Aerogels for Insulation Applications
M. Ramesh, L. Rajeshkumar, D. Balaji
Aerogels have been used as a heat insulating material for the last few decades and possess extremely remarkable qualities for heat insulation. The qualities like light weight (contains more air) and easy to blend with other materials make the aerogel a better insulator than any other material of this kind. The aerogel provides 2 to 3 times better insulation than the styrofoam which is also light weight. The insulating property gets enhanced, if the aerogel is a composite. The interesting details about the insulation property of aerogel will be explored in this chapter.
Keywords
Aerogels, Insulation, Thermal Insulator, Insulation Materials, Eco-Friendly, Sustainable Development
Published online 2/25/2021, 20 pages
Citation: M. Ramesh, L. Rajeshkumar, D. Balaji, Aerogels for Insulation Applications, Materials Research Foundations, Vol. 98, pp 57-76, 2021
DOI: https://doi.org/10.21741/9781644901298-4
Part of the book on Aerogels II
References
[1] N.H.N. Do, T.P. Luu, Q.B. Thai, D.K. Le, N.D.Q. Chau, S.T. Nguyen, P.K. Le, N. Phan-Thien, H.M. Duong, Heat and sound insulation applications of pineapple aerogels from pineapple waste, Mater. Chem. Phy. (2019), https://doi.org/10.1016/j.matchemphys.2019.122267
[2] X. Zhang, X. Zhao, T. Xue, F. Yang, W. Fan, T. Liu, Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation, Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.123963
[3] Chalmers, Civil and Environmental Engineering, Report 2012:2.
[4] M. Perrut, Eric françaiseparex, Aerogel drying, 5, rue Jacques Monod F-54250 Champigneulles.
[5] S. Malakooti, H.G. Churu, A. Lee, T. Xu, H. Luo, N. Xiang, C. Sotiriou-Leventis, N. Leventis, H. Lu. Sound insulation properties in low-density, mechanically strong and ductile nanoporous polyurea aerogels, J. Non-Cryst. Solids. 476 (2017) 36-45. https://doi.org/10.1016/j.jnoncrysol.2017.09.005
[6] Y. Lu, X. Li, X. Yin, H.D. Utomo, N.F. Tao, H. Huang. Silica aerogel as super thermal and acoustic insulation materials, J. Environ. Prot. 9 (2018) 295-308. https://doi.org/10.4236/jep.2018.94020
[7] R.J. Ayern, P.A. Iacobucci, Metal oxide aerogel preparation by supercritical extraction, Rev. Chem. Eng. 5 (1988) 157-198. https://doi.org/10.1515/REVCE.1988.5.1-4.157
[8] A. Du, B. Zhou, Z. Zhang, J. Shen. A special material or a new state of matter: are view and reconsideration of the aerogel, Mater. 6(3) (2013) 941–968. https://doi.org/10.3390/ma6030941
[9] J. Phalippou, R. Vacher, Aerogels Proceedings of the Fifth International Symposium on Aerogels (ISA-5) Montpellier, France. 8-10 September 1997.
[10] Grand View Research. Aerogel Market Size, Share & Trends Analysis Report By Form (Blanket, Particle, Panel, Monolith), By Product (Silica, Carbon, Polymers), By End Use, By Technology, By Region, And Segment Forecasts, 2018 – 2025. 2018 July 11, 2019]; Available from: https://www.grandviewresearch.com/industry-analysis/aerogelmarket.
