Antibacterial Quantum Dots

$30.00

Antibacterial Quantum Dots

Jin-Chung Sin, Ying-Hui Chin, Sze-Mun Lam, HongHu Zeng, Hua Lin, Haixiang Li

The emergence and global spread of multi antibiotic-resistant bacteria underscored the need to find new alternative antimicrobial candidates. Graphene quantum dots have received tremendous attention as promising new microbicidal agents owing to their ease of production, excellent physicochemical properties and high biosafety. In this chapter, the synthesis and physicochemical characteristics of graphene quantum dots are reviewed. A recent research progress on their antibacterial activities and the reaction mechanisms are also discussed. Lastly, an outlook on future development of effective graphene quantum dots was suggested with the goal of addressing current limitation and motivating further research on this promising area.

Keywords
Graphene Quantum Dots, Synthetic Method, Photoluminescence, Antimicrobial Activity, Biomedical

Published online 2/1/2020, 18 pages

Citation: Jin-Chung Sin, Ying-Hui Chin, Sze-Mun Lam, HongHu Zeng, Hua Lin, Haixiang Li, Antibacterial Quantum Dots, Materials Research Foundations, Vol. 96, pp 95-112, 2021

DOI: https://doi.org/10.21741/9781644901250-4

Part of the book on Quantum Dots

References
[1] B. Das, S. Moumita, S. Ghosh, M.I. Khan, D. Indira, R. Jayabalan, S.K. Tripathy, A. Mishra, P. Balasubramanian, Biosynthesis of magnesium oxide (MgO) nanoflakes by using leaf extract of Bauhinia purpurea and evaluation of its antibacterial property against Staphylococcus aureus, Mater. Sci. Eng. C 91 (2018) 436-444. https://doi.org/10.1016/j.msec.2018.05.059
[2] D. Sethi, R. Sakthivel, ZnO/TiO2 composites for photocatalytic inactivation of Escherichia coli, J. Photochem. Photobiol. B 168 (2017) 117-123. https://doi.org/10.1016/j.jphotobiol.2017.02.005
[3] S. Santajit, N. Indrawattana, Mechanisms of antimicrobial resistance in ESKAPE pathogens, Biomed. Res. Int. 2016 (2016) 2475067. https://doi.org/10.1155/2016/2475067
[4] S.I. Miller, Antibiotic resistance and regulation of the gram-negative bacterial outer membrane barrier by host innate immune molecules, mBio 7 (2016) e01541-16. https://doi: 10.1128/mBio.01541-16
[5] A. Abbas, L.T. Mariana, A.N. Phan, Biomass-waste derived graphene quantum dots and their applications, Carbon 140 (2018) 77-99. https://doi.org/10.1016/j.carbon.2018.08.016
[6] B.Z. Ristic, M.M. Milenkovic, I.R. Dakic, B.M. Todorovic-Markovic, M.S. Milosavljevic, M.D. Budimir, V.G. Paunovic, M.D. Dramicanin, Z.M. Markovic, V.S. Trajkovic, Photodynamic antibacterial effect of graphene quantum dots, Biomaterials 35 (2014) 4428-4435. https://doi.org/10.1016/j.biomaterials.2014.02.014
[7] N.A.A. Anas, Y.W. Fen, N.A.S. Omar, W.M.E.M.M. Daniyal, N.S.M. Ramdzan, S. Saleviter, Development of graphene quantum dots-based optical sensor for toxic metal ion detection, Sensors 19 (2019) 3850. https://doi.org/10.3390/s19183850
[8] P. Devi, S. Saini, K.H. Kim, The advanced role of carbon quantum dots in nanomedical applications, Biosens. Bioelectron. 141 (2019) 111158. https://doi.org/10.1016/j.bios.2019.02.059
[9] A. Mehta, A. Mishra, S. Basu, N.P. Shetti, K.R. Reddy, T. Saleh, Band gap tuning and surface modification of carbon dots for sustainable environmental remediation and photocatalytic hydrogen production-A review, J. Environ. Manag. 250 (2019) 109486. https://doi.org/10.1016/j.jenvman.2019. 109486
[10] A. Valizadeh, H. Mikaeili, M. Samiei, S.M. Farkhani, N. Zarghami, M. Kouhi, A. Akbarzadeh, S. Dayaran, Quantum dots: synthesis, bioapplications, and toxicity, Nanoscale Research Lett. 7 (2012) 480. https://doi.org/10.1186/ 1556-276X-7-480
[11] M. Liu, Y. Xu, F. Niu, J. Gooding, J. Liu, Carbon quantum dots directly generated from electrochemical oxidation of graphite electrode in alkaline alcohols and the applications for specific ferric ion detection and cell imaging, Analyst 141 (2016) 2657-2664. https://doi.org/10.1039/C5AN02231B
[12] N.P. Shetti, D.S. Nayak, S.J. Malode, R.R. Kakarla, S.S. Shukla, T.M. Aminabhavi, Sensors based on ruthenium-doped TiO2 nanoparticles loaded into multi-walled carbon nanotubes for the detection of flufenamic acid and mefenamic acid, Anal. Chim. Acta 1051 (2019) 58-72. https://doi.org/10.1016/j.aca.2018.11.041
