Quantum Dots based Materials for New Generation Supercapacitors Application: A Recent Overview

$30.00

Quantum Dots based Materials for New Generation Supercapacitors Application: A Recent Overview

Gaurav Tatrari, Manoj Karakoti, Mayank Pathak, Anirban Dandapat, Tanmoy Rath, Nanda Gopal Sahoo

The need of energy storage and related devices are increasing day by day, due to the expansion of global population. To deal with such universal crisis, current energy storage devices like supercapacitors need to be improved in their performances and qualities. In this regard, quantum dots (QDs) are extensively being studied, especially due to their excellent properties. The utilization of QDs in supercapacitors is huge as electrode material as well as for fluorescent electrolytes. Various QDs based composites have been made for the same, which includes doping with various metals, non-metals and carbon nanomaterials (CNMs) like graphene, carbon nanotubes (CNTs) etc. In the present chapter the current advancement and futuristic possibilities of supercapacitors have been mentioned extensively.

Keywords
Carbon Nanomaterials, Graphene Quantum Dots, Heteroatom Doping, Energy Storage Devices, Supercapacitors

Published online 2/1/2020, 36 pages

Citation: Gaurav Tatrari, Manoj Karakoti, Mayank Pathak, Anirban Dandapat, Tanmoy Rath, Nanda Gopal Sahoo, Quantum Dots based Materials for New Generation Supercapacitors Application: A Recent Overview, Materials Research Foundations, Vol. 96, pp 216-250, 2021

DOI: https://doi.org/10.21741/9781644901250-9

Part of the book on Quantum Dots

References
[1] D.J. Lipomi, Z. Bao, Stretchable, elastic materials and devices for solar energy conversion, Energy Environ. Sci. 4 (2011) 3314–3328. https://doi.org/10.1039/c1ee01881g
[2] H. Nishide, K. Oyaizu, Toward flexible batteries, Science 80 (2008) 737–738. https://doi.org/10.1126/science.1151831
[3] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Mater. Sustain. Energy (2010) 171–179.https://doi.org/10.1142/9789814317665_0024
[4] J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics, Science 327 (2010) 1603–1607. https://doi.org/10.1126/science.1182383
[5] D. Chao, C. Zhu, X. Xia, J. Liu, X. Zhang, J. Wang, P. Liang, J. Lin, H. Zhang, Z.X. Shen, Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries, Nano Lett., 15 (2014) 565-573. https://doi.org/10.1021/nl504038s
[6] J.R. Miller, P. Simon, Electrochemical capacitors for energy management, Sci. Magazine, 321 (2008) 5889 651–652. https://dx.doi.org/10.1126/science.1158736
[7] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8 (2008) 3498–3502. https://doi.org/10.1021/nl802558y
[8] H.P. Wu, D.W. He, Y.S. Wang, M. Fu, Z.L. Liu, J.G. Wang, H.T. Wang, Graphene as the electrode material in supercapacitors, Proc. 2010 8th Int. Vac. Electron Sources Conf. Nanocarbon, IVESC (2010) 465–466. https://doi.org/10.1109/IVESC.2010.5644267
[9] J. Zhao, G. Chen, L. Zhu, G. Li, Graphene quantum dots-based platform for the fabrication of electrochemical biosensors, Electrochem. Commun. 13 (2011) 31–33. https://doi.org/10.1016/j.elecom.2010.11.005
[10] M. Hassan, E. Haque, K.R. Reddy, A.I. Minett, J. Chen, V.G. Gomes, Edge enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance, Nanoscale, 6 (2014) 11988-11994. https://doi.org/10.1039/C4NR02365J
[11] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials. J. Phys. Chem. C.113 (2009) 13103-13107. https://doi.org/10.1021/jp902214f
[12] N.L. Wu, Nanocrystalline oxide supercapacitors, Mater. Chem. Phys. 75 (2002) 6–11. https://doi.org/10.1016/S0254-0584(02)00022-6
[13] Z. S. Iro, C. Subramani, S.S. Dash, A brief review on electrode materials for supercapacitor, Int. J. Electro chem. Sci.11 (2016) 10628 – 10643. https://doi.org/10.20964/2016.12.50
[14] C.A. Downing, D.A. Stone, M.E. Portnoi, Zero-energy states in graphene quantum dots and rings. Phys. Rev. B. 84 (2011) 155437. https://doi.org/10.1103/PhysRevB.84.155437
[15] M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P. L. Taberna, C. P. Grey, B. Dunn, P. Simon, Efficient storage mechanisms for building better supercapacitors, Nat. Energy. 1 (2016) 16070. https://doi.org/10.1038/nenergy.2016.70
[16] M.V. Kiamahalleh, S.H.S. Zein, G. Najafpour, S.A. Sata, S. Buniran, Multiwalled carbon nanotubes based nanocomposites for supercapacitors : a review of electrode materials, Nano. 7 (2012) 1230002. https://doi.org/10.1142/S1793292012300022
[17] M. Jayalakshmi, K Balasubramanian, Simple capacitors to supercapacitors-an overview, Int. J. Electrochem. Sci. 3 (2008) 1196-1217.
