. https://doi.org/10.1016/j.apenergy.2013.10.029
[32] L. Chai, X. Wang, D. Wu, Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness, Appl. Energy, 138, (2015) 661−674. https://doi.org/10.1016/j.apenergy.2014.11.006
[33] T. Nomura, K. Tabuchi, C.Y. Zhu, N. Sheng, S. Wang, T. Akiyama, High thermal conductivity phase change composite with percolating carbon fiber network, Appl. Energy, 154 (2015) 678−685. https://doi.org/10.1016/j.apenergy.2015.05.042
[34] Y. Luan, M. Yang, Q. Ma, Y. Qi, H. Gao, Z. Wu, G. Wang, Introduction of an organic acid phase changing material into metalorganic frameworks and the study of its thermal properties, J. Mater. Chem. A, 4 (2016) 7641−7649. https://doi.org/10.1039/C6TA01676F
[35] T. Qian, H. Li, X. Min, W. Guan, Y. Deng, L. Ning, Enhanced thermal conductivity of peg/diatomite shape-stabilized phase change materials with ag nanoparticles for thermal energy storage. J. Mater. Chem. A, 3 (2015) 8526−8536. https://doi.org/10.1039/C5TA00309A
[36] S. Ye, Q. Zhang, D. Hu, J. Feng, Core-shell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage, J. Mater. Chem. A, 3 (2015) 4018− 4025. https://doi.org/10.1039/C4TA05448B
[37] X. Fang, P. Hao, B. Song, C.C. Tuan, C.P. Wong, Z.T. Yu, Form-stable phase change material embedded with chitosan-derived carbon aerogel, Mater. Lett. 195, (2017) 79−81. https://doi.org/10.1016/j.matlet.2017.02.075
[38] D. Yu, E. Nagelli, F. Du, L. Dai, Metal-free carbon nanomaterials become more active than metal catalysts and last longer, J. Phys. Chem. Lett. 1 (2010) 2165−2173. https://doi.org/10.1021/jz100533t
[39] A. Li, C. Dong, W. Dong, D.G. Atinafu, H.Y. Gao, X. Chen, G. Wang, Hierarchical 3D reduced graphene porous-carbon-based pcms for superior thermal energy storage performance, ACS Appl. Mater. Inter. 10 (2018) 32093−32101. https://doi.org/10.1021/acsami.8b09541
[40] S. Chandrasekaran, P.G. Campbell, T.F.Baumann, M.A. Worsley, Carbon aerogel evolution: allotrope, graphene-inspired, and 3D-printed aerogels, J. Mater. Res. 32 (2017) 4166−4185. https://doi.org/10.1557/jmr.2017.411
[41] X.C. Gui, J.Q. Wei, K.L. Wang, A.Y. Cao, H.W. Zhu, Y. Jia, Q. K. Shu, D.H Wu, Carbon nanotube sponges, Adv. Mater. 22 (2010) 617−621. https://doi.org/10.1002/adma.200902986
[42] G.Q. Zu, J. Shen, L.P. Zou, F. Wang, X.D. Wang, Y.W. Zhang, X.D. Yao, Nanocellulose-derived highly porous carbon aerogels for supercapacitors, Carbon, 99 (2016) 203−211. https://doi.org/10.1016/j.carbon.2015.11.079
[43] M.M. Titirici, R.J. White, N. Brun, V.L. Budarin, D.S. Su, F. del Monte, J.H. Clark, M.J. MacLachlan, Sustainable carbon materials, Chem. Soc. Rev. 44 (2015) 250−290. https://doi.org/10.1039/C4CS00232F
[44] A.C. Pierre, A. Rigacci, SiO2 Aerogels, M.A. Aegerter, N. Leventis, M.M. Koebel (Eds.), Aerogels Handbook, Springer: New York, NY, USA, 2011, pp. 932
[45] T. Wu, J. Dong, F. Gan, Y. Fang, X. Zhao, Q. Zhang, Low dielectric constant and moisture-resistant polyimide aerogels containing trifluoromethyl pendent groups. Appl. Surf. Sci. 440 (2018) 95−605. https://doi.org/10.1016/j.apsusc.2018.01.132
[46] N. Leventis, C. Sotiriou-Leventis, N. Chandrasekaran, S. Mulik, Z.J. Larimore, H. Lu, G. Churu, J.T. Mang, Multifunctional polyurea aerogels from isocyanates and water, a structure−property case study, Chem. Mater. 22 (2010) 6692−6710. https://doi.org/10.1021/cm102891d