[11] T. Li, J. W. Song, X.P. Zhao, Z. Yang, G. Pastel, S.M. Xu, C. Jia, J.Q. Dai, C.J. Chen, A. Gong, F. Jiang, Y. G. Yao, T.Z. Fan, B. Yang, L. Wågberg, R.G. Yang, L.B. Hu. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose, Sci. Adv. 4 (2018) 3724-3733. https://doi.org/10.1126/sciadv.aar3724
[12] T. Li, Y. Zhai, S.M. He, W. T. Gan, Z.Y. Wei, M. Heidarinejad, D. Dalgo, R.Y. Mi, X.P. Zhao, J.W. Song, J.Q. Dai, C.J. Chen, A. Aili, A. Vellore, A. Martini, R.G. Yang, J. Srebric, X.B. Yin, L. B. Hu. A radiative cooling structural material, Science 364 (2019) 760-763. https://doi.org/10.1126/science.aau9101
[13] N.A. Ruslan, N.F.M. Aris, N. Othman, A.R. Saili, M.Z. Muhamad, N.N.H. Aziz. A Preliminary study on sustainable management of pineapple waste: Perspective of smallholders, Int. J. Acad. Res. Bus. Soc. Sci. 7(6) (2017) 1-7. https://doi.org/10.6007/IJARBSS/v7-i6/2937
[14] B. Guignon, A. Duquenoy, E.D. Dumoulin. Fluid bed encapsulation of particles: Principles and practice, Dry. Technol. 20(2) (2002) 419–447. https://doi.org/10.1081/DRT-120002550
[15] Z.A.A. Halim, M.A.M. Yajid, M.H. Idris, H. Hamdan. Physiochemical and thermal properties of silica aerogel–poly vinyl alcohol/core–shell structure prepared using fluidized bed coating process for thermal insulation applications, Mater. Chem. Phy. (2018). https://doi.org/10.1016/j.matchemphys.2018.05.019
[16] H.M. Duong, Z.C. Xie, K.H. Wei, N.G. Nian, K. Tan, H.J. Lim, A.H. Li, K.S. Chung, W.Z. Lim. Thermal jacket design using cellulose aerogels for heat insulation application of water bottles, Fluids 2(4) (2017) 64. https://doi.org/10.3390/fluids2040064
[17] X. Xu, Q.Q. Zhang, M.L. Hao, Y. Hu, Z.Y. Lin, L.L. Peng, T. Wang, X.X. Ren, C. Wang, Z.P. Zhao, C.Z. Wan, H.L. Fei, L. Wang, J. Zhu, H.T. Sun, W.L. Chen, T. Du, B. W. Deng, G.J. Cheng, I. Shakir, C. Dames, T.S. Fisher, X. Zhang, H. Li, Y. Huang, X.F. Duan, Double-negative-index ceramic aerogels for thermal superinsulation, Science 363 (2019) 723-727. https://doi.org/10.1126/science.aav7304
[18] J.Y. Zhang, Y.H. Cheng, M. Tebyetekerwa, S. Meng, M.F. Zhu, Y.F. Lu. Stiff–soft binary synergistic aerogels with super flexibility and high thermal insulation performance, Adv. Funct. Mater. 29 (2019) 6407-6418. https://doi.org/10.1002/adfm.201806407
[19] W.S. Chen, Q. Li, Y.C. Wang, X. Yi, J. Zeng, H.P. Yu, Y.X. Liu, J. Li. Comparative study of aerogels obtained from differently prepared nanocellulose fibers. ChemSusChem 7 (2014) 154–161. https://doi.org/10.1002/cssc.201300950
[20] B.P. Jelle. Traditional, state-of-the-art and future thermal building insulation materials and solutions—Properties, requirements and possibilities. Energy Build. 43 (2011) 2549–2563. https://doi.org/10.1016/j.enbuild.2011.05.015
[21] J.E. Fernandez. Materials for aesthetic, energy-efficient, and self-diagnostic buildings, Science 315 (2007) 1807–1810. https://doi.org/10.1126/science.1137542
[22] D. Bendahou, A. Bendahou, B. Seantier, Y. Grohens, H. Kaddami, H. Nano-fibrillated cellulose-zeolites based new hybrid composites aerogels with super thermal insulating properties, Ind. Crop. Prod. 65 (2015) 374–382. https://doi.org/10.1016/j.indcrop.2014.11.012
[23] N. Leventis, C. Chidambareswarapattar, D.P. Mohite, Z.J. Larimore, H.B. Lu, C. Sotiriou-Leventis. Multifunctional porous aramids (aerogels) by efficient reaction of carboxylic acids and isocyanates, J. Mater. Chem. 21 (2011) 11981–11986. https://doi.org/10.1039/c1jm11472g
[24] N. Leventis, C. Sotiriou-Leventis, D.P. Mohite, Z.J. Larimore, J.T. Mang, G. Churu, H.B. Lu. Polyimide aerogels by ring-opening metathesis polymerization (ROMP), Chem. Mater. 23 (2011) 2250–2261. https://doi.org/10.1021/cm200323e