[18] M.S. Halper, J. C. Ellenbogen, Supercapacitors: a brief overview, The MITRE Corporation, McLean, VA. 1–34.
[19] H. Choi, H. Yoon, Nanostructured electrode materials for electrochemical capacitor applications. Nanomaterials 5 (2015) 906-936. https://doi.org/10.3390/nano5020906
[20] J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors, J. Power Sources 101 (2001) 109–116. https://doi.org/10.1016/S0378-7753(01)00707-8
[21] M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8 (2008) 3498–3502. https://doi.org/10.1021/nl802558y
[22] C. Liu, Z. Yu, D. Neff, A. Zhamu, B. Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density, Nano Lett. 10 (2010) 4863–4868. https://doi.org/10.1021/nl102661q
[23] A. I. Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D. N. Futaba, H. Hatori, M. Yumura, S. Iijima, K. Hata, Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density, Adv. Mater. 22 (2010) 235-241. https://doi.org/10.1002/adma.200904349
[24] H. Zhou, G. Han, One-step fabrication of heterogeneous conducting polymers-coated graphene oxide/carbon nanotubes composite films for high-performance supercapacitors, Electro. Acta. 192 (2016) 448-455. https://doi.org/10.1016/j.electacta.2016.02.015
[25] S. A. Hashmi, H. M. Upadhyaya, Polypyrrole and poly (3-methyl thiophene)-based solid state redox supercapacitors using ion conducting polymer electrolyte, Solid State Ions. 152 (2002) 883–889. https://doi.org/10.1016/S0167-2738(02)00390-9
[26] J.H. Park, J. M. Ko, O.O.Park, D. W. Kim, Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber, J. Power Sources 105 (2002) 20–25. https://doi.org/10.1016/S0378-7753(01)00915-6
[27] T.P. Gujar, W.Y. Kim, I. Puspitasari, K.D. Jung, O.S. Joo, Electrochemically deposited nanograin ruthenium oxide as a pseudocapacitive electrode, J. Phys. Chem. C120 (2016) 2036–2046. https://doi.org/10.1021/acs.jpcc.5b09078
[28] Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.C. Qin, Polyaniline-coated electro-etched carbon fiber cloth electrodes for supercapacitors, J. Phys. Chem. C 115 (2011) 23584–23590. https://doi.org/10.1021/jp203852p
[29] H.Y. Wu, H.W. Wang, Electrochemical synthesis of nickel oxide nanoparticulate films on nickel foils for high-performance electrode materials of supercapacitors, Int. J. Electrochem. Sci. 7 (2012) 4405–4417.
[30] Z. Cai, L. Li, J. Ren, L. Qiu, H. Lin, H. Peng, Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes, J. Mater. Chem. A 1 (2013) 258–261. https://doi.org/10.1039/C2TA00274D
[31] R. Jalili, J.M. Razal, G.G. Wallace, Wet-spinning of PEDOT: PSS/functionalized- SWNTs composite: a facile route toward production of strong and highly conducting multifunctional fibers, Sci. Rep. 3 (2013) 3438. https://doi.org/10.1038/srep03438
[32] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, J. Nanosci. Nanotechno. 320–329. https://doi.org/10.1142/9789814287005_0033
[33] G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors, Nano Energy 2 (2012) 213–234. https://doi.org/10.1016/j.nanoen.2012.10.006
[34] J. Zhang, X.S. Zhao, Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes, J. Phys. Chem. C 116 (2012) 5420-5426. https://doi.org/10.1021/jp211474e
[35] J. Zhang, P. Yedlapalli, J. W. Lee, Thermodynamic analysis of hydrate-based pre-combustion capture of CO2, Chem. Eng. Sci. 64 (2009) 4732–4736. https://doi.org/10.1016/j.ces.2009.04.041
[36] G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors, Nano Energy 2 (2013) 213–234. https://doi.org/10.1016/j.nanoen.2012.10.006
[37] P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin?, Science 343 (2014) 1210-1211. https://doi.org/10.1126/science.1249625.
