Applications of Quantum Dots in Supercapacitors

$30.00

Applications of Quantum Dots in Supercapacitors

Sanjeev Kumar Ujjain, Preety Ahuja

Quantum dots (QDs) are a new class of zero-dimensional (0D) nanomaterials having unique electronic and optical properties along with biocompatibility, chemical inertness, dispersibility in water, and high specific surface area that gives them potential for biological, optoelectronic and energy related applications. Among them, charge storage supercapacitor (SC) devices have been intensively studied as the nano-sized QDs act as an excellent interface to stimulate an enhanced interaction between electrode and electrolyte resulting in superior charge storage properties of the SC. In this chapter, the latest research progress on the five representative types of QDs namely carbon nanodots (CNDs), graphene QDs (GQDs), polymer QDs (PQDs), transition metal oxide (TMO) and dichalcogenide (TMD) QDs are comprehensively introduced and their influence on the final charge storage properties of supercapacitor devices is emphatically discussed in detail. Finally, a brief outlook is given, pointing out the challenges which remain to be settled before adoption of QDs can be of widespread utility for near future energy-functional devices.

Keywords
Quantum Dots, Carbon and Graphene, Polymer Quantum Dots, Transition Metal Oxide, Supercapacitors

Published online 2/1/2020, 22 pages

Citation: Sanjeev Kumar Ujjain, Preety Ahuja, Applications of Quantum Dots in Supercapacitors, Materials Research Foundations, Vol. 96, pp 169-190, 2021

DOI: https://doi.org/10.21741/9781644901250-7

Part of the book on Quantum Dots

References
[1] M. F. El-Kady, Y. Shao, R. B. Kaner, Graphene for batteries, supercapacitors and beyond, Nat. Rev. Mater. 1 (2016) 16033. https://doi.org/10.1038/natrevmats.2016.33
[2] M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.-L. Taberna, C. P. Grey, B. Dunn, P. Simon, Efficient storage mechanisms for building better supercapacitors, Nat Energy 1 (2016) 16070. https://doi.org/10.1038/nenergy.2016.70
[3] H. Wang, Y. Yang, L. Guo, Nature-inspired electrochemical energy-storage materials and devices, Adv. Energy Mater. 7 (2017) 1601709. https://doi.org/10.1002/aenm.201601709
[4] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev. 44 (2015) 7484–7539. https://doi.org/10.1039/C5CS00303B
[5] P. Ahuja, S.K. Ujjain, Graphene-Based Materials for Flexible Supercapacitors, in: Inamuddin, B. Satyanarayan, A. M. Asiri, (Eds.), Self-standing Substrates, Springer International Publishing, Switzerland AG, 2020, pp. 297-326
[6] M. Semeniuk, Z. Yi, V. Poursorkhabi, J. Tjong, S. Jaffer, Z.H. Lu, M. Sain, Future perspectives and review on organic carbon dots in electronic applications, ACS Nano 13 (2019) 6224−6255. https://doi.org/10.1021/acsnano.9b00688
[7] P. Ahuja, S.K. Ujjain, R. Kanojia, MnOx/C nanocomposite: an insight on high-performance supercapacitor and non-enzymatic hydrogen peroxide detection, Appl. Surf. Sci. 404 (2017) 197-205. https://doi.org/10.1016/j.apsusc.2017.01.300
[8] V. Ganesh, S. Pitchumani, V. Lakshminarayanan, New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon, J. Power Sources 158 (2006) 1523-1532. https://doi.org/10.1016/j.jpowsour.2005.10.090
[9] S. Bak, D. Kim, H. Lee, Graphene quantum dots and their possible energy applications: A review, Curr. Appl. Phys. 16 (2016) 1192-1201. https://doi.org/10.1016/j.cap.2016.03.026
