Quantum Dots Based Material for Drug Delivery Applications
Himani Tiwari, Neha Karki, Monika Matiyani, Gaurav Tatrari, Anand Ballabh Melkani, Nanda Gopal Sahoo
Quantum dots (QDs) have shown promising potential to many biomedical and biological applications, mainly in drug delivery or activation and cellular imaging. These semiconductor nanoparticles, QDs, whose particle size is in the range of 2-10 nanometer with unique photo-chemical and -physical properties that are not possessed by any other isolated molecules, have become one of the distinct class of imaging probes and worldwide platforms for manufacturing of multifunctional nanodevices. In this chapter, properties, applications of QDs, and importance in the biomedical field especially in drug delivery is presented.
Keywords
Quantum Dots, Nanoparticles, Toxicity, Drug Delivery, Imaging
Published online 2/1/2020, 25 pages
Citation: Himani Tiwari, Neha Karki, Monika Matiyani, Gaurav Tatrari, Anand Ballabh Melkani, Nanda Gopal Sahoo, Quantum Dots Based Material for Drug Delivery Applications, Materials Research Foundations, Vol. 96, pp 191-215, 2021
DOI: https://doi.org/10.21741/9781644901250-8
Part of the book on Quantum Dots
References
[1] S. Ghaderi, B. Ramesh, A.M. Seifalian, Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: A review, J. Drug Target. 19 (2011) 475-486. https://doi.org/10.3109/1061186X.2010.526227
[2] D. Bera, L. Qian, P.H. Holloway, Phosphor Quantum Dots, John WIley & Sons, Ltd: West Sussex, UK, 2008.
[3] P. Walter, E. Welcomme, P. Hallegot, N.J. Zaluzec, C. Deeb, J. Castaing, P. Veyssiere, R. Breniaux, J.L. Leveque, G. Tsoucaris, Early use of PbS nanotechnology for an ancient hair dyeing formula, Nano Lett. 6 (2006) 2215-2219. https://doi.org/10.1021/nl061493u
[4] D.Y. Lee, K. C.P. Li, Molecular theranostics: a primer for the imaging professional, AJR Am. J. Roentgenol. 197 (2011) 318-324. https://doi.org/10.2214/AJR.11.6797
[5] D. Bera, L. Qian, T.K. Tseng, P.H. Holloway, Quantum dots and their multimodal applications: a review, Materials. 3 (2010) 2260-2345. https://doi.org/10.3390/ma3042260
[6] A.M. Smith, H. Duan, A.M. Mohs, S. Nie, Bioconjugated quantum dots for in vivo molecular and cellular imaging, Adv. Drug Del. Rev. 60 (2008) 1226–1240. https://doi.org/10.1016/j.addr.2008.03.015
[7] Q. Yuan, S. Hein, R.D.K. Misra, New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: synthesis, characterization and in vitro drug delivery response, Acta Biomater. 6 (2010) 2732-2739. https://doi.org/10.1016/j.actbio.2010.01.025
[8] T. Jamieson, R. Bakshi, D. Petrova, R. Pocock, M. Imani, A.M. Seifalian, Biological applications of quantum dots, Biomaterials. 28 (2007) 4717–4732. https://doi.org/10.1016/j.biomaterials.2007.07.014
[9] R. Hardman, A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors, Environ. Health Perspect. 114 (2005) 165-172. https://doi.org/10.1289/ehp.8284
[10] C.L. Li, C.M. Ou, C.C. Huang, W.C. Wu, Y.P. Chen, T.E. Lin, Lin-Chen Ho, C.W. Wang, C.C. Shih, H.C. Zhou, Y.C. Lee, W.F. Tzeng, T.J. Chiou, S.T. Chu, J. Cangm H.T. Chang, Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells, J. Mat. Chem. B. 2 (2014) 4565-4571. https://doi.org/10.1039/C4TB00216D