[38] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. mater. 7 (2008) 845-854. https://doi.org/10.1142/9789814287005_0033
[39] A.K. Geim, K.S. Novoselov, The rise of graphene, J. Nanosci. Nanotechno. (2010) 11-19. https://doi.org/10.1142/9789814287005_0002
[40] A.K. Geim, Graphene: status and prospects, Science 324 (2009) 1530-1534. https://doi.org/10.1126/science.1158877
[41] Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene based electrochemical sensors and biosensors: a review, Electroanalysis 22 (2010) 1027–36. https://doi.org/10.1002/elan.200900571
[42] A.T. Yousefi, S. Bagheri, S. Shahnazar, M.H. Rahman, N.A. Kadri, Computational local stiffness analysis of biological cell: high aspect ratio single wall carbon nanotube tip, Mater. Sci. Eng. C 59 (2016) 636-642. https://doi.org/10.1016/j.msec.2015.10.041
[43] R. Atif, F. Inam, Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein J. Nanotechnol. 7 (2016) 1174-1196. https://doi.org/10.3762/bjnano.7.109
[44] P. Tian, L. Tang, K.S. Teng, S.P. Lau, Graphene quantum dots from chemistry to applications. Mater. Today Chem. 10 (2018) pp.221-258. https://doi.org/10.1016/j.mtchem.2018.09.007
[45] H. Sun, L. Wu, W Wei, X. Qu, Recent advances in graphene quantum dots for sensing, Mater. Today Chem. 16 (2013) 433–442. https://doi.org/10.1016/j.mattod.2013.10.020
[46] L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, J.J. Zhu, Focusing on luminescent graphene quantum dots: current status and future perspectives, Nanoscale 5 (2013) 4015–39. https://doi.org/10.1039/C3NR33849E
[47] S. Kim, S.W. Hwang, M.K. Kim, D.Y. Shin, D.H. Shin, C.O. Kim, S. B. Yang, J. H. Park, E. Hwang, S. H. Choi, G. Ko, S. Sim, C. Sone, H.J. Choi, S. Bae, B.H. Hong, Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape, ACS Nano. 6 (2012) 8203–8208. https://doi.org/10.1021/nn302878r
[48] J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. R. Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A.A. Marti, T. Hayashi, J. J. Zhu, P. M. Ajayan, Graphene quantum dots derived from carbon fibers. Nano Lett. 12(2012) 844–849. https://doi.org/10.1021/nl2038979
[49] J.S. Wei, H. Ding, P. Zhang, Y.F. Song, J. Chen, Y.G. Wang, H.M. Xiong, Carbon dots/NiCo2O4 nanocomposites with various morphologies for high performance supercapacitors, Small 12 (2016) 5927-5934. https://doi.org/10.1002/smll.201602164
[50] Q. Liu, J. Sun, K. Gao, N. Chen, X. Sun, D. Ti, C. Bai, R. Cui, L. Qu, Graphene quantum dots for energy storage and conversion: from fabrication to applications, Mater. Chem. Front 4 (2020) 421-436. https://doi.org/10.1039/C9QM00553F
[51] Y. Huang, L. Lin, T. Shi, S. Cheng, Y. Zhong, C. Chen, Z. Tang, Graphene quantum dots-induced morphological changes in CuCo2S4 nanocomposites for supercapacitor electrodes with enhanced performance. Appl. Surf. Sci.463 (2019) 498-503. https://doi.org/10.1016/j.apsusc.2018.08.247
[52] L. Xu, C. Cheng, C. Yao, X. Jin, Flexible supercapacitor electrode based on lignosulfonate-derived graphene quantum dots/graphene hydrogel, Org. Electron.78 (2020) 105407. https://doi.org/10.1016/j.orgel.2019.105407
[53] S. Zheng, Z. Jin, C. Han, J. Li, H. Xu, S. Park, J.O. Park, E. Choi, K. Xu, Graphene quantum dots-decorated hollow copper sulfide nanoparticles for controlled intracellular drug release and enhanced photothermal-chemotherapy, J. Mater. Sci. 55 (2020) 1184-1197. https://doi.org/10.1007/s10853-019-04062-x
[54] V. Prévot, E.B. Lami, Recent advances in layered double hydroxide/polymer latex nanocomposites: from assembly to in situ formation, LDH Polymer Nanocomposite. (2020) 461-495. https://doi.org/10.1016/B978-0-08-101903-0.00011-8
[55] C. Luk, L. Tang, W. Zhang, S. Yu, K. Teng, S. Lau, An efficient and stable fluorescent graphene quantum dot–agar composite as a converting material in white light emitting diodes, J. Mater. Chem. 22 (2012) 22378–22381. https://doi.org/10.1039/C2JM35305A.