[10] Y.-Y. Song, Z.-D. Gao, J.-H. Wang, X.-H. Xia, R. Lynch, Multistage coloring electrochromic device based on TiO2 nanotube arrays modified with WO3 nanoparticles, Adv. Funct. Mater. 21 (2011) 1941- 1946. https://doi.org/10.1002/adfm.201002258
[11] M. R. J. Scherer, L. Li, P. M. S. Cunha, O. A. Scherman, U. Steiner, Enhanced electrochromism in gyroid‐structured vanadium pentoxide, Adv. Mater. 24 (2012) 1217- 1221. https://doi.org/10.1002/adma.201104272
[12] H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. Itty Ipe, M. G. Bawendi, J. V. Frangioni, Renal clearance of quantum dots, Nat. Biotechnol. 25 (2007) 1165-1170. https://doi.org/10.1038/nbt1340
[13] S. Cong, Y. Tian, Q. Li, Z. Zhao, F. Geng, Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications, Adv. Mater. 26 (2014) 4260-4267. https://doi.org/10.1002/adma.201400447
[14] W. Yin, D. He, X. Bai, W. W. Yu, Synthesis of tungsten disulfide quantum dots for high-performance supercapacitor electrodes, J. Alloys Compd. 786 (2019) 764-769. https://doi.org/10.1016/j.jallcom.2019.02.030
[15] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5 (2013) 263-275. https://doi.org/10.1038/nchem.1589
[16] L. Lin, Y. Xu, S. Zhang, I. M. Ross, A. C. M. Ong, D. A. Allwood, Fabrication of luminescent monolayered tungsten dichalcogenides quantum dots with giant spin-valley coupling, ACS Nano 7 (2013) 8214-8223. https://doi.org/10.1021/nn403682r
[17] M. Jing, C. Wang, H. Hou, Z. Wu, Y. Zhu, Y. Yang, X. Jia, Y. Zhang, X. Ji, Ultrafine nickel oxide quantum dots embedded with few-layer exfoliative graphene for an asymmetric supercapacitor: Enhanced capacitances by alternating voltage, J. Power Sources 298 (2015) 241-248. https://doi.org/10.1016/j.jpowsour.2015.08.039
[18] Y. Li, H. Zhang, S. Wang, Y. Lin, Y. Chen, Z. Shi, N. Li, W. Wang, Z. Guo, Facile low-temperature synthesis of hematite quantum dots anchored on three-dimensional ultra-porous graphene-like framework as advanced anode materials for asymmetric supercapacitors, J. Mater. Chem. A 4 (2016) 11247-11255. https://doi.org/10.1039/C6TA02927B
[19] H. Xia, C. Hong, B. Li, B. Zhao, Z. Lin, M. Zheng, S. V. Savilov, S. M. Aldoshin, Facile synthesis of hematite quantum-dot/functionalized graphene-sheet composites as advanced anode materials for asymmetric supercapacitors, Adv. Funct. Mater. 25 (2014) 627-635. https://doi.org/10.1002/adfm.201403554
[20] L. Liu, J. Lang, P. Zhang, B. Hu, X. Yan, Facile synthesis of Fe2O3nano-dots@nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte, ACS Appl. Mater. Interfaces 8 (2016) 9335−9344. https://doi.org/10.1021/acsami.6b00225
[21] S. Liu, J. Zhou, Z. Cai, G. Fang, Y. Cai, A. Pan, S. Liang, Nb2O5 Quantum dots embedded in MOF derived nitrogen-doped porous carbon for advanced hybrid supercapacitors applications, J. Mater. Chem. A 4 (2016) 17838-17847. https://doi.org/10.1039/C6TA07856G
[22] V. Bonu, B. Gupta, S. Chandra, A. Das, S. Dhara, A.K. Tyagi, Electrochemical supercapacitor performance of SnO2 quantum dots, Electrochim. Acta 203 (2016) 230–237. https://doi.org/10.1016/j.electacta.2016.03.153
[23] Y. Wu, F. Ran, Vanadium nitride quantum dot/nitrogen-doped microporous carbon nanofibers electrode for high-performance supercapacitors, J. Power Sources 344 (2017) 1-10. https://doi.org/10.1016/j.jpowsour.2017.01.095
[24] J. Wang, W. Dou, X. Zhang, W. Han, X. Mu, Y. Zhang, X. Zhao, Y. Chen, Z. Yang, Q. Su, E. Xie, W. Lan., X. Wang, Embedded Ag quantum dots into interconnected Co3O4 nanosheets grown on 3D graphene networks for high stable and flexible supercapacitors, Electrochim. Acta 224 (2017) 260–268. https://doi.org/10.1016/j.electacta.2016.12.073
