Aerogels for Biomedical Applications

$30.00

Aerogels for Biomedical Applications

Satyanarayan Pattnaik, Y. Surendra, J. Venkateshwar Rao, Kalpana Swain

The researchers across the world are actively engaged in strategic development of new porous aerogel materials for possible application of these extraordinary materials in the biomedical field. Due to their excellent porosity and established biocompatibility, aerogels are now emerging as viable solutions for drug delivery and other biomedical applications. This chapter aims to cover the diverse aerogel materials used across the globe for different biomedical applications including drug delivery, implantable devices, regenerative medicine encompassing tissue engineering and bone regeneration, and biosensing.

Keywords
Aerogel, Biomedicine, Regenerative Medicine, Drug Delivery, Tissue Engineering, Biosensing

Published online 2/25/2021, 20 pages

Citation: Satyanarayan Pattnaik, Y. Surendra, J. Venkateshwar Rao, Kalpana Swain, Aerogels for Biomedical Applications, Materials Research Foundations, Vol. 98, pp 23-42, 2021

DOI: https://doi.org/10.21741/9781644901298-2

Part of the book on Aerogels II

References
[1] S.S. Hota, S.Pattnaik, S.Mallick,Formulation and evaluation of multidose propofol nanoemulsion using statistically designed experiments, Acta ChimicaSlovenica. 67 (2020) 179-188. https://doi.org/10.17344/acsi.2019.5311
[2] S. Pattnaik, K. Swain, Z. Lin, Graphene and graphene-based nanocomposites: biomedical applications and biosafety, J. Mater. Chem. B. 4(2016) 7813-7831. https://doi.org/10.1039/C6TB02086K
[3] S. Pattnaik, K.Swain, J.V.Rao, T.Varun, S.K.Subudhi, Aceclofenac nanocrystals for improved dissolution: influence of polymeric stabilizers, RSC Adv. 5(2015) 91960-91965. https://doi.org/10.1039/C5RA20411A
[4] S. Pattnaik, K.Swain, P.Manaswini, E.Divyavani, J.V.Rao, T. Varun, S.K.Subudhi. Fabrication of aceclofenac nanocrystals for improved dissolution: Process optimization and physicochemical characterization, J Drug Deliv Sci Technol. 29(2015) 199-209. https://doi.org/10.1016/j.jddst.2015.07.021
[5] K.Pathak, S.Pattnaik, K.Swain, Application of nanoemulsions in drug delivery. In: S.M. Jafari, D. J. McClements (Eds.), Nanoemulsions: Formulation, Applications and Characterization, Academic Press (Elsevier), Amsterdam,2018, pp. 415-433. https://doi.org/10.1016/B978-0-12-811838-2.00013-8
[6] Y.C. Yadav, S. Pattnaik, K. Swain, Curcumin loaded mesoporous silica nanoparticles: Assessment of bioavailability and cardioprotective effect, Drug Dev Ind Pharm. 45(2019) 1889-1895. https://doi.org/10.1080/03639045.2019.1672717
[7] S. Pattnaik, K. Pathak, Mesoporous silica molecular sieve based nanocarriers: Transpiring drug dissolution research. Curr. Pharm. Des.23 ( 2017) 467-480. https://doi.org/10.2174/1381612822666161026162005
[8] S. Pattnaik, K. Swain, Mesoporous nanomaterials as carriers in drug delivery. In: Inamuddin,A.M. Asiri, A. Mohammad (Eds.), Applications of Nanocomposite Materials in Drug Delivery,Woodhead Publishing (Elsevier),Cambridge, 2018, pp. 589-604. https://doi.org/10.1016/B978-0-12-813741-3.00025-X
[9] Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao, J. Rao, S. Luo, J. Wang, X. Jiang, Z. Liu, N. Liu,Y. Gao, 3D synergistical MXene/Reduced graphene oxide aerogel for a piezoresistive sensor.ACS Nano. 12 (2018) 3209-3216. https://doi.org/10.1021/acsnano.7b06909
[10] L. Wang, R.J. Mu, L. Lin, X. Chen, S. Lin, Q. Ye, J. Pang,Bioinspired aerogel based on konjac glucomannan and functionalized carbon nanotube for controlled drug release.Int. J. Biol. Macromol. 133(2019) 693-701. https://doi.org/10.1016/j.ijbiomac.2019.04.148
[11] C.A. García-González, T. Budtova, L. Durães, C. Erkey, P. Del Gaudio, P. Gurikov,M. Koebel, F. Liebner, M. Neagu, I. Smirnova, An opinion paper on aerogels for biomedical and environmental applications, Molecules. 24 (2019) pii: E1815. https://doi.org/10.3390/molecules2409181510.3390/molecules24091815.