[56] V. Gupta, N. Chaudhary, R. Srivastava, G.D. Sharma, R. Bhardwaj, S. Chand Luminscent graphene quantum dots for organic photovoltaic devices, J. Am. Chem. Soc 133 (2011) 9960–9963. https://doi.org/10.1021/ja2036749
[57] C. Tewari, G. Tatrari, M. Karakoti, S. Pandey, M. Pal, S. Rana, B.S. Bhushan, A.B. Melkani, A. Srivastava, N.G. Sahoo, A simple, eco-friendly and green approach to synthesis of blue photoluminescent potassium-doped graphene oxide from agriculture waste for bio-imaging applications, Mater. Sci. Eng. C 104 (2019) 109970. https://doi.org/10.1016/j.msec.2019.109970
[58] D.I. Son, B.W. Kwon, D.H. Park, W.S. Seo, Y. Yi, B. Angadi, C.L. Lee, W.K. Choi, Emissive ZnO graphene quantum dots for white-light-emitting diodes, Nat. nanotechno. 7 (2012) 465-471. https://doi.org/10.1038/nnano.2012.71
[59] C.X. Guo, H.B. Yang, Z.M. Sheng, Z.S. Lu, Q.L. Song, C.M. Li, Layered graphene/quantum dots for photovoltaic devices, Angew. Chem. Int. Ed., 49 (2010) 3014-3017. https://doi.org/10.1002/anie.200906291
[60] O. Koshy, Y. B. Pottathara, S. Thomas, B. Petovar, M. Finsgar, A flexible, disposable hydrogen peroxide sensor on graphene nanoplatelet-coated cellulose. Curr. Anal. Chem. 13 (2017) 480–487. https://doi.org/10.2174/1573411013666170427121958
[61] H. Fei, R. Ye, G. Ye, Y. Gong, Z. Peng, X. Fan, E.L. Samuel, P.M. Ajayan, J.M. Tour, Boron-and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient electrocatalysts for oxygen reduction. ACS Nano. 8 (2014) 10837-10843. https://doi.org/10.1021/nn504637y
[62] A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D. H. Kim, J. Li, P. Chen, Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing, Adv Funct. Mater. 24 (2014) 3021–3026. https://doi.org/10.1002/adfm.201303441
[63] S.L. Ting, S.J. Ee, A. Ananthanarayanan, K.C. Leong, P. Chen, Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions, Electrochem. Acta. 172 (2015) 7–11. https://doi.org/10.1016/j.electacta.2015.01.026
[64] D. Qu, M. Zheng, J. Li, Z. Xie, Z. Sun, Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications, Light Sci. Appl. 4 (2015) 364-364.https://doi.org/10.1038/lsa.2015.137
[65] A. Brotchie, Graphene quantum dots: It’s all in the twist, Nat. Rev. Mater. 1(2016) 1-1. https://doi.org/10.1038/natrevmats.2016.6
[66] M. Bacon, S. J. Bradley, T. Nann, Graphene quantum dots, Part. Syst. Char. 31 (2014) 415-428. https://doi.org/10.1002/ppsc.201300252
[67] M. Arvand, S. Hemmati, Magnetic nanoparticles embedded with graphene quantum dots and multiwalled carbon nanotubes as a sensing platform for electrochemical detection of progesterone, Sens. Actuators B: Chem. 238 (2017) 346–356. https://doi.org/10.1016/j.snb.2016.07.066
[68] S. Bak, D. Kim, H. Lee, Graphene quantum dots and their possible energy applications: A review. Curr. Appl. Phys. 16 (2016) 1192-1201. https://doi.org/10.1016/j.cap.2016.03.026
[69] Q. Liu, J. Sun, K. Gao, N. Chen, X. Sun, D. Ti, C. Bai, R. Cui, L. Qu, Graphene quantum dots for energy storage and conversion: from fabrication to applications, Mater. Chem. Front. 4 (2020) 421-436. https://doi.org/10.1039/C9QM00553F
[70] R.A. Fisher, M.R. Watt, W.J. Ready, Functionalized carbon nanotube supercapacitor electrodes: a review on pseudocapacitive materials, Ecs J. Solid State Sc. 2(2013) 170. https://doi.org/10.1149/2.017310jss
[71] G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources 196 (2011) 1-12. https://doi.org/10.1016/j.jpowsour.2010.06.084
[72] C.M. Luk, L.B. Tang, W. F. Zhang, S. F. Yu, K. S. Teng, S.P. Lau, An efficient and stable fluorescent graphene quantum dot–agar composite as a converting material in white light emitting diodes, J. Mater. Chem. 22 (2012) 22378–22381. https://doi.org/10.1039/C2JM35305A
[73] L.L. Zhang, X. S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev 38 (2009) 2520-2531. https://doi.org/10.1039/B813846J.