[25] B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino, M. Antonietti, L. Bergstrom. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide, Nat. Nanotechnol. 10 (2014) 277–283. https://doi.org/10.1038/nnano.2014.248
[26] C. Rudaz, R. Courson, L. Bonnet, S. Calas-Etienne, H. Sallee, T. Budtova. Aeropectin: Fully biomass-based mechanically strong and thermal super insulating aerogel. Biomacromol. 15 (2014) 2188–2195. https://doi.org/10.1021/bm500345u
[27] G. Biesman, D. Randall, E. Francais, M. Perrut. Polyurethane-based organic aerogels’ thermal performance, J. Non Crytal. Solids 225 (1998) 36-40. https://doi.org/10.1016/S0022-3093(98)00103-3
[28] R.L. Liu, X. Dong, S.T. Xie, T. Jia, Y.J. Xue, J.C. Liu, W. Jing, A.R. Guo, Ultralight, thermal insulating, and high-temperature-resistant mullite-based nanofibrous aerogels, Chem. Eng. J 360 (2019) 464-472. https://doi.org/10.1016/j.cej.2018.12.018
[29] L.Z. Zuo, W. Fan, Y.F. Zhang, L.S. Zhang, W. Gao, Y.P. Huang, T.X. Liu, Graphene/montmorillonite hybrid synergistically reinforced polyimide composite aerogels with enhanced flame-retardant performance, Compos. Sci. Technol. 139 (2017) 57-63. https://doi.org/10.1016/j.compscitech.2016.12.008
[30] F. Schwertfeger, D. Frank, M. Schmidt, Symposium on Aerogels, 8–10th September 1997, Montpellier, France.
[31] S. Zhou, V. Apostolopoulou-Kalkavoura, M.V. da Costa, L. Bergström, M. Strømme, C. Xu. Elastic aerogels of cellulose nano fibers@ metal–organic frameworks for thermal insulation and fire retardancy, Nano-Micro Lett. 12(1) 2020 1-3. https://doi.org/10.1007/s40820-019-0343-4
[32] S. Zhou, M. Strømme, C. Xu. Highly transparent, flexible and mechanically strong nanopapers of cellulose nanofibers@metal–organic frameworks, Chem. Eur. J. 25 (2019) 3515–3520. https://doi.org/10.1002/chem.201806417
[33] W. Fan, X. Zhang, Y. Zhang, Y. Zhang, T. Liu. Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature, Compos. Sci. Technol. 173 (2019) 47-52. https://doi.org/10.1016/j.compscitech.2019.01.025
[34] https://technology.grc.nasa.gov/patent/TOP3-413.
[35] U.S. Department of Energy, Guiding principles for sustainable federal buildings; https:// energy.gov/eere/femp/guiding-principles-sustainable-federal-buildings.
[36] M. S. Al-Homoud, Performance characteristics and practical applications of common building thermal insulation materials, Build. Environ. 40 (2005) 353–366. https://doi.org/10.1016/j.buildenv.2004.05.013
[37] N. Bheekhun, A. Talib, A. Rahim, M.R. Hassan. Aerogels in aerospace: an overview, Adv. Mater. Sci. Eng. 2013. https://doi.org/10.1155/2013/406065
[38] US patent application – US20120308369A1 with tilted “Laminate thermal insulation blanket for aircraft applications and process there for” in 2012.
[39] J.P. Randall, M.A. Meador, S.C. Jana. Tailoring mechanical properties of aerogels for aerospace applications, ACS Appl. Mater. Interf. 3(3) (2011) 613-626. https://doi.org/10.1021/am200007n
[40] https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080047425.pdf (Michael A. Meador-2008)
[41] S. Berthon-Fabry, C. Hildenbrand, P. Ilbizian. Lightweight super insulating resorcinol-formaldehyde-APTES benzoxazine aerogel blankets for space applications, Euro. Polym. J. 78 (2016) 25-37. https://doi.org/10.1016/j.eurpolymj.2016.02.019
[42] S. Berthon-Fabry, C. Hildenbrand, P. Ilbizian, E. Jones, S. Tavera. Evaluation of lightweight and flexible insulating aerogel blankets based on resorcinol-formaldehyde-silica for space applications, Euro. Polym. J. 93 (2017) 403-416. https://doi.org/10.1016/j.eurpolymj.2017.06.009