[25] A. Ghorai, A. Midya, S. K. Ray, Superior charge storage performance of WS2 quantum dots in a flexible solid state supercapacitor, New J. Chem. 42 (2018) 3609-3613. https://doi.org/10.1039/C7NJ03869K
[26] X. Feng, J. Wu, M. Ai, W. Pisula, L. Zhi, J. P. Rabe, K. Müllen, Triangle-shaped polycyclic aromatic hydrocarbons, Angew. Chem. 119 (2007) 3093−3096. https://doi.org/10.1002/ange.200605224
[27] X. Yan, X. Cui, L. Li, Synthesis of large, stable colloidal graphene quantum dots with tunable size, J. Am. Chem. Soc. 132 (2010) 5944−5945. https://doi.org/10.1021/ja1009376
[28] S. Qu, X. Wang, Q. Lu, X. Liu, L. Wang, A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots, Angew. Chem. 124 (2012) 12381−12384. https://doi.org/10.1002/ange.201206791
[29] D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang, D. Li, H. Tan, Z. Zhao, Z. Xie, Z. Sun, Highly luminescent S, N Co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts, Nanoscale 5 (2013) 12272−12277. https://doi.org/10.1039/C3NR04402E
[30] X. Zhang, J. Wang, J. Liu, J. Wu, H. Chen, H. Bi, Design and preparation of a ternary composite of graphene oxide/carbon dots/polypyrrole for supercapacitor application: Importance and unique role of carbon dots, Carbon 115 (2017) 134-146. https://doi.org/10.1016/j.carbon.2017.01.005
[31] X. Jian, H.-M. Yang, J.-G. Li, E.-H. Zhang, L.-L. Cao, Z.-H. Liang, Flexible all-solid-state high-performance supercapacitor based on electrochemically synthesized carbon quantum dots/polypyrrole composite electrode, Electrochim. Acta 228 (2017) 483–493. https://doi.org/10.1016/j.electacta.2017.01.082
[32] Y. Xie, H. Du, Electrochemical capacitance of a carbon quantum dots–polypyrrole/titania nanotube hybrid, RSC Adv. 5 (2015) 89689-89697. https://doi.org/10.1039/C5RA16538E
[33] X. Jian, J.-G. Li, H.-M. Yang, L. –L. Cao, E. –H. Zhang, Z.-H. Liang, Carbon quantum dots reinforced polypyrrole nanowire via electrostatic self-assembly strategy for high-performance supercapacitors, Carbon 114 (2017) 533-543. https://doi.org/10.1016/j.carbon.2016.12.033
[34] Z. Zhao, Y. Xie, Enhanced electrochemical performance of carbon quantum dots-polyaniline hybrid, J. Power Sources 337 (2017) 54-64. https://doi.org/10.1016/j.jpowsour.2016.10.110
[35] Y. Zhou, Y. Xie, Enhanced electrochemical stability of carbon quantum dots-incorporated and ferrous-coordinated polypyrrole for supercapacitor, J. Solid State Electr. 22 (2018) 2515–2529. https://doi.org/10.1007/s10008-018-3964-5
[36] S. N. Baker, G. A. Baker, Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 49 (2010) 6726−6744. https://doi.org/10.1002/anie.200906623
[37] K. A. S. Fernando, S. Sahu, Y. Liu, W. K. Lewis, E. A. Guliants, A. Jafariyan, P. Wang, C. E. Bunker, Y. Sun, Carbon quantum dots and applications in photocatalytic energy conversion, ACS Appl. Mater. Interfaces 7 (2015) 8363−8376. https://doi.org/10.1021/acsami.5b00448
[38] L. Wang, X. Chen, Y. Lu, C. Liu, W. Yang, Carbon quantum dots displaying dual-wavelength photoluminescence and electrochemiluminescence prepared by high-energy ball milling, Carbon 94 (2015) 472−478. https://doi.org/10.1016/j.carbon.2015.06.084
[39] H. Hou, C. E. Banks, M. Jing, Y. Zhang, X. Ji, Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life, Adv. Mater. 27 (2015) 7861−7866. https://doi.org/10.1002/adma.201503816
[40] H. Li, Z. Kang, Y. Liu, S. Lee, Carbon nanodots: Synthesis, properties and applications, J. Mater. Chem. 22 (2012) 24230−24253. https://doi.org/10.1039/C2JM34690G