[74] Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid, Carbon 50 (2012) 4738–4743. https://doi.org/10.1016/j.carbon.2012.06.002
[75] P. Zhang, X. Zhao, Y. Ji, Z. Ouyang, X. Wen, J. Li, Z. Su, G. Wei, Electrospinning graphene quantum dots into a nanofibrous membrane for dual-purpose fluorescent and electrochemical biosensors, J. Mater. Chem. B 3(2015) 2487–2496. https://doi.org/10.1039/C4TB02092H
[76] J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. R. Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, Graphene quantum dots derived from carbon fibers, Nano Lett. 12 (2012) 844-849. https://doi.org/10.1021/nl2038979
[77] S. H. Choi, Unique properties of graphene quantum dots and their applications in photonic/electronic devices, J. Phys. D. Appl. Phys.50 (2017)103002.
[78] S. Zhu, J. Zhang, X. Liu, B. Li, X. Wang, S. Tang, Q. Meng, Y. Li, C. Shi, R. Hu, B. Yang, Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Adv. 2 (2012) 2717-2720. https://doi.org/10.1039/C2RA20182H
[79] C. Hu, Y. Liu, Y. Yang, J. Cui, Z. Huang, Y. Wang, L. Yang, H. Wang, Y. Xiao, J. Rong, One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide. J. Mater. Chem. B 1 (2013) 39–42. https://doi.org/10.1039/C2TB00189F
[80] M. Kaur, M. Kaur, V. K. Sharma, Nitrogen-doped graphene and graphene quantum dots: A review on synthesis and applications in energy, Adv. Colloid. Interface. 259 (2018) 44-64. https://doi.org/10.1016/j.cis.2018.07.001
[81] M. Hassan, E. Haque, K. R. Reddy. A.I. Minett, J. Chen, V.G. Gomes, Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale 6 (2014) 11988–11994. https://doi.org/10.1039/C4NR02365J
[82] D. B. Shinde, V.K. Pillai, Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chem. Eur. J. 18 (2012) 12522–12528. https://doi.org/10.1002/chem.201201043
[83] X. Tan, Y. Li, X. Li, S. Zhou, L. Fan, S. Yang, Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform. Chem. Commun. 51 (2015) 2544–2546. https://doi.org/10.1039/C4CC09332A
[84] S. Wei, R. Zhang, Y. Liu, H. Ding, Y.L. Zhang, Graphene quantum dots prepared from chemical exfoliation of multiwall carbon nanotubes: an efficient photocatalyst promoter, Catal. Commun. 74 (2016) 104–109. https://doi.org/10.1016/j.catcom.2015.11.010
[85] J. M. Bai, L. Zhang, R.P. Liang, J.D. Qiu, Graphene quantum dots combined with europium ions as photoluminescent probes for phosphate sensing, Chem. Eur. J. 19 (2013) 3822–3826. https://doi.org/10.1002/chem.201204295
[86] S. Mondal, U. Rana, S. Malik, Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials, Chem. Commun. 51 (2015) 12365-12368. https://doi.org/10.1039/C5CC03981A
[87] Y. Zhang, C. Wu, X. Zhou, X. Wu X, Y. Yang, H. Wu, S. Guo, J. Zhang, Graphene quantum dots/gold electrode and its application in living cell H2O2 detection, Nanoscale 5 (2013) 1816–1819. https://doi.org/10.1039/C3NR33954H
[88] J. Kim, J. S. Suh, Size-controllable and low-cost fabrication of graphene quantum dots using thermal plasma jet, ACS Nano. 8 (2014) 4190–4196. https://doi.org/10.1021/nn404180w
[89] X. Wu, F. Tian, W. Wang, J. Chen, M. Wu, J.X. Zhao, Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing, J. Mater. Chem. C 1 (2013) 4676–84. https://doi.org/10.1039/C3TC30820K
[90] P. Bondavalli, Graphene and Related Nanomaterials: Properties and Applications, Elsevier. 2017.
