Polymer Aerogels: Preparation and Potential for Biomedical Application
Jhonatas Rodrigues Barbosa, Luiza Helena da Silva Martins, Raul Nunes de Carvalho Junior
Polymeric aerogels have high added value and application. The potential to use natural polysaccharides, especially those from waste, has contributed to adding economic, social and ecological value. This chapter seeks to put forth the latest findings on the development of polymeric aerogels, drying techniques, properties, and pharmacological applications. The functional properties of polymeric aerogels, such as biodegradability, low toxicity and biocompatibility with cellular media are addressed. In the last decade, several works have reported the production of polymeric aerogels from natural polysaccharides. Chemical modifications and filling of new molecules were studied, improving the physicochemical and functional properties of the aerogels, as well as the drying techniques, were reported, and discarded. The production of polymeric aerogels is considered strategic for the development of sustainable, biodegradable and economically viable products.
Keywords
Polysaccharides, Supercritical Drying, Biodegradability, Nano Pores, Biocompatibility, Aerogels
Published online 2/25/2021, 22 pages
Citation: Jhonatas Rodrigues Barbosa, Luiza Helena da Silva Martins, Raul Nunes de Carvalho Junior, Polymer Aerogels: Preparation and Potential for Biomedical Application, Materials Research Foundations, Vol. 98, pp 1-22, 2021
DOI: https://doi.org/10.21741/9781644901298-1
Part of the book on Aerogels II
References
[1] J.P. Vareda, A. Lamy-Mendes, L. Durães, A reconsideration on the definition of the term aerogel based on current drying trends, Micropor. Mesopor. Mat. 258 (2018) 211-216. https://doi.org/10.1016/j.micromeso.2017.09.016
[2] Y. Jiang, S. Chowdhury, R. Balasubramanian, New insights into the role of nitrogen-bonding configurations in enhancing the photocatalytic activity of nitrogen-doped graphene aerogels, J. Colloid Interface Sci. 534 (2019) 574-585. https://doi.org/10.1016/j.jcis.2018.09.064
[3] C. Zhang, S. Liu, Y. Qi, F. Cui, X. Yang, Conformal carbon coated TiO2 aerogel as superior anode for lithium-ion batteries, Chem. Eng. J. 351 (2018) 825-831. https://doi.org/10.1016/j.cej.2018.06.125
[4] K. Harini, K. Ramya, M. Sukumar, Extraction of nano cellulose fibers from the banana peel and bract for production of acetyl and lauroyl cellulose, Carbohydr. Polym. 201 (2018) 329-339. https://doi.org/10.1016/j.carbpol.2018.08.081
[5] C.R. Bauli, D.B. Rocha, S.A. Oliveira, D.S. Rosa, Cellulose nanostructures from wood waste with low input consumption, J. Clean.Prod. 211 (2019) 408-416. https://doi.org/10.1016/j.jclepro.2018.11.099
[6] S.Z. Xie, R.H. Xue-Qiang, Z.L.H. Pan, J. Liu, J. P. Luo, Polysacharide of Dendrobium huoshanense activates macrophages via toll-like receptor 4-mediated signaling pathways, Carbohydr. Polym. 146 (2016) 292-300. https://doi.org/10.1016/j.carbpol.2016.03.059
[7] C.W. Cho, C.J. Han, Y.K. Rhee, Y.C. Lee, K.S. Shin, J.S. Shin, K.T. Lee, H. D. Hong, Cheonggukjang polysaccharides enhance immune activities and prevent cyclophosphamide-induced immunosuppression, Int. J. Biol. Macromol. 72(2015) 519-525. https://doi.org/10.1016/j.ijbiomac.2014.09.010
[8] C. Wan, Y. Jiao, S. Wei, L. Zhang, Y. Wu, J. Li, Functional nanocomposites from sustainable regenerated cellulose aerogels: A review, Chem. Eng. J. 359 (2019) 459–475. https://doi.org/10.1016/j.cej.2018.11.115
[9] J.P. Oliveira , G.P. Bruni, S. L. M. el Halal, F. C. Bertoldi, A. R .G. Dias, E.R. Zavareze, Cellulose nanocrystals from rice and oat husks and their application in aerogels for food packaging, Int. J. Biol. Macromol. 124 (2019) 175-184. https://doi.org/10.1016/j.ijbiomac.2018.11.205