[41] Y. Xu, J. Liu, C. Gao, E. Wang, Applications of carbon quantum dots in electrochemiluminescence: A mini review, Electrochem. Commun. 48 (2014) 151−154. https://doi.org/10.1016/j.elecom.2014.08.032
[42] H. Sun, L. Wu, W. Wei, X. Qu, Recent advances in graphene quantum dots for sensing, Mater. Today 16 (2013) 433−442. https://doi.org/10.1016/j.mattod.2013.10.020
[43] L. Ponomarenko, F. Schedin, M. Katsnelson, R. Yang, E. Hill, K. Novoselov, A. Geim, Chaotic Dirac billiard in graphene quantum dots, Science 320 (2008) 356−358. https://doi.org/10.1126/science.1154663
[44] S. Zhu, Y. Song, J. Wang, H. Wan, Y. Zhang, Y. Ning, B. Yang, Photoluminescence mechanism in graphene quantum dots: quantum confinement effect and surface/edge state, Nano Today 13 (2017) 10−14. https://doi.org/10.1016/j.nantod.2016.12.006
[45] X. Li, M. Rui, J. Song, Z. Shen, H. Zeng, Carbon and graphene quantum dots for optoelectronic and energy devices: A Review, Adv. Funct. Mater. 25 (2015) 4929–4947. https://doi.org/10.1002/adfm.201501250
[46] N. G.- Bretesche, O. Crosnier, G. Buvat, F. Favier, T. Brousse, Electrochemical study of aqueous asymmetric FeWO4/MnO2 supercapacitor, J. Power Sources, 326 (2016) 695-701. https://doi.org/10.1016/j.jpowsour.2016.04.075
[47] P. Ahuja, V. Sahu, S. K. Ujjain, R. K. Sharma, G. Singh, Performance evaluation of asymmetric supercapacitor based on cobalt manganite modified graphene nanoribbons, Electrochim. Acta 146 (2014) 429-436. https://doi.org/10.1016/j.electacta.2014.09.039
[48] S. K. Ujjain, P. Ahuja, R. Bhatia, P. Attri, Printable multi-walled carbon nanotubes thin film for high performance all solid state flexible supercapacitors, Mater. Res. Bull. 83 (2016) 167-171. https://doi.org/10.1016/j.materresbull.2016.06.006
[49] S. K. Ujjain, R. Bhatia, P. Ahuja, P. Attri, Highly conductive aromatic functionalized multi-walled carbon nanotube for inkjet printable high performance supercapacitor electrodes, PloS one 10 (2015), e0131475. https://doi.org/10.1371/journal.pone.0131475
[50] P. Ahuja, S. K. Ujjain, R. K. Sharma, G. Singh, Enhanced supercapacitor performance by incorporating nickel in manganese oxide, RSC Adv. 4 (2014) 57192-57199. https://doi.org/10.1039/C4RA09027F
[51] S. K. Ujjain, P. Ahuja, R. K. Sharma, Graphene nanoribbon wrapped cobalt manganite nanocubes for high performance all-solid-state flexible supercapacitors, J. Mater. Chem. A 3 (2015) 9925-9931. https://doi.org/10.1039/C5TA00653H
[52] S. K. Ujjain, V. Sahu, R. K. Sharma, G. Singh, High performance, all solid state, flexible supercapacitor based on ionic liquid functionalized graphene, Electrochim. Acta 157 (2015) 245-251. https://doi.org/10.1016/j.electacta.2015.01.061
[53] K. Deori, S. K. Ujjain, R. K. Sharma, S. Deka, Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors, ACS Appl. Mater. Interfaces 5 (2013) 10665-10672. https://doi.org/10.1021/am4027482
[54] S. K. Ujjain, G. Singh, R. K. Sharma, Co3O4@ reduced graphene oxide nanoribbon for high performance asymmetric supercapacitor, Electrochim. Acta 169 (2015) 276-282. https://doi.org/10.1016/j.electacta.2015.03.141
[55] P. Ahuja, S. K. Ujjain, R. Kanojia, Electrochemical behaviour of manganese & ruthenium mixed oxide@ reduced graphene oxide nanoribbon composite in symmetric and asymmetric supercapacitor, Appl. Surf. Sci. 427 (2018) 102-111. https://doi.org/10.1016/j.apsusc.2017.08.028
[56] A. Manikandan, Y. -Z. Chen, C. -C. Shen, C. -W. Shen, H. -C. Kuo, Y. -L. Chueh, A critical review on two-dimensional quantum dots (2D QDs): From synthesis toward applications in energy and optoelectronics, Prog. Quant. Electron. 68 (2019) 100226. https://doi.org/10.1016/j.pquantelec.2019.100226