[91] C. Yan, X. Hu, P. Guan, T. Hou, P. Chen, D. Wan, X. Zhang, J. Wang, C. Wang, Highly biocompatible graphene quantum dots: green synthesis, toxicity comparison and fluorescence imaging. J. Mater. Sci. 55 (2020) 1198-1215. https://doi.org/10.1007/s10853-019-04079-2
[92] Y. Sun, S. Wang, C. Li, P. Luo, L. Tao, Y. Wei, G. Shi, Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties, Phys. Chem. Chem. Phys. 15 (2013) 9907e9913. https://doi.org/10.1039/C3CP50691F
[93] Y. Shin, J. Lee, J. Yang, J. Park, K. Lee, S. Kim, Y. Park, H. Lee, Mass production of graphene quantum dots by one-pot synthesis directly from graphite in high yield, Small 10 (2014) 866-870. https://doi.org/10.1002/smll.201302286
[94] M.J. Molaei, The optical properties and solar energy conversion applications of carbon quantum dots: A review, J. Sol. Energy 196 (2020) 549-566. https://doi.org/10.1016/j.solener.2019.12.036
[95] D. Pan, J. Zhang, Z. Li, M. Wu, Hydrothermal route for cutting graphene sheets into blueluminescent graphene quantum dots. Adv. Mater. 22 (2010) 734-738. https://doi.org/10.1002/adma.200902825
[96] S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H. Gao, H. Wei, H. Zhang, H. Sun, B. Yang, Strongly green-photoluminescent graphene quantum dots for bioimaging applications, Chem. Commun. 477 (2011) 6858-6856. https://doi.org/10.1039/C1CC11122A
[97] D. Pan, L. Guo, J. Zhang, C. Xi, Q. Xue, H. Huang, J. Li, Z. Zhang, W. Yu, Z. Chen, Z. Li, Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J. Mater. Chem. 22 (2012) 3314-3318. https://doi.org/10.1039/C2JM16005F
[98] L. Lin, S. Zhang, Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem. Commun. 48 (2012)10177-10179. https://doi.org/10.1039/C2CC35559K
[99] B. Yin, J. Deng, X. Peng, Q. Long, J. Zhao, Q. Lu, Q. Chen, H. Li, H. Tang, Y. Zhang, S. Yao, Green synthesis of carbon dots with down-and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay, Analyst. 138 (2013) 6551-6557. https://doi.org/10.1039/C3AN01003A
[100] Y. Hu, Y. Zhao, G. Lu, N. Chen, Z. Zhang, H. Li, H. Shao, L. Qu, Graphene quantum dots–carbon nanotube hybrid arrays for supercapacitors, Nanotechnology 24 (2013) 195401. https://doi.org/10.1088/0957-4484/24/19/195401
[101] S. B. Martínez, M. Valcárcel, Graphene quantum dots as sensor for phenols in olive oil, Sensor Actuat. B-Chem. 197 (2014) 350-357. https://doi.org/10.1016/j.snb.2014.03.008
[102] V.N. Mehta, S. Jha, S.K. Kailasa, One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells, Mater. Sci. Eng. C 38 (2014) 20–27. https://doi.org/10.1016/j.msec.2014.01.038
[103] P. Jegannathan, A.T. Yousefi, M.S.A. Karim, N.A. Kadri, Enhancement of graphene quantum dots based applications via optimum physical chemistry: A review, Biocybern. Biomed. Eng.38 (2018) 481-497. https://doi.org/10.1016/j.bbe.2018.03.006
[104] S. Sahu, B. Behera, T.K. Maiti, S. Mohapatra, Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents, Chem Commun. 48 (2012) 8835-8837. https://doi.org/10.1039/C2CC33796G
[105] H. Xu, X. Yang, G. Li, C. Zhao, X. Liao, Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples, J. Agric. Food Chem. 63 (2015) 6707-6714. https://doi.org/10.1016/j.mtchem.2018.03.003
[106] N. Wang, Y. Wang, T. Guo, T. Yang, M. Chen, J. Wang, Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli, Biosens. Bioelectron. 85 (2016) 68-75. https://doi.org/10.1016/j.bios.2016.04.089
[107] A. Kumar, A. Ray Chowdhuri, D. Laha, T.K. Mahto, P. Karmakar, S.K. Sahu, Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging,Sensor Actuat. B-Chem. 242 (2017) 679-686. https://doi.org/10.1016/j.snb.2016.11.109