[12] S.S. Kistler,Coherent expanded aerogels and jellies, Nature. 127 (1931) 741-741. https://doi.org/10.1038/127741a0
[13] S.S. Kistler, Coherent expanded-aerogels, J. Phys. Chem. 36(1932) 52-64. https://doi.org/10.1021/j150331a003
[14] F. Sabri, M.E. Sebelik, R. Meacham, J. D. Jr Boughter, M.J. Challis, N. Leventis, In vivo ultrasonic detection of polyurea crosslinked silica aerogel implants. PLoS One. 8(2013) e66348. https://doi.org/10.1371/journal.pone.0066348
[15] H.R. Stanley, M.B. Hall, A.E. Clark, C.J. King 3rd, L.L. Hench, J.J.Berte, Using 45S5 Bioglass Cones as endosseous ridge maintenance implants to prevent alveolar ridge resorption: A 5-year evaluation, Int. J. Oral. Maxillofac. Implants. 12(1997) 95-105.
[16] S. Liu, C. Zhou, S. Mou, J. Li, M. Zhou, Y. Zeng, C. Luo, J. Sun J, Z. Wang, W. Xu, Biocompatible graphene oxide-collagen composite aerogel for enhanced stiffness and in situ bone regeneration. Mater Sci Eng C Mater Biol Appl. 105 (2019) 110137. https://doi.org/10.1016/j.msec.2019.110137
[17] H. Maleki, M.A. Shahbazi, S. Montes, S.H. Hosseini, M.R. Eskandari, S. Zaunschirm, T. Verwanger, S. Mathur, B. Milow, B. Krammer, N. Hüsing, Mechanically strong silica-silk fibroin bioaerogel: A hybrid scaffold with ordered honeycomb micromorphology and multiscale porosity for bone regeneration, ACS Appl. Mater. Interfaces. 11 (2019) 17256-17269. https://doi.org/10.1021/acsami.9b04283
[18] S. Dong, Y.N. Zhang, J. Wan, R. Cui, X. Yu, G. Zhao, K. Lin, A novel multifunctional carbon aerogel-coated platform for osteosarcoma therapy and enhanced bone regeneration, J. Mater. Chem. B. 22 (2020)368-379. https://doi.org/10.1039/C9TB02383F
[19] R. Ghafari, M. Jonoobi, L.M. Amirabad, K. Oksman, A.R. Taheri, Fabrication and characterization of novel bilayer scaffold from nanocellulose based aerogel for skin tissue engineering applications, Int. J. Biol. Macromol. 136 (2019) 796-803. https://doi.org/10.1016/j.ijbiomac.2019.06.104
[20] D.A. Osorio, B.E.J. Lee, J.M. Kwiecien, X. Wang, I. Shahid, A.L. Hurley, E.D. Cranston, K. Grandfield, Cross-linked cellulose nanocrystal aerogels as viable bone tissue scaffolds, Acta Biomater. 87 (2019) 152-165. https://doi.org/10.1016/j.actbio.2019.01.049
[21] I. Ali, L. Chen, Y. Huang, L. Song, X. Lu, B. Liu, L. Zhang, J. Zhang, L. Hou, T. Chen, Humidity-responsive gold aerogel for real-time monitoring of human breath, Langmuir.34 ( 2018) 4908-4913. https://doi.org/10.1021/acs.langmuir.8b00472
[22] L. Dong, W. Wang, J. Chen, X. Ding, B. Fang, X. Miao, Y. Liu, F. Yu, H. Xin, X. Wang, Silver nanowire net knitted anisotropic aerogel as an ultralight and sensitive physiological activity monitor, Biomater. Sci. 6(2018) 2312-2315. https://doi.org/10.1039/C8BM00651B
[23] X. Niu, X. Li, W. Chen, X. Li, W. Weng, C. Yin, R. Dong, W. Sun, G. Li.Three-dimensional reduced graphene oxide aerogel modified electrode for the sensitivequercetin sensing and its application, Mater. Sci. Eng. C. Mater. Biol. Appl. 89(2018)230-236. https://doi.org/10.1016/j.msec.2018.04.015
[24] L. Ruiyi, C. Fangchao, Z. Haiyan, S. Xiulan, L. Zaijun.Electrochemical sensor for detection of cancer cell based on folic acid and octadecylamine-functionalized grapheneaerogel microspheres, Biosens. Bioelectron. 119 (2018) 156-162. https://doi.org/10.1016/j.bios.2018.07.060