[10] L. Heath, W. Thielemans, Cellulose nanowhisker aerogels, Green Chem. 12 (2010) 1448–1453. https://doi.org/10.1039/c0gc00035c
[11]Q.Y. Cheng, C.S. Guan, M. Wang, Y.D. Li, J.B. Zeng, Cellulose nanocrystal coated cotton fabric with superhydrophobicity for efficient oil/water separation, Carbohydr. Polym. 199 (2018) 390–39. https://doi.org/10.1016/j.carbpol.2018.07.046
[12] J. Cherian, J. Paulose,P. Vysakh, Harnessing nature’s hidden material: nano-cellulose. Mater. Today. 5 (2018) 12609–1261. https://doi.org/10.1016/j.matpr.2018.02.243
[13] S. Xiao, R. Gao, Y. Lu, J. Li, Q. Sun, Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles. Carbohydr. Polym. 119 (2015) 202–209. https://doi.org/10.1016/j.carbpol.2014.11.041
[14] H. Hosseini, M. Kokabi, S.M. Mousavi, Conductive bacterial cellulose multiwall carbon nanotubes nanocomposite aerogel as a potentially flexible lightweight strain sensor. Carbohydr. Polym. 201 (2018) 228–235. https://doi.org/10.1016/j.carbpol.2018.08.054
[15] A. Sheikhia, J. Hayashi, J. Eichenbaum, M. Gutin, N. Kuntjoro, D. Khorsandi, A. Khademhosseini, Recent advances in nanoengineering cellulose for cargo delivery. J. Control. Release. 294 (2019) 53–76. https://doi.org/10.1016/j.jconrel.2018.11.024
[16] E.E. Kiziltas, A. Kiziltas, D. J. Gardner, Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydr. Polym. 124 (2015) 131–138. https://doi.org/10.1016/j.carbpol.2015.01.036 0144-8617
[17] S.M. Santos, J.M. Carbajo, E. Quintana, D. Ibarra, N. Gomez, M. Ladero, M.E. Eugenio, J.C. Villar, Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohydr. Polym. 116 (2015) 173–181. https://doi.org/10.1016/j.carbpol.2014.03.064
[18] C. Campano,A. Balea, A. Blanco, C. Negro, Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose. 23 (2016) 57–91. https://doi.org/10.1007/s10570-015-0802-0
[19] R. Auta, G. Adamus, M. Kwiecien, I. Radecka, P. Hooley, Production and characterization of bacterial cellulose before and after enzymatic hydrolysis. Afr. J. Biotechnol. 16 (2017) 470-482. https://doi.org/10.5897/AJB2016.15486
[20] G. Pacheco, C.R. Nogueira, A.B. Meneguin, E. Trovatti, M.C.C. Silva, R.T.A. Machado, S.J.L. Ribeiro, E.C.S. Filho, H.S. Baruda, Development and characterization of bacterial cellulose produced by cashew tree residues as alternative carbon source. Ind. Crop. Prod. 107 (2017) 13–19. https://doi.org/10.1016/j.indcrop.2017.05.026
[21] A. Ubeyitogullari, O.N. Ciftci, Formation of nanoporous aerogels from wheat starch.Carbohydr. Polym. 147 (2016) 125-132. https://doi.org/10.1016/j.carbpol.2016.03.086
[22] L. Druel, R. Bard, W. Vorwerg, T. Budtova, Starch aerogels: A member of the family of thermal superinsulating materials.Biomacromolecules. 18 (2017) 4232-4239. https://doi.org/10.1016/j.carbpol.2016.03.086
[23] F. Zhu, Starch based aerogels: Production, properties and applications. Trends Food Sci Tech. 89 (2019) 1–10. https://doi.org/10.1016/j.tifs.2019.05.001
[24] N. Abhari, A. Madadlou, A. Dini, Structure of starch aerogel as affected by crosslinking and feasibility assessment of the aerogel for an anti-fungal volatile release. FoodChem. 221 (2017) 147–152. https://doi.org/10.1016/j.foodchem.2016.10.072
[25] Z. Miao, K. Ding, T. Wu, Z. Liu, B. Han, G. An, S. Miao, G. Yang¸ Fabrication of 3D-networks of native starch and their application to produce porous inorganic oxide networks through a supercritical route. Micropor. Mesopor. Mat. 111 (2008) 104–109. https://doi.org/10.1016/j.tifs.2019.05.001
[26] H.E. Knidri, R. Belaabed, A. Addaou, A. Laajeb, A. Lahsini, Extraction, chemical modification and characterization of chitin and chitosan. Int. J. Biol. Macromol. 120 (2018) 1181–1189. https://doi.org/10.1016/j.ijbiomac.2018.08.139
[27] N. Hsan, P.K. Dutta, S. Kumar, R. Bera, N. Das, Chitosan grafted graphene oxide aerogel: Synthesis, characterization and carbon dioxide capture study. Int. J. Biol. Macromol 125 (2019) 300–306. https://doi.org/10.1016/j.ijbiomac.2018.12.071