[108] S.A.A. Vandarkuzhali, V. Jeyalakshmi, G. Sivaraman, S. Singaravadivel, K.R. Krishnamurthy, B. Viswanathan, Highly fluorescent carbon dots from Pseudo-stem of banana plant: applications as nanosensor and bio-imaging agents, Sensor Actuat. B-Chem. 252 (2017) 894e900. https://doi.org/10.1016/j.snb.2017.06.088
[109] J. Shen, S. Shang, X. Chen, Y. Cai, Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging, Mater. Sci. Eng. C 76 (2017) 856e864. https://doi.org/10.1016/j.msec.2017.03.178
[110] Z. Li, X. Li, Y. Zong, G. Tan, Y. Sun, Y. Lan, M. He, Z. Ren, X. Zheng, Solvothermal synthesis of nitrogen-doped graphene decorated by super paramagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon 115 (2017) 493–502. https://doi.org/10.1016/j.carbon.2017.01.036
[111] H. An, Y. Li, Y. Gao, C. Cao, J. Han, Y. Feng, W. Feng, Free-standing fluorine and nitrogen co-doped graphene paper as a high-performance electrode for flexible sodium-ion batteries, Carbon 116 (2017) 338–346. https://doi.org/10.1016/j.carbon.2017.01.101
[112] R. Yadav, C.K. Dixit, Synthesis, characterization and prospective applications of nitrogen- doped graphene: A short review, J. Sci. Adv. Mater. Devices 2 (2017) 141–149. https://doi.org/10.1016/j.jsamd.2017.05.007
[113] V. Milosavljevic, A. Moulick, P. Kopel, V. Adam, R. Kizek, Microwave preparation of carbon quantum dots with different surface modification, J. Metallomics Nanotechnol. 3 (2014)16-22.
[114] S. Umrao, M.H. Jang, J.H. Oh, G. Kim, S. Sahoo, Y.H. Cho, A. Srivastva, I.K. Oh, Microwave bottom-up route for size-tunable and switchable photoluminescent graphene quantum dots using acetylacetone: New platform for enzyme-free detection of hydrogen peroxide, Carbon81(2015) 514-524. https://doi.org/10.1016/j.carbon.2014.09.084
[115] D. Gu, S. Shang, Q. Yu, J. Shen, Green synthesis of nitrogen-doped carbon dots from lotus root for Hg (II) ions detection and cell imaging, Appl. Surf. Sci. 3 90 (2016) 38-42. https://doi.org/10.1016/j.apsusc.2016.08.012
[116] X. T. Zheng, A. Ananthanarayanan, K.Q. Luo, P. Chen, Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11(2015) 1620-1636. https://doi.org/10.1002/smll.201402648
[117] C.K. Chua, Z. Sofer, P. Simek, O. Jankovsky, K. Klimova, S. Bakardjieva, S.H. Kučková, M. Pumera, Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene, Acs Nano. 9 (2015) 2548-2555. https://doi.org/10.1021/nn505639q
[118] S. Zhang, L. Sui, H. Dong, W. He, L. Dong, L. Yu, High-Performance Supercapacitor of graphene quantum dots with uniform sizes, ACS Appl. Mater. Inter.10 (2018) 12983–12991. https://doi:10.1021/acsami.8b00323
[119] S. Kundu, R.M. Yadav, T. Narayanan, M.V. Shelke, R. Vajtai, P.M. Ajayan, V. K. Pillai, Synthesis of N, F and S co-doped graphene quantum dots,Nanoscale 7 (2015)11515–11519. https://doi.org/10.1039/C5NR02427G
[120] J. Ju, W. Chen, In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments, Anal. Chem. 87(2015) 1903–1910. https://doi.org/10.1021/ac5041555
[121] J. Zhou, Z. Sheng, H. Han, M. Zou, C. Li, Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source, Mater. Lett. 66 (2012) 222-224. https://doi.org/10.1016/j.matlet.2011.08.081
[122] R. Das, R. Bandyopadhyay, P. Pramanik, Carbon quantum dots from natural resource: A review. Mater. Today Chem. 8(2018) 96-109. https://doi.org/10.1016/j.mtchem.2018.03.003
[123] A. B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakassides, E.P. Giannelis, Surface functionalized carbogenic quantum dots. Small 4 (2008) 455-458. https://doi.org/10.1002/smll.200700578