[47] S. Salimian, A. Zadhoush, M. Naeimirad, R. Kotek, S. Ramakrishna, A review on aerogel: 3D nanoporous structured fillers in polymer-based nanocomposites, Polym. Compos. 39 (2018) 3383−3408. doi.org/10.1002/pc.24412
[48] L. Zuo, Y. Zhang, L. Zhang, Y.E. Miao, W. Fan, T. Liu, Polymer/carbon-based hybrid aerogels: preparation, properties and applications, Materials, 8 (2015) 6806−6848. https://doi.org/10.3390/ma8105343
[49] N. Husing, U. Schubert, Aerogels. Ullmann’s encyclopedia of industrial chemistry; John Wiley and Sons: Hoboken, NJ, USA, 2005
[50] P. Lorjai, T. Chaisuwan, S. Wongkasemjit, Porous Structure of Polybenzoxazine-Based Organic aerogel prepared by sol−gel process and their carbon aerogels, J. Sol-Gel Sci. Technol. 52 (2009) 56−64. https://doi.org/10.1007/s10971-009-1992-4
[51] L.C. Klein, Conventional Energy Sources and Alternative Energy Sources and the Role of Sol-Gel Processing, M.A. Aegerter, M. Prassas (Eds.), Sol-gel processing for conventional and alternative energy; Springer: Boston, MA, USA, 2012, pp. 1-5.
[52] C. Wingfield, L. Franzel, M.F. Bertino, N. Leventis, Fabrication of functionally graded aerogels, cellular aerogels and anisotropic ceramics, J. Mater. Chem. 21 (2011) 11737. https://doi.org/10.1039/C1JM10898K
[53] X. Pang, J. Zhu, T. Shao, X. Luo, L. Zhang, Facile fabrication of gradient density organic aerogel foams via density gradient centrifugation and uv curing in one-step. J. Sol-Gel Sci. Technol. 85 (2018) 243−250. https://doi.org/10.1007/s10971-017-4529-2
[54] Gui, J. Y.; Zhou, B.; Zhong, Y. H.; Du, A.; Shen, J. Fabrication of gradient density SiO2 aerogel. J. Sol-Gel Sci. Technol. 2011, 58 (2), 470−475. https://doi.org/10.1007/s10971-011-2415-x
[55] F. Hemberger, S. Weis, G. Reichenauer, H.P. Ebert, Thermal transport properties of functionally graded carbon aerogels, Int. J. Thermophys. 30 (2009) 1357−1371. https://doi.org/10.1007/s10765-009-0616-0
[56] S. Koide, K. Yazawa, N. Asakawa, Y. Inoue, Fabrication of functionally graded bulk materials of organic polymer blends by uniaxial thermal gradient, J. Mater. Chem. 17 (2007) 582−590. https://doi.org/10.1039/B614001G
[57] A.C. Pierre, G.M. Pajonk, Chemistry of aerogels and their applications, Chem. Rev. 102 (2002) 4243−4265. https://doi.org/10.1021/cr0101306
[58] W. Fan, L. Zuo, Y. Zhang, Y. Chen, T. Liu, Mechanically strong polyimide/carbon nanotube composite aerogels with controllable porous structure, Compos. Sci. Technol. 156 (2018) 186−191. https://doi.org/10.1016/j.compscitech.2017.12.034
[59] R. Xu, W. Wang, D. Yu, A novel multilayer sandwich fabric- based composite material for infrared stealth and super thermal insulation protection at present, infrared stealth materials for advanced detection and stealth, Compos. Struct. 212 (2019) 58−65. https://doi.org/10.1016/j.compstruct.2019.01.032
[60] G. Jia, Z. Li, P. Liu, Q. Jing, Preparation and characterization of aerogel/expanded perlite composite as building thermal insulation material, J. Non-Cryst. Solids, 482 (2018) 192−202. https://doi.org/10.1016/j.jnoncrysol.2017.12.047
[61] Z. Qian, Z. Wang, Y. Chen, S. Tong, M. Ge, N. Zhao, J. Xu, Superelastic and ultralight polyimide aerogels as thermal insulators and particulate air filters, J. Mater. Chem. A, 6 (2018) 828−832. https://doi.org/10.1039/C7TA09054D