[28] S. Hassan, M. Suzuki, A. A. El-Moneim, Synthesis of MnO2-chitosan nanocomposite by one-step electrodeposition for electrochemical energy storage application. J. Power Sources. 246 (2014) 68-73. https://doi.org/10.1016/j.jpowsour.2013.06.085
[29] S.Takeshita, S. Yoda, Chitosan Aerogels: Transparent, Flexible Thermal Insulators. Chem. Mater.27(2015) 7569−7572. https://doi.org/10.1021/acs.chemmater.5b03610
[30] C. Li, K. Wu, Y. Su, S.B. Riffat, X. Ni, F. Jiang, Effect of drying temperature on structural and thermomechanical properties of konjac glucomannan-zein blend films. Int. J. Biol. Macromol. 138 (2019) 135–143. https://doi.org/10.1016/j.ijbiomac.2019.07.007
[31] Y. Wang, K. Wu, M. Xiao, S.B. Riffat, Y. Su, F. Jiang, Thermal conductivity, structure and mechanical properties of konjac glucomannan/starch based aerogel strengthened by wheat straw. Carbohydr. Polym. 197 (2018) 284–291. https://doi.org/10.1016/j.carbpol.2018.06.009
[32] C. Xin, J. Chen,H. Liang, J. Wan,J. Li, B. Li, Confirmation and measurement of hydrophobic interaction in sol-gel system of konjac glucomannan with different degree of deacetylation. Carbohydr. Polym 174 (2017) 337–342. https://doi.org/10.1016/j.carbpol.2017.06.088
[33] L. Shao, Y. Cao, Z. Li, W. Hu, S. Li, L. Lu, Dual responsive aerogel made from thermo pH sensitive graft copolymer alginate-g-P (NIPAM-co-NHMAM) for drug controlled release. Int. J. Biol. Macromol. 114 (2018) 1338–1344. https://doi.org/10.1016/j.ijbiomac.2018.03.166
[34] S. Groult, T. Budtova, Thermal conductivity structure correlations in thermal super-insulating pectin aerogels. Carbohydr. Polym. 196 (2018) 73–81. https://doi.org/10.1016/j.carbpol.2018.05.026
[35] N. Isıklan, S. Tokmak, Microwave based synthesis and spectral characterization of thermo-sensitive poly (N,N-diethylacrylamide) grafted pectin copolymer. Int. J. Biol. Macromol. 113 (2018) 669–680. https://doi.org/10.1016/j.ijbiomac.2018.02.155
[36] W. Wang, Y. Fang, X. Ni, K. Wu, Y. Wang, F. Jiang, S.B. Riffat, Fabrication and characterization of a novel konjac glucomannan-based air filtration aerogels strengthened by wheat straw and okara. Carbohydr. Polym. 224 (2019) 115-129.https://doi.org/10.1016/j.carbpol.2019.115129
[37] M. Oschatz, S. Boukhalfa, W. Nickel, J.P. Hofmann, C. Fischer, G. Yushi, S. Kaskel, Carbide-derived carbon aerogels with tunable pore structure as versatile electrode material in high power supercapacitors. Carbon. 113 (2017) 283-291. https://doi.org/10.1016/j.carbon.2016.11.050
[38] C.Y. Zhu, Z.Y. Li, H.Q. Pang, N. Pan, Design and optimization of core/shell structures as highly efficient opacifiers for silica aerogels as high-temperature thermal insulation. Int. J. Therm. Sci. 133 (2018) 206–215. https://doi.org/10.1016/j.ijthermalsci.2018.07.032
[39] T.R. Cuadros, A.A. Erices, J.M. Aguilera, Porous matrix of calcium alginate/gelatin with enhanced properties as scaffold for cell culture, J. Mech. Behav. Biomed. 46 (2015) 331–342. https://doi.org/10.1016/j.jmbbm.2014.08.026
[40] N. Pircher, D. Fischhuber, L. Carbajal, C. Strau, J.M. Nedelec, C. Kasper, T. Rosenau, F.Liebner, Preparation and Reinforcement of Dual-Porous Biocompatible Cellulose Scaffolds for Tissue Engineering. Macromol. Mater. Eng. 300 (2015) 911–924. https://doi.org/10.1002/mame.201500048
[41] Z. Kneza, M. Pantica, D. Cora, Z. Novaka, M.K. Hrncica, Are supercritical fluids solvents for the future?. Chem. Eng. Process. 141 (2019) 107-532. https://doi.org/10.1016/j.cep.2019.107532
[42] G. Brunner, Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. J. of Supercritical Fluids. 47 (2009) 373–381. https://doi.org/10.1016/j.supflu.2008.09.002