[124] P.C. Hsu, Z. Y. Shih, C.H. Lee, H.T. Chang, Synthesis and analytical applications of photoluminescent carbon nanodots. Curr. Green Chem. 14 (2012) 917-920. https://doi.org/10.1039/C2GC16451E
[125] C. W. Lai, Y.H. Hsiao, Y.K. Peng, P.T. Chou, Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/m SiO2 for cell imaging and drug release, J. Mater. Chem. 22 (2012) 14403-14409. https://doi.org/10.1039/C2JM32206D
[126] Y. Yan, J. Gong, J. Chen, Z. Zeng, W. Huang, K. Pu, J. Liu, P. Chen, Recent advances on graphene quantum dots: from chemistry and physics to applications, Adv. Mater. 31(2019) 1808283. https://doi.org/10.1002/adma.201808283
[127] E. Ciotta, P. Prosposito, P. Tagliatesta, C. Lorecchio, I. Venditti, I. Fratoddi, I. R. Pizzoferrato, Sensitivity to heavy-metal ions of cage-opening fullerene quantum dots. M.D.P.I. proceedings 1 (2017) 475. https://doi.org/10.3390/proceedings 1040475
[128] W. Liu, X. Yan, J. Chen, Y. Feng, Q. Xue, Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers. Nanoscale 5 (2013) 6053-6062. https://doi.org/10.1039/C3NR01139A
[129] Y. Qing, Y. Jiang, H. Lin, L. Wang, A. Liu, Y. Cao, R. Sheng, Y. Guo, C. Fan, S. Zhang, D. Jia, Boosting the supercapacitor performance of activated carbon by constructing overall conductive networks using graphene quantum dot, J. Mater. Chem. A7 (2019) 6021-6027. https://doi.org/10.1039/C8TA11620B
[130] Y. Zhu, X. Ji, C. Pan, Q. Sun, W. Song, L. Fang, Q. Chen, C. E. Banks, A carbon quantum dot decorated RuO2 network: outstanding supercapacitances under ultrafast charge and discharge. Energy Environ. Sci.6 (2013) 3665-3675. https://doi.org/10.1039/C3EE41776J
[131] X. Jian, H.M. Yang, J.G. Li, E.H. Zhang, Z.H. Liang, Flexible all-solid-state high-performance supercapacitor based on electrochemically synthesized carbon quantum dots/polypyrrole composite electrode, Electrochim. Acta. 228 (2017) 483-493. https://doi.org/10.1016/j.electacta.2017.01.082
[132] Z. Zhang, J. Zhang, N. Chen, L. Qu, Graphene quantum dots: an emerging material for energy-related applications and beyond, Energy Environ. Sci.5 (2012) 8869-8890. https://doi.org/10.1039/C2EE22982J
[133] W.W. Liu, Y.Q. Feng, X.B. Yan, J.T. Chen, Q.J. Xue, Superior micro-supercapacitors based on graphene quantum dots, Adv. Funct. Mater 23 (2013) 4111–22. https://doi.org/10.1002/adfm.201203771
[134] X. Zhou, Z. Tian, J. Li, H. Ruan, Y. Ma, Z. Yang, Y. Qu, Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction. Nanoscale 6 (2014) 2603-2607. https://doi.org/10.1039/C3NR05578G
[135] J. Shen, Y. Zhu, X. Yang, C. Li, Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices, Chem. Commun. 48 (2012) 3686e3699. https://doi.org/10.1039/C2CC00110A
[136] R. Tjandra, W. Liu, M. Zhang, A. Yu, All-carbon flexible supercapacitors based on electrophoretic deposition of graphene quantum dots on carbon cloth, J. Power Sources 438(2019) 227009. https://doi.org/10.1016/j.jpowsour.2019.227009
[137] S. Zhang, Y. Li, H. Song, X. Chen, J. Zhou, S. Hong. M. Huang,Graphene quantum dots as the electrolyte for solid state supercapacitors, Sci. Rep.6(2016) 19292. https://doi.org/10.1038/srep19292
[138] A.B. Ganganboina, A. D. Chowdhury, R. Doong, New avenue for appendage of graphene quantum dots on halloysite nanotubes as anode materials for high performance supercapacitors, ACS Sustain. Chem. Eng. 5 (2017) 4930–4940. https://doi.org/10.1021/acssuschemeng.7b00329
[139] H. Xia, C. Hong, B. Li, B. Zhao, Z. Lin, M. Zheng, S.V. Savilov, S.M. Aldoshin, Facile synthesis of hematite quantum dot/functionalized grapheme sheet composites as advanced anode materials for asymmetric supercapacitors. Adv. Funct. Mater. 25(2015) 627-635. https://doi.org/10.1002/adfm.201403554