[11] J. Shen, Y. Zhu, X. Yang, C. Li, Graphene quantum dots: emergent nano ¬lights for bioimaging, sensors, catalysis and photovoltaic devices, ChemComm. 48 (2012) 3686–3699. https://doi.org/10.1039/C2CC00110A
[12] S.J. Zhu, J.H. Zhang, C.Y. Qiao, Strongly green-photoluminescent graphene quantum dots for bioimaging applications, ChemComm. 47 (2011) 6858–6860. https://doi.org/10.1039/C1CC11122A
[13] C.B. Murray, C.R. Kagan, M.G. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Ann. Rev. Mater. Sci. 30 (2000) 545-610. https://doi.org/10.1146/annurev.matsci.30.1.545
[14] A.P. Alivisatos, W. Gu, C.A. Larabell, Quantum dots as cellular probes, Ann Rev Biomed Eng. 7 (2005) 55-76. https://doi.org/10.1146/annurev.bioeng.7.060804.100432
[15] I. Medintz, H. Uyeda, E. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labeling and sensing, Nat. Mater. 4 (2005) 435-446. https://doi.org/10.1038/nmat1390
[16] J.M. Klostranec, W.C.W. Chan, Quantum dots in biological and biomedical research: recent progress and present challenges, Adv. Mater. 18 (2006) 1953-1964. https://doi.org/10.1002/adma.200500786
[17] B.O. Dabbousi, V. Rodriguez-Viejo, F.V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi, (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites, J. Phys. Chem. B. 101 (1997) 9463-9475. https://doi.org/10.1021/jp971091y
[18] X. Wang, X. Sun, J. Lao, H. He, Tiantian Cheng, Mingqing Wang, S. Wang, F. Huang, Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery, Colloids Surf. B. 122 (2014) 638–644. https://doi.org/10.1016/j.colsurfb.2014.07.043
[19] P. Nigam, S. Waghmode, M. Louis, S, Wangnoo, P. Chavan, D. Sarkar, Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer, J. Mater. Chem. B. 2 (2014) 3190-3195. https://doi.org/10.1039/C4TB00015C
[20] J. Qiu, R. Zhang, J. Li, Y. Sang, W. Tang, P. R. Gil, Hong Liu, Fluorescent graphene quantum dots as traceable, pH-sensitive drug delivery systems, Int. J. Nanomedicine. 10 (2015) 6709–6724. https://doi.org/10.2147%2FIJN.S91864
[21] J.B. Delehanty, K. Boeneman, C.E. Bradburne, K. Robertson, I.L. Medintz, Quantum dots: a powerful tool for understanding the intricacies of nanoparticle-mediated drug delivery. 6 (2009) 1091-1112. https://doi.org/10.1517/17425240903167934
[22] H.S. Choi , W. Liu, P. Misra, E. Tanaka, J.P. Zimmer, B.L. Lpe, M.G. Bawendi, J.V. Franjioni, Renal clearance of quantum dots, Nat. Biotechnol. 25 (2007) 1165 -1170. https://doi.org/10.1038/nbt1340
[23] L. Lia, L. Lia, C.P. Chena, F. Cui, Green synthesis of nitrogen-doped carbon dots from ginkgo fruits and the application in cell imaging, Inorg. Chem. Commun. 86 (2017) 227-231. https://doi.org/10.1016/j.inoche.2017.10.006
[24] L. Qi, X. Gao, Emerging application of quantum dots for drug delivery and therapy, Expert Opin. Drug Deliv. 5 (2008) 263-267. https://doi.org/10.1517/17425247.5.3.263
[25] H. Tao, K. Yang, Z. Ma, J. Wan, Y. Zhang, Z. Kang, Z. Liu, In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite, Small. 8 (2012) 281-290. https://doi.org/10.1002/smll.201101706
[26] P. Shen, Y. Xia, Synthesis-modification integration: one-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing, Anal. Chem. 86 (2014) 5323-5329. https://doi.org/10.1021/ac5001338
[27] Q. Zhang, X. Sun, H. Ruan, K. Yin, H. Li, Production of yellow-emitting carbon quantum dots from fullerene carbon soot, Sci. China Mater. 60 (2017) 141-150. https://doi.org/10.1007/s40843-016-5160-9