[25] G. Vasvári, J. Kalmár, P. Veres, M. Vecsernyés, I. Bácskay, P. Fehér, Z. Ujhelyi, A. Haimhoffer, A. Rusznyák, F. Fenyvesi, J. Váradi, Matrix systems for oral drug delivery: Formulations and drug release, Drug Discov. Today Technol. 27(2018) 71-80. https://doi.org/10.1016/j.ddtec.2018.06.009
[26] R.M. Obaidat, M. Alnaief, H. Mashaqbeh, Investigation of carrageenan aerogel microparticles as a potential drug carrier.AAPS Pharm.Sci.Tech. 19 (2018) 2226-2236. https://doi.org/10.1208/s12249-018-1021-4
[27] L. Shao, Y. Cao, Z. Li, W. Hu, S. Li, L. Lu, Dual responsive aerogel made from thermo/pH sensitive graft copolymer alginate-g-P(NIPAM-co-NHMAM) for drug controlled release, Int. J. Biol. Macromol. 114(2018) 1338-1344. https://doi.org/10.1016/j.ijbiomac.2018.03.166
[28] P. Veres, M. Kéri, I. Bányai, I. Lázár, I. Fábián, C. Domingo, J. Kalmár, Mechanism of drug release from silica-gelatin aerogel-relationship between matrix structure and release kinetics, Colloids Surf. B Biointerfaces. 152 (2017) 229-237. https://doi.org/10.1016/j.colsurfb.2017.01.019
[29] X. Wang, J. Wang, S. Feng, Z. Zhang, C. Wu, X. Zhang, F. Kang, Nano-porous silica aerogels as promising biomaterials for oral drug delivery of paclitaxel, J. Biomed. Nanotechnol. 15 (2019) 1532-1545. https://doi.org/10.1166/jbn.2019.2763
[30] Z. Ulker, C. Erkey, An emerging platform for drug delivery: aerogel based systems,J. Control Rel. 177 (2014) 51-63. https://doi.org/10.1016/j.jconrel.2013.12.033
[31] S. Pattnaik, K. Swain, J.V. Rao, T. Varun, S. Mallick. Temperature influencing permeation pattern of alfuzosin: An investigation using DoE, Medicina. 51(2015) 253-261. https://doi.org/10.1016/j.medici.2015.07.002
[32] S. Pattnaik, K. Swain, J.V. Rao, T. Varun, K.B. Prusty, S.K. Subudhi, Polymer co-processing of ibuprofen through compaction for improved oral absorption, RSC Adv. 5(2015)74720-74725. https://doi.org/10.1039/C5RA13038G
[33] A.K. Mahapatra, P.N. Murthy, R.K. Patra, S. Pattnaik, Solubility enhancement of modafinil by complexation with β-cyclodextrin and hydroxypropyl β-cyclodextrin: aresponse surface modeling approach, Drug Delivery Letters. 3(2013) 210-219. https://doi.org/10.2174/22103031113039990005
[34] S. Pattnaik, K. Swain, S. Mallick, Z. Lin, Effect of casting solvent on crystallinity of ondansetron in transdermal films, Int. J. Pharm. 406(2011) 106-110. https://doi.org/10.1016/j.ijpharm.2011.01.009
[35] K. Pathak, S. Pattnaik,A. Porwal,Regulatory concerns for nanomaterials in sunscreen formulations, Applied Clinical Research, Clinical Trials and Regulatory Affairs. 5(2018) 99-111. https://doi.org/10.2174/2213476X05666180601103853
[36] K. Swain, S. Pattnaik, N. Yeasmin, S. Mallick, Preclinical evaluation of drug in adhesive type ondansetron loaded transdermal therapeutic systems, Eur. J. Drug Metab. Pharmacokinet. 36(2011) 237-241. https://doi.org/10.1007/s13318-011-0053-x
[37] S. Pattnaik, K. Swain, A. Bindhani, S. Mallick, Influence of chemical permeation enhancers on transdermal permeation of alfuzosin: An investigation using response surface modeling, Drug. Dev. Ind. Pharm. 37(2011) 465-474. https://doi.org/10.3109/03639045.2010.522192