[62] Y. Zhang, Z. Zeng, X.Y.D. Ma, C. Zhao, J.M. Ang, B.F. Ng, M.P. Wan, S.C. Wong, Z. Wang, X. Lu, Mussel-inspired approach to cross-linked functional 3D nanofibrous aerogels for energy-efficient filtration of ultrafine airborne particles. Appl. Surf. Sci. 479 (2019) 700−708. https://doi.org/10.1016/j.apsusc.2019.02.173
[63] Y.G. Zhang, Y.J. Zhu, Z.C. Xiong, J. Wu, F. Chen, Bioinspired ultralight inorganic aerogel for highly efficient air filtration and oil−water separation, ACS Appl. Mater. Inter. 10 (2018) 13019−13027. https://doi.org/10.1021/acsami.8b02081
[64] Y.B. Pottathara, V. Bobnar, M. Finsgar, Y. Grohens, S. Thomas, V. Kokol, Cellulose nanofibrils-reduced graphene oxide xerogels and cryogels for dielectric and electrochemical storage applications. Polymer 147 (2018) 60−270. https://doi.org/10.1016/j.polymer.2018.06.005
[65] R. Sun, H. Chen, Q. Li, Q. Song, X. Zhang, Spontaneous assembly of strong and conductive graphene/polypyrrole hybrid aerogels for energy storage, Nanoscale 6 (2014) 12912−12920. https://doi.org/10.1039/C4NR03322A
[66] M. Wang, I.V. Anoshkin, A.G. Nasibulin, J.T. Korhonen, J. Seitsonen, J. Pere, E.I. Kauppinen, R.H.A. Ras, O. Ikkala, Modifying native nanocellulose aerogels with carbon nanotubes for mechanoresponsive conductivity and pressure sensing, Adv. Mater. 25 (2013) 2428−2432. https://doi.org/10.1002/adma.201300256
[67] R. Begag, S. White, J.E. Fesmire, W.L. Johnson, Hybrid aerogel-MLI insulation system performance studies for cryogenic storage in space applications. MRS Proc. 1306 (2011) mrsf10-1306- bb01-03. https://doi.org/10.1557/opl.2011.88
[68] C. Shan, L. Wang, Z. Li, X. Zhong, Y. Hou, L. Zhang, F. Shi, Graphene oxide enhanced polyacrylamide-alginate aerogels catalysts, Carbohydr. Polym. 203 (2019) 19−25. https://doi.org/10.1016/j.carbpol.2018.09.024
[69] S. Zhao, W.J. Malfait, N. Guerrero-Alburquerque, M.M. Koebel, Nystrom, G. Biopolymer Aerogels and foams: chemistry, properties, and applications, Angew. Chem. Int. Ed. 57 (2018) 7580−7608. https://doi.org/10.1002/anie.201709014
[70] Z. Liu, M.A. Meyers, Z. Zhang, R.O. Ritchie, Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications, Prog. Mater. Sci. 88 (2017) 467−498. https://doi.org/10.1016/j.pmatsci.2017.04.013
[71] T.D. Nguyen, D. Tang, F.D’ Acierno, C.A. Michal, M.J. Maclachlan, Biotemplated lightweight γ-alumina aerogels, Chem. Mater. 30 (2018) 1602−1609. https://doi.org/10.1021/acs.chemmater.7b04800
[72] A. Lamy-Mendes, R.F. Silva, L. Duraes, Advances in carbon nanostructure-silica aerogel composites: a review, J. Mater. Chem. A, 6 (2018) 1340−1369. https://doi.org/10.1039/C7TA08959G
[73] R. Baetens, B.P. Jelle, A. Gustavsen, Aerogel insulation for building applications: a state-of-the-art review, Energy Build. 43 (2011) 761−769. https://doi.org/10.1016/j.enbuild.2010.12.012
[74] A. Shinko, S.C. Jana, M.A. Meador, Crosslinked polyurea-co- polyurethane aerogels with hierarchical structures and low stiffness, J. Non-Cryst. Solids, 487 (2018) 19−27. https://doi.org/10.1016/j.jnoncrysol.2018.02.020
[75] M. Aghabararpour, M. Mohsenpour, S. Motahari, A. Abolghasemi, Mechanical properties of isocyanate crosslinked resorcinol formaldehyde aerogels, J. Non-Cryst. Solids 481 (2018) 548−555. https://doi.org/10.1016/j.jnoncrysol.2018.02.020
[76] I.A. Principe, A.J. Fletcher, Parametric study of factors affecting melamine-resorcinol- formaldehyde xerogels properties, Mater. Today Chem. 7 (2018) 5−14. https://doi.org/10.1016/j.mtchem.2017.11.002