[28] R. Ye, C. Xiang, J. Lin, Z. Peng, K. Huang, Z. Yan, N. P. Cook, E.L. Samuel, C.C. Hwang, G. Ruan, G. Ceriotti, Coal as an abundant source of graphene quantum dots, Nat. Commun. 4 (2013) 2943. https://doi.org/10.1038/ncomms3943
[29] D. Reyes, M. Camacho, M. Camacho, M. Mayorga, D. Weathers, G. Salamo, Z. Wang, Neogi, Laser ablated carbon nanodots for light emission, Nanoscale Res. Lett. 11 (2016) 424. https://doi.org/10.1186/s11671-016-1638-8
[30] N. Tarasenka, A. Stupak, N. Tarasenko, S. Chakrabarti, D. Mariotti, Structure and optical properties of carbon nanoparticles generated by laser treatment of graphite in liquids, ChemPhysChem. 18 (2017) 1074-1083. https://doi.org/10.1002/cphc.201601182
[31] X. Li, H. Wang, Y. Shimizu, A. Pyatenko, K. Kawaguchi, N. Koshizaki, Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents, ChemComm. 47 (2010) 932-934. https://doi.org/10.1039/C0CC03552A
[32] V. Nguyen, L. Yan, J. Si, X. Hou, Femtosecond laser-induced size reduction of carbon nanodots in solution: effect of laser fluence, spot size, and irradiation time, J. Appl. Phys. 117 (2015) 084304. https://doi.org/10.1063/1.4909506
[33] S.L. Hu, K.Y. Niu, J. Sun, J. Yang, N.Q. Zhao, X.W. Du, One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem. 19 (2009) 484-488. https://doi.org/10.1039/B812943F
[34] R.S. Ajimsha, G. Anoop, A. Aravind, M.K. Jayaraj, Luminescence from surfactant-free ZnO quantum dots prepared by laser ablation in liquid, Electrochem Solid St. 11 (2008) 14-17. https://doi.org/10.1149/1.2820767
[35] S. Hu, J. Liu, J. Yang, Y. Wang, S. Cao, Laser synthesis and size tailor of carbon quantum dots, J. Nanopart. Res. 13 (2011) 7247-7252. https://doi.org/10.1007/s11051-011-0638-y
[36] L. Wang, X. Chen, Y. Lu, C. Liu, W. Yang, Carbon quantum dots displaying dual-wavelength photoluminescence and electrochemiluminescence prepared by high-energy ball milling, Carbon. 94 (2015) 472-478. https://doi.org/10.1016/j.carbon.2015.06.084
[37] Q. Lu, C. Wu, D. Liu, H. Wang, W. Su, H. Li, Y. Zhang, S. Yao, A facile and simple method for synthesis of graphene oxide quantum dots from black carbon, Green Chemistry. 19 (2017) 900-904. https://doi.org/10.1039/C6GC03092K
[38] G. Wang, Q. Guo, D. Chen, Z. Liu, X. Zheng, A. Xu, S. Yang, G. Ding, Facile and highly effective synthesis of controllable lattice sulfur-doped graphene quantum dots via hydrothermal treatment of durian, ACS Appl. Mater. Inter. 10 (2018) 5750-5759. https://doi.org/10.1021/acsami.7b16002
[39] Q. Wang, X. Liu, L. Zhang, Y. Lv, Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application, Analyst. 137 (2012) 5392-5397. https://doi.org/10.1039/C2AN36059D
[40] L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, J. Hao, S. P. Lau, Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots, ACS nano. 6 (2012) 5102-5110. https://doi.org/10.1021/nn300760g
[41] X. Zhai, P. Zhang, C. Liu, T. Bai, W. Li, L. Dai, W. Liu, Highly luminescent carbon nanodots by microwave-assisted pyrolysis. ChemComm. 48 (2012) 7955-7957. https://doi.org/10.1039/C2CC33869F
[42] C. Liu, P. Zhang, F. Tian, W. Li, F. Li, W. Liu, One-step synthesis of surface passivated carbon nanodots by microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging, J. Mater. Chem. 21 (2011) 13163-13167. https://doi.org/10.1039/C1JM12744F