[38] K. Swain, S. Pattnaik, S. Mallick, K.A. Chowdary, Influence of hydroxypropyl methylcellulose on drug release pattern of a gastroretentive floating drug delivery system using a 32 full factorial design, Pharm. Dev. Technol. 14(2009)193-198. https://doi.org/10.1080/10837450802498902
[39] K. Swain, S. Pattnaik, S.C. Sahu, K.K. Patnaik, S. Mallick, Drug in adhesive type transdermal matrix systems of ondansetron hydrochloride: optimization of permeation pattern using response surface methodology, J. Drug. Target. 18(2010) 106-114. https://doi.org/10.3109/10611860903225727
[40] C.A. García-González, M. Jin, J. Gerth, C. Alvarez-Lorenzo, I. Smirnova, Polysaccharide-based aerogel microspheres for oral drug delivery, CarbohydrPolym. 117(2015) 797-806. https://doi.org/10.1016/j.carbpol.2014.10.045
[41] V.S. Gonçalves, P. Gurikov, J. Poejo, A.A. Matias, S. Heinrich, C.M. Duarte, I. Smirnova, Alginate-based hybrid aerogel microparticles for mucosal drug delivery, Eur. J. Pharm. Biopharm. 107(2016) 160-70. https://doi.org/10.1016/j.ejpb.2016.07.003
[42] R. Wang, D. Shou, O. Lv, Y. Kong, L. Deng, J. Shen, pH-Controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl cellulose and graphene oxide as the carrier, Int. J. Biol. Macromol. 103(2017) 248-253. https://doi.org/10.1016/j.ijbiomac.2017.05.064
[43] P. Veres, A.M. López-Periago, I. Lázár, J. Saurina, C. Domingo, Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs, Int. J. Pharm. 496(2015) 360-370. https://doi.org/10.1016/j.ijpharm.2015.10.045
[44] J. Zhao, C. Lu, X. He, X. Zhang, W. Zhang, X. Zhang, Polyethylenimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery, ACS Appl. Mater. Interfaces. 7(2015) 2607-2615. https://doi.org/10.1021/am507601m
[45] P. Veres, D. Sebők, I. Dékány, P. Gurikov, I. Smirnova, I. Fábián, J. Kalmár, A redox strategy to tailor the release properties of Fe(III)-alginate aerogels for oral drug delivery, CarbohydrPolym. 188(2018)159-167. https://doi.org/10.1016/j.carbpol.2018.01.098
[46] D. Lovskaya, N. Menshutina, Alginate-based aerogel particles as drug delivery systems: investigation of the supercritical adsorption and in vitro evaluations,Materials (Basel). 13(2020) pii: E329. https://doi.org/10.3390/ma13020329
[47] X. Wang, J. Wang, S. Feng, Z. Zhang, C.Wu, X. Zhang, F. Kang, Nano-porous silica aerogels as promising biomaterials for oral drug delivery of paclitaxel, J. Biomed. Nanotechnol. 15 (2019) 1532-1545. https://doi.org/10.1166/jbn.2019.2763
[48] A. Bang, A.G. Sadekar, C. Buback, B. Curtin, S. Acar, D. Kolasinac, W. Yin, D.A. Rubenstein, H. Lu, N. Leventis, C. Sotiriou-Leventis, Evaluation of dysprosia aerogels as drug delivery systems: a comparative study with random and ordered mesoporous silicas, ACS Appl. Mater. Interfaces. 6(2014) 4891-4902. https://doi.org/10.1021/am4059217
[49] B. Rossi, P. Campia, L. Merlini, M. Brasca, N. Pastori, S. Farris, L. Melone,C. Punta, Y.M. Galante. An aerogel obtained from chemo-enzymatically oxidized fenugreek galactomannans as a versatile delivery system, CarbohydrPolym. 144(2016) 353-361. https://doi.org/10.1016/j.carbpol.2016.02.007
[50] M. Mohammadian, T.S.J.Kashi, M. Erfan, F.P. Soorbaghi, In-vitro study of ketoprofen release from synthesized silica aerogels (as drug carriers) and evaluation of mathematicalkinetic release models, Iran J. Pharm. Res. 17(2018) 818-829.