[57] A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Broussi, D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: a review, J. Mater. Chem A. 5 (2017) 12653-12672. https://doi.org/10.1039/C7TA00863E
[58] L. Lv, Y. Fan, Q. Chen, Y. Zhao, Y. Hu, Z. Zhang, N. Chen, L. Qu, Three-dimensional multichannel aerogel of carbon quantum dots for high-performance supercapacitors, Nanotechnology 25 (2014) 235401. https://doi.org/10.1088/0957-4484/25/23/235401
[59] M. Xu, Q. Huang, R. Sun, X. Wang, Simultaneously obtaining fluorescent carbon dots and porous active carbon for supercapacitors from biomass, RSC Adv. 6 (2016) 88674−88682. https://doi.org/10.1039/C6RA18725K
[60] Y. Dong, H. Pang, H. Bin Yang, C. Guo, J. Shao, Y. Chi, C. M. Li, T. Yu, Carbon‐based dots co‐doped with Nitrogen and Sulfur for high quantum yield and excitation‐independent emission, Angew. Chem. Int. Ed. 52 (2013) 7800-7804. https://doi.org/10.1002/anie.201301114
[61] V. B. Kumar, A. Borenstein, B. Markovsky, D. Aurbach, A. Gedanken, M. Talianker, Z. Porat, Activated carbon modified with carbon nanodots as novel electrode material for supercapacitors, J. Phys. Chem. C 120 (2016) 13406-13413. https://doi.org/10.1021/acs.jpcc.6b04045
[62] V. C. Hoang, L. H. Nguyen, V. G. Gomes, High efficiency supercapacitor derived from biomass based carbon dots and reduced graphene oxide composite, J. Electroanal. Chem. 832 (2019) 87–96. https://doi.org/10.1016/j.jelechem.2018.10.050
[63] V. C. Hoang, V. G. Gomes, High performance hybrid supercapacitor based on doped zucchini-derived carbon dots and graphene, Mater. Today Energy 12 (2019) 198–207. https://doi.org/10.1016/j.mtener.2019.01.013
[64] Y. Hu, Y. Zhao, G. Lu, N. Chen, Z. Zhang, H. Li, H. Shao, L. Qu, Graphene quantum dots–carbon nanotube hybrid arrays for supercapacitors, Nanotechnology 24 (2013) 195401. https://doi.org/10.1088/0957-4484/24/19/195401
[65] J. Huang, B. G. Sumpter, V. Meunier, Theoretical model for nanoporous carbon supercapacitors, Angew. Chem. Int. Ed. 47 (2008) 520-534. https://doi.org/10.1002/ange.200703864
[66] Q. Chen, Y. Hu, C. Hu, H. Cheng, Z. Zhang, H. Shao, L. Qu, Graphene quantum dots–three-dimensional graphene composites for high-performance supercapacitors, Phys. Chem. Chem. Phys. 16 (2014) 19307-19313. https://doi.org/10.1039/C4CP02761B
[67] W. -W. Liu, Y. -Q. Feng, X. -B. Yan, J. -T. Chen, Q. -J. Xue, Superior micro‐supercapacitors based on graphene quantum dots, Adv. Funct. Mater. 23 (2013) 4111-4122. https://doi.org/10.1002/adfm.201203771
[68] K. Bhattacharya, P. Deb, Hybrid nanostructured C-Dot decorated Fe3O4 electrode materials for superior electrochemical energy storage performance, Dalton Trans. 44 (2015) 9221−9229. https://doi.org/10.1039/C5DT00296F
[69] Y. Zhu, X. Ji, C. Pan, Q. Sun, W. Song, L. Fang, Q. Chen, C. E. Banks, A carbon quantum dot decorated RuO2 network: outstanding supercapacitances under ultrafast charge and discharge, Energy Environ. Sci. 6 (2013) 3665−3675. https://doi.org/10.1039/C3EE41776J
[70] G. Wei, X. Xu, J. Liu, K. Du, J. Du, S. Zhang, C. An, J. Zhang, Z. Wang, Carbon quantum dots decorated hierarchical Ni(OH)2 with lamellar structure for outstanding supercapacitor, Mater. Lett. 186 (2017) 131−134. https://doi.org/10.1016/j.matlet.2016.09.126
[71] J. Xu, Y. Xue, J. Cao, G. Wang, Y. Li, W. Wang, Z. Chen, Carbon quantum dots/nickel oxide (CQDs/NiO) nanorods with high capacitance for supercapacitors, RSC Adv. 6 (2016) 5541-5546. https://doi.org/10.1039/C5RA24192H