[43] P.C. Hsu, H. T. Chang, Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups, ChemComm. 48 (2012) 3984-3986. https://doi.org/10.1039/C2CC30188A
[44] H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, X. Yang, Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties, ChemComm. 34 (2009) 5118-5120. https://doi.org/10.1039/B907612C
[45] J. Hou, J. Yan, Q. Zhao, Y. Li, H. Ding, L. Ding, A novel one-pot route for large-scale preparation of highly photoluminescent carbon quantum dots powders, Nanoscale. 5 (2013) 9558-9561. https://doi.org/10.1039/C3NR03444E
[46] C.B. Ma, Z.T. Zhu, H.X. Wang, X. Huang, X. Zhang, X. Qi, H.L. Zhang, Y. Zhu, X. Deng, Y. Peng, Y. Han, A general solid-state synthesis of chemically-doped fluorescent graphene quantum dots for bioimaging and optoelectronic applications, Nanoscale. 7 (2015) 10162-10169. https://doi.org/10.1039/C5NR01757B
[47] V.I. Klimov, Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion, J. Phys. Chem. B. 110 (2006) 16827-16845. https://doi.org/10.1021/jp0615959
[48] A. Issac, C. V. Borczyskowski, F. Cichos, Correlation between photoluminescence intermittency of CdSe quantum dots and self-trapped states in dielectric media, Phys. Rev. B. 71 (2005) 161302. https://doi.org/10.1103/PhysRevB.71.161302
[49] O.H. Frenkel, Y. Altschuler, S. Benita, Nanoparticle-cell interactions: drug delivery implications. Crit. Rev. Ther. Drug Carrier Syst. 25 (2008) 485-544. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v25.i6.10
[50] C.E. Probst, P. Zrazhevskiy, V. Bagalkot, X. Gao, Quantum dots as a platform for nanoparticle drug delivery vehicle design, Adv. Drug Deliv. 65 (2013) 703-718. https://doi.org/10.1016/j.addr.2012.09.036
[51] W.C.W. Chan, S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science. 281(1998) 2016-2018. https://doi.org/10.1126/science.281.5385.2016
[52] M.C. Mancini, B.A. Kairdolf, A.M. Smith, S.M. Nie, Oxidative quenching and degradation of polymer-encapsulated quantum dots: new insights into the long-term fate and toxicity of nanocrystals in vivo, J. Am. Chem. Soc. 130 (2008) 10836-10837. https://doi.org/10.1021/ja8040477
[53] D. S. Lidke, P. Nagy, R. Heintzmann, Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction, Nat Biotechnol. 22 (2004) 198-203. https://doi.org/10.1038/nbt929
[54] J.B. Delehanty, I.L. Medintz, T. Pons, Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery, Bioconjug. Chem. 17 (2006) 920-927. https://doi.org/10.1021/bc060044i
[55] N.E. Bishop, Dynamics of endosomal sorting, in: K.W. Jeon (Ed.), International review of cytology, Elsevier Academic Press, London, 2003, pp. 1-57.
[56] V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P.W. Kantoff, R. Langer, O.C. Farokhzad, Quantum dot–aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer, Nano Lett. 7 (2007) 3065–3070. https://doi.org/10.1021/nl071546n
[57] Y. Wu, Uptake and intracellular fate of multifunctional nanoparticles: a comparison between lipoplexes and polyplexes via quantum dot mediated Forster resonance energy transfer, Mol. Pharm. 8 (2011) 1662–1668. https://doi.org/10.1021/mp100466m
[58] K.C. Weng, Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo, Nano Lett. 8 (2008) 2851–2857.