[51] M. Kéri, A. Forgács, V. Papp, I. Bányai, P. Veres, A. Len, Z. Dudás, I. Fábián, J. Kalmár, Gelatin content governs hydration induced structural changes in silica-gelatin hybrid aerogels – Implications in drug delivery, Acta Biomater. 105(2020) 131-145. https://doi.org/10.1016/j.actbio.2020.01.016
[52] G. Nagy, G. Király, P. Veres, I. Lázár, I. Fábián, G. Bánfalvi, I. Juhász, J. Kalmár, Controlled release of methotrexate from functionalized silica-gelatin aerogel microparticles applied against tumor cell growth, Int. J. Pharm. 558(2019) 396-403. https://doi.org/10.1016/j.ijpharm.2019.01.024
[53] S. Ye, S. He, C. Su, L. Jiang, Y. Wen, Z. Zhu, W. Shao, Morphological, release and antibacterial performances of amoxicillin-loaded cellulose aerogels, Molecules. 23(2018) pii: E2082. https://doi.org/10.3390/molecules23082082
[54] C. López-Iglesias, J. Barros, I. Ardao, P. Gurikov, F.J. Monteiro, I. Smirnova,C.Alvarez-Lorenzo, C.A. García-González, Jet cutting technique for the production of chitosan aerogel microparticles loaded with vancomycin, Polymers 12(2020) 273. https://doi.org/10.3390/polym12020273
[55] F. Sabri, J.A. Cole, M.C. Scarbrough, N. Leventis, Investigation of polyurea-crosslinked silica aerogels as a neuronal scaffold: a pilot study, PLoS One. 7(2012) e33242. https://doi.org/10.1371/journal.pone.0033242
[56] F. Sabri, J.D. Boughter Jr, D. Gerth, O. Skalli, T-C.N. Phung, G-R.M. Tamula, N. Leventis, Histological evaluation of the biocompatibility of polyurea crosslinked silica aerogel implants in a rat model: a pilot study. PLoS One. 7(2012) e50686. https://doi.org/10.1371/journal.pone.0050686
[57] F. Sabri, D. Gerth, G.R.Tamula, T.C. Phung, K.J. Lynch, J.D. BoughterJr, Noveltechnique for repair of severed peripheral nerves in rats using polyurea crosslinked silicaaerogel scaffold, J. Invest. Surg. 27(2014) 294-303. https://doi.org/10.3109/08941939.2014.906688
[58] K.J. Lynch, O. Skalli, F. Sabri, Investigation of surface topography and stiffness on adhesion and neurites extension of PC12 cells on crosslinked silica aerogel substrates, PLoS One. 12(2017) e0185978. https://doi.org/10.1371/journal.pone.0185978
[59] W. Yin,S.M. Venkitachalam, E. Jarrett, S. Staggs, N. Leventis, H. Lu, D.A. Rubenstein, Biocompatibility of surfactant-templated polyurea-nanoencapsulated macroporous silica aerogels with plasma platelets and endothelial cells, J. Biomed. Mater. Res. A. 92 (2010) 1431-1439. https://doi.org/10.1002/jbm.a.32476
[60] W. Yin, H. Lu, N. Leventis, D.A. Rubenstein, Characterization of the biocompatibility and mechanical properties of polyurea organic aerogels with the vascular system: potential as a blood implantable material, Int. J. Polym. Mater. 62 (2013) 109-118. https://doi.org/10.1080/00914037.2012.698339
[61] R. Ghafari, M. Jonoobi, L.M. Amirabad, K. Oksman, A.R. Taheri, Fabrication and characterization of novel bilayer scaffold from nanocellulose based aerogel for skin tissueengineering applications. Int. J. Biol. Macromol. 136 (2019) 796-803. https://doi.org/10.1016/j.ijbiomac.2019.06.104
[62] R.R. Mallepally, M.A. Marin, V. Surampudi, B. Subia, R.R. Rao, S.C. Kundu, M.A. McHugh, Silk fibroin aerogels: potential scaffolds for tissue engineering applications. Biomed Mater. 10 (2015) 035002. https://doi.org/10.1088/1748-6041/10/3/035002