[77] H. Chen, X. Li, M. Chen, Y. He, H.S.C. Zhao, Self-crosslinked melamine-formaldehyde-pectin aerogel with excellent water resistance and flame retardancy, Carbohydr. Polym. 206 (2019) 609− 615. https://doi.org/10.1016/j.carbpol.2018.11.041
[78] I.A. Principe, B. Murdoch, J.M. Flannigan, A.J. Fletcher, Decoupling microporosity and nitrogen content to optimize CO2 adsorption in melamine resorcinol formaldehyde xerogels. Mater. Today Chem. 10 (2018) 195−205. https://doi.org/10.1016/j.mtchem.2018.09.006
[79] M.A.B.Meador, C.R. Aleman, K. Hanson, N. Ramirez, S.L. Vivod, N. Wilmoth, L. McCorkle, Polyimide aerogels with amide cross-links: a low-cost alternative for mechanically strong polymer aerogels, ACS Appl. Mater. Inter. 7 (2015) 1240−1249.
https://doi.org/.org/10.1021/am507268c
[80] Y. Sun, L. Xia, J. Wu, S. Zhang, X. Liu, Mesoscale self- assembly of reactive monomicelles: general strategy toward phloroglucinol-formaldehyde aerogels with ordered mesoporous structures and enhanced mechanical properties, J. Colloid Interface Sci. 532 (2018) 77−82. https://doi.org/10.1016/j.jcis.2018.07.104
[81] Z. Niu, W. Yuan, Highly efficient thermo-and sunlight-driven energy storage for thermo-electric energy harvesting using sustainable nanocellulose-derived carbon aerogels embedded phase change materials, ACS Sustain. Chem. Eng. 7 (2019) 17523−17534. https://doi.org/10.1021/acssuschemeng.9b05015
[82] L. Zhang, L. An, Y.Wang, A. Lee, Y. Schuman, A. Ural, A.S. Fleischer, G. Feng, Thermal enhancement and shape stabilization of a phase-change energy-storage material via copper nanowire aerogel, Chem. Eng. J. 373 (2019) 857−869. https://doi.org/10.1016/j.cej.2019.05.104
[83] Z. Fan, D.Z.Y Tng, C.X.T. Lim, P. Liu, S.T. Nguyen, P. Xiao, A. Marconnet, C.Y. Lim, H.M. Duong, thermal and electrical properties of graphene/carbon nanotube aerogels, Colloids Surf. A Physicochem. Eng. Asp. 445 (2014) 48−53. https://doi.org/10.1016/j.colsurfa.2013.12.083
[84] B. Muand, M. Li, Synthesis of novel form-stable composite phase change materials with modified graphene aerogel for solar energy conversion and storage, Sol. Energy Mater. Sol. Cells, 191(2019) 466−475. https://doi.org/10.1016/j.solmat.2018.11.025
[85] H. Hong, Y. Pan, H. Sun, Z. Zhu, C. Ma, B. Wang, W. Liang, B. Yang, A. Li, Superwetting polypropylene aerogel supported form-stable phase change materials with extremely high organics loading and enhanced thermal conductivity, Sol. Energy Mater. Sol. Cells, 174(2018) 307−313. https://doi.org/10.1016/j.solmat.2017.09.026
[86] F. Li, L. Xie, G. Sun, Q. Kong, F. Su, Y. Cao, J. Wei, A. Ahmad, X. Guo, C.M. Chen, Resorcinol-formaldehyde based carbon aerogel: preparation, structure and applications in energy storage devices, Micropor. Mesopor. Mater. 279 (2019) 293−315. https://doi.org/10.1016/j.micromeso .2018.12.007
[87] J. Shen, P. Zhang, L. Song, J. Li, B. Ji, J. Li, L. Chen, Polyethylene glycol supported by phosphorylated polyvinyl alcohol/graphene aerogel as a high thermal stability phase change material, Compos. Part B: Eng. 179 (2019) 107545. https://doi.org/10.1016/j.compositesb. 2019.107545