[72] R. Narayanan, Single step hydrothermal synthesis of carbon nanodot decorated V2O5 nanobelts as hybrid conducting material for supercapacitor application, J. Solid State Chem. 253 (2017) 103-112. https://doi.org/10.1016/j.jssc.2017.05.035
[73] J. Wei, H. Ding, P. Zhang, Y. Song, J. Chen, Y. Wang, H.-M. Xiong, Carbon Dots/NiCo2O4 nanocomposites with various morphologies for high performance supercapacitors, Small 12 (2016) 5927−5934. https://doi.org/10.1002/smll.201602164
[74] Y. Wei, X. Zhang, X. Wu, D. Tang, K. Cai, Q. Zhang, Carbon quantum dots/Ni–Al layered double hydroxide composite for high-performance supercapacitors, RSC Adv. 6 (2016) 39317-39322. https://doi.org/10.1039/C6RA02730J
[75] J. Liu, M. Zheng, X. Shi, H. Zeng, H. Xia, Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors, Adv. Funct. Mater. 26 (2016) 919-930. https://doi.org/10.1002/adfm.201504019
[76] Y. Huang, T. Shi, Y. Zhong, S. Cheng, S. Jiang, C. Chen, G. Liao, Z. Tang, Graphene-quantum-dots induced NiCo2S4 with hierarchical-like hollow nanostructure for supercapacitors with enhanced electrochemical performance, Electrochim. Acta 269 (2018) 45-54. https://doi.org/10.1016/j.electacta.2018.02.145
[77] H. Lv, Y. Yuan, Q. Xu, H. Liu, Y.-G. Wang, Y. Xi, Carbon quantum dots anchoring MnO2/graphene aerogel exhibits excellent performance as electrode materials for supercapacitor, J. Power Sources 398 (2018) 167-174. https://doi.org/10.1016/j.jpowsour.2018.07.059
[78] B. De, J. Balamurugan, N. H. Kim, J. H. Lee, Enhanced electrochemical and photocatalytic performance of core–shell CuS@carbon quantum dots@carbon hollow nanospheres, ACS Appl. Mater. Interfaces 9 (2017) 2459-2468. https://doi.org/10.1021/acsami.6b13496
[79] B. Unnikrishnan, C.-W. Wu, I.-W. P. Chen, H.-T. Chang, C.-H. Lin, C.-C. Huang, Carbon dot-mediated synthesis of manganese oxide decorated graphene nanosheets for supercapacitor application, ACS Sustainable Chem. Eng. 4 (2016) 3008-3016. https://doi.org/10.1021/acssuschemeng.5b01700
[80] S. N. J. S. Z. Abidin, Md. S. Mamat, S. A. Rasyid, Z. Zainal, Y. Sulaiman, Electropolymerization of poly(3,4-ethylenedioxythiophene) onto polyvinyl alcohol-graphene quantum dot-cobalt oxide nanofiber composite for high-performance supercapacitor, Electrochim. Acta, 261 (2018) 548-556. https://doi.org/10.1016/j.electacta.2017.12.168
[81] H. Lv, X. Gao, Q. Xu, H. Liu, Y.-G. Wang, Y. Xia, Carbon quantum dot-induced MnO2 nanowire formation and construction of a binder-free flexible membrane with excellent superhydrophilicity and enhanced supercapacitor performance, ACS Appl. Mater. Interfaces 9 (2017) 40394-40403. https://doi.org/10.1021/acsami.7b14761
[82] G. Wei, X. Zhao, K. Du, Z. Wang, M. Liu, S. Zhang, S. Wang, J. Zhang, C. An, A general approach to 3D porous CQDs/MxOy (M = Co, Ni) for remarkable performance hybrid supercapacitors, Chem. Eng. J. 326 (2017) 8-67. https://doi.org/10.1016/j.cej.2017.05.127
[83] Y. Zhu, Z. Wu, M. Jing, H. Hou, Y. Yang, Y. Zhang, X. Yang, W. Song, X. Jia, X. Ji, Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor, J. Mater. Chem. A 3 (2015) 866-877. https://doi.org/10.1039/C4TA05507A
[84] J. Luo, J. Wang, S. Liu, W. Wu, T. Jia, Z. Yang, S. Mu, Y. Huang, Graphene quantum dots encapsulated tremella-like NiCo2O4 for advanced asymmetric supercapacitors, Carbon 146 (2019) 1-8. https://doi.org/10.1016/j.carbon.2019.01.078
[85] W. Liu, X. Yan, J. Chen, Y. Feng, Q. Xue, Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers, Nanoscale 5 (2013) 6053-6062. https://doi.org/10.1039/C3NR01139A