[63] H. Maleki, M.A. Shahbazi, S. Montes, S.H. Hosseini, M.R. Eskandari, S. Zaunschirm,T. Verwanger, S. Mathur, B. Milow, B. Krammer, N. Hüsing, Mechanically strong silica-silk fibroin bioaerogel: a hybrid scaffold with ordered honeycomb micromorphology and multiscale porosity for bone regeneration,ACS Appl. Mater. Interfaces. 11(2019) 17256-17269. https://doi.org/10.1021/acsami.9b04283
[64] D. Sun, W. Liu, A. Tang, F. Guo, W. Xie, A new PEGDA/CNF aerogel-wet hydrogel scaffold fabricated by a two-step method, Soft Matter. 15(2019) 8092-8101. https://doi.org/10.1039/C9SM00899C
[65] A. Tang, J. Li,J. Li, S. Zhao, W. Liu, T. Liu, J. Wang, Y. Liu, Nanocellulose/PEGDA aerogel scaffolds with tunable modulus prepared by stereolithography for three-dimensional cell culture, J. Biomater. Sci. Polym. Ed. 30(2019) 797-814. https://doi.org/10.1080/09205063.2019.1602904
[66] J. Liu, F. Cheng, H. Grénman, S. Spoljaric, J. Seppälä, J.E. Eriksson, S. Willför, C. Xu, Development of nanocellulose scaffolds with tunable structures to support 3D cell culture, CarbohydrPolym. 148(2016) 259-271. https://doi.org/10.1016/j.carbpol.2016.04.064
[67] D.A. Rubenstein, H. Lu, S.S. Mahadik, N. Leventis, W. Yin, Characterization of the physical properties and biocompatibility of polybenzoxazine-based aerogels for use as anovel hard-tissue scaffold, J. Biomater. Sci. Polym. Ed. 23(2012) 1171-1184. https://doi.org/10.1163/092050611X576954
[68] J. Liao, Y. Qu, B. Chu, X. Zhang, Z. Qian, Biodegradable CSMA/PECA/Graphene porous hybrid scaffold for cartilage tissue engineering. Sci. Rep. 5(2015) 9879. https://doi.org/10.1038/srep09879
[69] T. Hu, J. Xu, Y. Ye, Y. Han, X. Li, Z. Wang, D. Sun, Y. Zhou, Z. Ni, Visual detection of mixed organophosphorous pesticide using QD-AChE aerogel based microfluidic arrays sensor, Biosens. Bioelectron. 136 (2019) 112-117. https://doi.org/10.1016/j.bios.2019.04.036
[70] J.M. Jeong, M. Yang, D.S. Kim, T.J. Lee, B.G. Choi, D.H. Kim, High performance electrochemical glucose sensor based on three-dimensional MoS2/graphene aerogel, J. Colloid Interface Sci. 506 (2017) 379-385. https://doi.org/10.1016/j.jcis.2017.07.061
[71] L. Ruiyi, C. Fangchao, Z. Haiyan, S. Xiulan, L. Zaijun, Electrochemical sensor for detection of cancer cell based on folic acid and octadecylamine-functionalized graphene aerogel microspheres, Biosens. Bioelectron. 119(2018) 156-162. https://doi.org/10.1016/j.bios.2018.07.060
[72] R. Li, T. Yang, Z. Li, Z. Gu, G. Wang, J. Liu, Synthesis of palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel for electrochemical detection of dopamine, Anal. Chim. Acta. 954(2017) 43-51. https://doi.org/10.1016/j.aca.2016.12.031
[73] S. Dong, N. Li, G. Suo, T. Huang, Inorganic/organic doped carbon aerogels as biosensing materials for the detection of hydrogen peroxide, Anal Chem. 85 (2013) 11739-11746. https://doi.org/10.1021/ac4015098
[74] B. Wang, S.Yan, Direct electrochemical analysis of glucose oxidase on a graphene aerogel/gold nanoparticle hybrid for glucose biosensing, J. Solid State Electrochem. 19(2015) 307-314. https://doi.org/10.1007/s10008-014-2608-7
[75] Y.Gao, F.Yang, Q. Yu, R. Fan, M. Yang, S. Rao, Q. Lan, Z. Yang, Z. Yang, Three-dimensional porous Cu@Cu2O aerogels for direct voltammetric sensing of glucose, Mikrochim Acta. 186(2019) 192. https://doi.org/10.1007/s00604-019-3263-6
[76] Y. Wu, L. Jiao, W. Xu, W. Gu, C. Zhu, D. Du, Y. Lin, Polydopamine-capped bimetallic AuPt hydrogels enable robust biosensor for organophosphorus pesticide detection, Small. 15(2019) e1900632. https://doi.org/10.1002/smll.201900632