[59] S. Liu, Bortezomib induces DNA hypomethylation and silenced gene transcription by interfering with Sp1/NF-kappaB-dependent DNA methyltransferase activity in acute myeloid leukemia, Blood. 111 (2008) 2364–2373. https://doi.org/10.1182/blood-2007-08-110171
[60] Y. Liu, Y. Mi, J. Zhao, S.S. Feng, Multifunctional silica nanoparticles for targeted delivery of hydrophobic imaging and therapeutic agents, Int. J. Pharm. 421 (2011) 370–378. https://doi.org/10.1016/j.ijpharm.2011.10.004
[61] K. Hanaki, A. Momo, T. Oku, A. Komoto, S. Maenosono, Y. Yamaguchi, K. Yamamoto, Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker, Biochem. Biophys. Res. Commun. 302 (2003) 496–501. https://doi.org/10.1016/S0006-291X(03)00211-0
[62] J.K. Jaiswal, H. Mattoussi, J.M. Mauro, S.M. Simon, Long-term multiple color imaging of live cells using quantum dot bioconjugates, Nat. Biotechnol. 21 (2003) 47–51. https://doi.org/10.1038/nbt767
[63] W.J. Parak, R. Boudreau, M. Le Gros, D. Gerion, D. Zanchet, C.M. Micheel, S.C. Williams, A.P. Alivisatos, C. Larabell, Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks, Adv. Mater. 14 (2002) 882–885. https://doi.org/10.1002/1521-4095
[64] P. Zrazhevskiy, M. Sena, X. Gao, Designing multifunctional quantum dots for bioimaging, detection, and drug delivery Chem. Soc. Rev. 39 (2010) 4326–4354. https://doi.org/10.1039/B915139G
[65] M. Bruchez, Semiconductor nanocrystals as fluorescent biological labels, Science. 281 (1998) 2013–2016. https://doi.org/10.1126/science.281.5385.2013
[66] A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science, 271 (1996) 933–937. https://doi.org/10.1126/science.271.5251.933
[67] I.L. Medintz, Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater. 4 (2005) 435–446. https://doi.org/10.1038/nmat1390
[68] A.P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals, J. Phys. Chem. 100 (1996) 13226–13239. https://doi.org/10.1021/jp9535506
[69] W.C. Chan, D.J. Maxwell, X. Gao, R.E. Bailey, M. Han, S. Nie, Luminescent quantum dots for multiplexed biological detection and imaging, Curr. Opin. Biotechnol. 13 (2002) 40–46. https://doi.org/10.1016/S0958-1669(02)00282-3
[70] H. Kobayashi, Simultaneous multicolor imaging of five different lymphatic basins using quantum dots, Nano Lett., 7 (2007) 1711–1716. https://doi.org/10.1021/nl0707003
[71] Z. Popovic, A nanoparticle size series for in vivo fluorescence imaging, Angew. Chem. Int. Ed. 122 (2010) 8831–8834. https://doi.org/10.1002/ange.201003142
[72] J.B. Delehanty, Spatiotemporal multicolor labeling of individual cells using peptide functionalized quantum dots and mixed delivery techniques, J. Am. Chem. Soc. 133 (2011) 10482–10489. https://doi.org/10.1021/ja200555z
[73] X. Gao, In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol. 22 (2004) 969–976. https://doi.org/10.1038/nbt994
[74] C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. M. Javier, H. E. Gaub, S. Sto1lzle, N. Fertig, W. J. Parak, Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 5 (2005) 331–338. https://doi:10.1021/nl047996
[75] A.M. Derfus, W.C.W. Chan, S. N. Bhatiya, Intracellular delivery of quantum dots for live cell labeling and organelle tracking, Adv. Matar. 16 (2004) 961-966. https://doi.org/10.1002/adma.200306111
[76] B.I. Ipe, M. Lehnig, C. M. Niemeyer, On the generation of free radical species, from quantum dots, Small. 7 (2005) 706-709. https://doi: 10.1002/smll.200500105
[77] S.J. Cho, D. Maysinger, M. Jain, B. Roder, S. Hackbarth, F.M. Winnik, Long –term exposure to CdTe quantum dot causes functional impairments in live cell, Langmuir. 23 (2007) 1974-1980. https://doi.org/10.1021/la060093j
[78] M. Green, E. Howman, Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun. 1 (2005)121–123. https://doi: 10.1039/b413175d.