[88] L.S. Tang, J. Yang, R.Y. Bao, Z.Y. Liu, B.H. Xie, M.B. Yang, W. Yang, Polyethylene glycol/graphene oxide aerogel shape-stabilized phase change materials for photo-to-thermal energy conversion and storage via tuning the oxidation degree of graphene oxide, Energy Con. Manag. 146 (2017) 253−264. https://doi.org/10.1016/j.enconman.2017.05.037
[89] X. Huang, W. Xia, R. Zou, Nanoconfinement of phase change materials within carbon aerogels: phase transition behaviours and photo-to-thermal energy storage, J. Mater. Chem. A, 2(2014) 19963−19968. https://doi.org/10.1039/C4TA04605F
[90] S.T. Nguyen, H.T. Nguyen, A. Rinaldi, N. P. Nguyen, Z. Fan, H.M. Duong, Morphology control and thermal stability of binderless-graphene aerogels from graphite for energy storage applications, Colloids Surf. A Physicochem. Eng. Asp. 414 (2012) 352−358. https://doi.org/10.1016/j.colsurfa.2012.08.048
[91] J. Wang, D. Liu, Q. Li, C. Chen, Z. Chen, P. Song, J. Hao, Y. Li, S. Fakhrhoseini, M. Naebe, X. Wang, Lightweight, superelastic yet thermoconductive boron nitride nanocomposite aerogel for thermal energy regulation, ACS Nano, 13 (2019) 860−7870. https://doi.org/10.1021/acsnano.9b02182
[92] J. Yang, G.Q. Qi, R.Y. Bao, K. Yi, M. Li, L. Peng, Z. Cai, M.B. Yang, D. Wei, W., Yang, Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials, Energy Stor. Mater. 13(2018) 88−95. https://doi.org/10.1016/j.ensm.2017.12.028
[93] J. Yang, G.Q. Qi, Y. Liu, R.Y. Bao, Z.Y. Liu, W. Yang, B.H. Xie, M.B. Yang, Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage, Carbon, 100 (2016) 693−702. https://doi.org/10.1016/j.carbon.2016.01.063
[94] Z. Niu, W. Yuan, Highly efficient thermo-and sunlight-driven energy storage for thermo-electric energy harvesting using sustainable nanocellulose-derived carbon aerogels embedded phase change materials, ACS Sustain. Chem. Eng. 7 (2019) 17523−17534. https://doi.org/10.1021/acssuschemeng.9b05015
[95] H. Im, T. Kim, H. Song, J. Choi, J.S. Park, R. Ovalle-Robles, H.D. Yang, K.D. Kihm, R.H. Baughman, H.H. Lee, T.J. Kang, High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes, Nat. Commun. 7(2016) 10600. https://doi.org/10.1038/ncomms10600
[96] J. Zhao, W. Luo, J.K. Kim, J. Yang, Graphene-oxide aerogel beads filled with phase change material for latent heat storage and release, ACS Appl. Energy Mater. 2 (2019) 3657−3664. https://doi.org/10.1021/acsaem.9b00374
[97] L. Liu, K. Zheng, Y. Yan, Z. Cai, S. Lin, X. Hu, Graphene aerogels enhanced phase change materials prepared by one-pot method with high thermal conductivity and large latent energy storage, Sol. Energy Mater. Sol. Cells, 185 (2018) 487−493. https://doi.org/10.1016/j.solmat. 2018.06.005
[98] X. Wang, G. Li, G. Hong, Q. Guo, X. Zhang, Graphene aerogel templated fabrication of phase change microspheres as thermal buffers in microelectronic devices, ACS Appl. Mater. Inter., 9 (2017) 41323−41331. https://doi.org/10.1021/acsami.7b13969
[99] K. Liang, L., Shi, J. Zhang, J. Cheng, X. Wang, Fabrication of shape-stable composite phase change materials based on lauric acid and graphene/graphene oxide complex aerogels for enhancement of thermal energy storage and electrical conduction, Thermochim. Acta, 664 (2018) 1−15. https://doi.org/10.1016/j.tca.2018.04.002
[100] H. Zhou, D. Zhang, Effect of graphene oxide aerogel on dehydration temperature of graphene oxide aerogel stabilized MgCl2. 6H2O composites, Sol. Energy, 184 (2019) 202−208. https://doi.org/10.1016/j.solener.2019.03.076