[43] E.S. Dassoff, Y.O. Li, Mechanisms and effects of ultrasound-assisted supercritical CO2 extraction. Trends Food Sci Tech. 86 (2019) 492–501. https://doi.org/org/10.1016/j.tifs.2019.03.001
[44] S. Plazzotta, S. Calligaris, L. Manzocco, Structure of oleogels from κ-carrageenan templates as affected by supercritical-CO2-drying, freeze-drying and lettuce-filler addition. Food Hydrocoll. 96 (2019) 1–10. https://doi.org/10.1016/j.foodhyd.2019.05.008
[45] I. Sahina, E. Uzunlarb, C. Erkeya, Investigation of kinetics of supercritical drying of alginate alcogel particles. J. Supercritic. Fluid. 146 (2019) 78–88. https://doi.org/10.1016/j.supflu.2018.12.019
[46] X. Ni, F. Ke, M. Xiao, K. Wu, Y. Kuanga, H. Corke, F. Jiang, The control of ice crystal growth and effect on porous structure of konjac glucomannan-based aerogels. Int. J. Biol. Macromol. 92 (2016) 1130–1135. https://doi.org/10.1016/j.ijbiomac.2016.08.020
[47] S. Liu, F. Yao, O. Oderinde, Z. Zhang, G. Fu, Green synthesis of oriented xanthan gum–graphene oxide hybrid aerogels for water purification. Carbohydr Polym 174 (2017) 392–399. https://doi.org/10.1016/j.carbpol.2017.06.044
[48] P. Gupta, B. Singh, A.K. Agrawal, P. K. Maji, Low density and high strength nanofibrillated cellulose aerogel for thermal insulation application. Mater. Design. 158 (2018) 224–236. https://doi.org/10.1016/j.matdes.2018.08.031
[49] H. Geng, A facile approach to light weight, high porosity cellulose aerogels. Int. J. Biol. Macromol. 118 (2018) 921–931. https://doi.org/10.1016/j.ijbiomac.2018.06.167
[50] G. Lodhi, Y.S. Kim, J.W. Hwang, S.K. Kim, Y.J. Jeon, J.Y. Je, C.B. Ahn, S.H. Moon, B.T. J.P. Park, Chitooligosaccharide and Its Derivatives: Preparation and Biological Applications. Biomed. Res. Int. 1 (2014) 1-13. https://doi.org/10.1155/2014/654913
[51] C. López-Iglesias, J. Barros, I. Ardao, F.J. Monteiro, C. Alvarez-Lorenzoa, J. L. Gómez-Amozaa, C.A. García-Gonzáleza, Vancomycin-loaded chitosan aerogel particles for chronic wound applications. Carbohydr. Polym. 204 (2019) 223–231. https://doi.org/10.1016/j.carbpol.2018.10.012
[52] H.M. Duong, Z. K. Lim, T. X. Nguyen, B. Gu, M. P. Penefather, N. Phan-Thien, Compressed hybrid cotton aerogels for stopping liquid leakage. Colloid. Surface. A. 537 (2018) 502–507. https://doi.org/10.1016/j.colsurfa.2017.10.067
[53] G. Tkalec, Z. Knez, Z. Novak, Fast production of high-methoxyl pectin aerogels for enhancing the bioavailability of low-soluble drugs. J. of Supercritical Fluids. 106 (2015) 16–22. https://doi.org/10.1016/j.supflu.2015.06.009
[54] G. Horvat, M. Pantic, Z. Knez, Z. Novak, Encapsulation and drug release of poorly water soluble nifedipine from biocarriers. J. Non-Cryst. Solids. 481 (2018) 486–493. https://doi.org/10.1016/j.jnoncrysol.2017.11.037
[55] H. Valo, S. Arola, P. Laaksonen, M. Torkkeli, L. Peltonen, M.B. Linder, R. Serimaa, S. Kuga, J. Hirvonen, T. Laaksonen, Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur. J. Pharm. Sci, 50 (2013) 69–77. https://doi.org/10.1016/j.ejps.2013.02.023
[56] C. Wan, J. Li, Cellulose aerogels functionalized with polypyrrole and silver nanoparticles: In-situ synthesis, characterization and antibacterial activity. Carbohydr. Polym. 146 (2016) 362–367. https://doi.org/10.1016/j.carbpol.2016.03.081
[57] C.A. Bugnone, S. Ronchetti, L. Manna, M. Banchero, An emulsification/internal setting technique for the preparation of coated and uncoated hybrid silica/alginate aerogel beads for controlled drug delivery. J. of Supercritical Fluids. 142 (2018) 1–9. https://doi.org/10.1016/j.supflu.2018.07.007
[58] L. Shao, Y. Cao, Z. Li, W. Hu, S. Li, L. Lu, Dual responsive aerogel made from thermo/pH sensitive graft copolymer alginate-g-P(NIPAM-co-NHMAM) for drug controlled release. Int. J. Biol. Macromol. 114 (2018) 1338–1344. https://doi.org/10.1016/j.ijbiomac.2018.03.166