[79] R. Bakalova, Z. Zhelev, R. Jose, T. Nagase, H. Ohba, M. Ishikawa, Y. Baba, Role of free cadmium and selenium ions in the potential mechanism for the enhancement of photoluminescence of CdSe quantum dots under ultraviolet irradiation, J. Nanosci. Nanotechnol. 5 (2005) 887–894. https://doi:10.1166/jnn.2005.117
[80] P.J. Cassidy, G.K. Radda, Molecular imaging perspectives, J. R. Soc. Interface. 2 (2005) 133–144. https://doi.org/10.1098/rsif.2005.0040
[81] O. Schillaci, R. Danieli, F. Padovano, A. Testa, G. Simonetti, Molecular imaging of atheroslerotic plaque with nuclear medicine techniques (Review), Int. J. Mol. Med. 22 (2008) 3–7. https://doi.org/10.3892/ijmm.22.1.3
[82] M. Lecchi, L. Ottobrini, C. Martelli, A.D. Sole, G. Lucignani, Instrumentation and probes for molecular and cellular imaging, Q. J. Nucl. Med. Mol. Imaging. 51 (2007) 111–126.
[83] B.J. Pichler, H.F. Wehrl, M.S. Judenhofer, Latest advances in molecular imaging instrumentation, J. Nucl. Med. 49 (2008). https://doi:10.2967/jnumed.108.045880
[84] M. Levenson, D.T. Lynch, H. Kobayashi, J.M. Backer, M.V. Backer, Multiplexing with multispectral imaging: from mice to microscopy, Ilar J. 49 (2008) 78–88. https://doi.org/10.1093/ilar.49.1.78
[85] P. Sharma, S. Brown, G. Walter, S. Santra, B. Moudgil, Nanoparticles for bioimaging, Adv. Colloid Interface Sci. 123 (2006) 471–485. https://doi.org/10.1016/j.cis.2006.05.026
[86] A.M. Smith, X.H. Gao, S.M. Nie, Quantum dot nanocrystals for in vivo molecular and cellular imaging, Photochem. Photobiol. 80 (2004) 377–385. https://doi.org/10.1111/j.1751-1097.2004.tb00102.x
[87] R.E. Bailey, A.M. Smith, S.M. Nie, Quantum dots in biology and medicine. Physica E. 25 (2004) 1–12. https://doi.org/10.1016/j.physe.2004.07.013
[88] S. Santra, J.S. Xu, K.M. Wang, W.H. Tan, Luminescent nanoparticle probes for bioimaging, J. Nanosci. Nanotech. 4 (2004) 590–599. https://doi.org/10.1166/jnn.2004.017
[89] P. Zrazhevskiy, X. Gao, Quantum dots for cancer molecular imaging. Minerva Biotecnologica. 21 (2009) 37–52.
[90] E.M.C. Hillman, Optical brain imaging in vivo: techniques and applications from animal to man, J. Biomed. Optics. 21 (2007) 051402. https://doi.org/10.1117/1.2789693
[91] G.D. Luker, K. E. Luker, Optical imaging: current applications and future directions, J. Nucl. Med. 49 (2008) 1–4. https://doi.org/10.2967/jnumed.107.045799
[92] W.W. Wu, A.D. Li, Optically switchable nanoparticles for biological imaging, Nanomedicine. 2 (2007) 523–531. https://doi.org/10.2217/17435889.2.4.523
[93] R. Weissleder, A clearer vision for in vivo imaging, Nat. Biotechnol. 19 (2001) 316–317. https://doi.org/10.1038/86684
[94] Z. Medarova, W. Pham, C. Farrar, In vivo imaging of siRNA delivery and silencing in tumors, Nat Med. 13 (2007) 372 -377. https://doi.org/10.1038/nm1486