[13] S. Ahirwar, S. Mallick, D. Bahadur, Electrochemical method to prepare graphene quantum dots and graphene oxide quantum dots, ACS Omega 2 (2017) 8343-8353. https://doi.org/10.1021/acsomega.7b01539
[14] C. Donate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M.F. Alonso, G. Minguez-Vega, Fabrication by laser irradiation in a continuous flow jet of carbon quantum dots for fluorescence imaging, ACS Omega 3 (2018) 2735-2742.https://doi.org/10.1021/acsomega.7b02082
[15] P.G. Kuzmin, G.A. Shafeev, V.V. Bukin, S.V. Garnov, C. Farcau, R. Carles, B. Warot-Fontrose, V. Guieu, G. Viau, Silicon nanoparticles produced by femtosecond laser ablation in ethanol: size control, structural characterization, and optical properties, J. Phys. Chem. C 114 (2010) 15266-15273.https://doi.org/10.1021/jp102174y
[16] T.N. Lin, K.H. Chih, C.T. Yuan, J.L. Shen, C.A.J. Lin, W.R. Liu, Laser-ablation production of graphene oxide nanostructures: from ribbons to quantum dots, Nanoscale 7 (2015) 2708-2715. https://doi.org/10.1039/C4NR05737F
[17] N. Arora, N.N. Sharma, Arc discharge synthesis of carbon nanotubes: comprehensive review, Diam. Relat. Mater. 50 (2014) 135-150.https://doi.org/10.1016/j.diamond.2014.10.001
[18] S. Kim, J.K. Seo, J.H. Park, Y. Song, Y.S. Meng, White-light emission of blue-luminescent graphene quantum dots by europium (III) complex incorporation, Carbon 124 (2017) 479-485.https://doi.org/10.1016/j.carbon.2017.08.021
[19] S. Yatom, J. Bak, A. Khrabryi, Y. Raitses, Detection of nanoparticles in carbon arc discharge with laser-induced incandescence, Carbon 117 (2017) 154-162.https://doi.org/10.1016/j.carbon.2017.02.055
[20] S. Anwar, H.Z. Ding, M.S. Xu, X.L. Hu, Z.Z. Li, J.M Wang, L. Liu, L. Jiang, D. Wang, C. Dong, M.Q. Yan, Q.Y. Wang, H. Bi, Recent advances in synthesis, optical properties, and biomedical applications of carbon dots, ACS Appl. Bio. Mater. 2 (2019) 2317-2338. https://doi.org/10.1021/acsabm.9b00112
[21] S. Chen, X. Hai, C. Xia, X.W. Chen, J.H. Wang, Preparation of excitation-independent photoluminescent graphene quantum dots with visible-light excitation/emission for cell imaging, Chem. Eur. J. 19 (2013) 15918-15923.https://doi.org/10.1002/chem.201302207
[22] L.L. Li, J. Ji, R. Fei, C.Z. Wang, Q. Lu, J.R. Zhang, L.P. Jiang, J.J. Zhu, A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots, Adv. Funct. Mater. 22 (2012) 2971-2979. https://doi.org/10.1002/adfm.201200166
[23] Y.H. Shin, J.H. Lee, J.H. Yang, J.T. Park, K. Lee, S.J. Kim, Y.H. Park, H.Y. Lee, Mass production of graphene quantum dots by one‐pot synthesis directly from graphite in high yield, Small 10 (2014) 866-870.https://doi.org/10.1002/smll.201302286
[24] R. Ye, C. Xiang, J. Lin, Z. Peng, K. Huang, Z. Yan, N.P. Cook, E.L.G. Samuel, C. Hwang, G. Ruan, G. Ceriotti, A.O. Raji, A.A. Martí, J.M. Tour, Coal as an abundant source of graphene quantum dots, Nat. Commun. 4 (2013) 2943. https://doi.org/10.1038/ncomms3943
[25] S. Li, S. Zhou, Y. Li, X. Li, J. Zhu, L. Fan, S. Yang, Exceptionally high payload of the IR780 iodide on folic acid-functionalized graphene quantum dots for targeted photothermal therapy, ACS Appl. Mater. Interfaces 9 (2017) 22332-22341.https://doi.org/10.1021/acsami.7b07267
[26] B. Bajorowicz, M.P. Kobylański, A. Gołąbiewska, J. Nadolna, A. Zaleska-Medynska, A. Malankowska, Quantum dot-decorated semiconductor micro- and nanoparticles: A review of their synthesis, characterization and application in photocatalysis, Adv. Coll. Interfac. 256 (2018) 352-372. https://doi.org/10.1016/j.cis.2018.02.003
[27] G. Muthusankar, C. Rajkumar, S. Chen, R. Karkuzhali, G. Gopu, A. Sangili, N. Sengottuvelan, R. Sankar, Sonochemical driven simple preparation of nitrogen-doped carbon quantum dots/SnO2 nanocomposite: a novel electrocatalyst for sensitive voltammetric determination of riboflavin, Sensor. Actuator. B: Chem. 281 (2019) 602-612. https://doi.org/10.1016/j.snb.2018.10.145
[28] D. Huang, H. Zhou, Y. Wu, T. Wang, L. Sun, P. Gao, Y. Sun, H. Huang, G. Zhou, J. Hu, Bottom-up synthesis and structural design strategy for graphene quantum dots with tunable emission to the near infrared region, Carbon 142 (2019) 673-684. https://doi.org/10.1016/j.carbon.2018.10.047
[29] X. Zhang, C. Wei, Y. Li, D. Yu, Shining luminescent graphene quantum dots: Synthesis, physicochemical properties, and biomedical applications, Anal. Chem. 116 (2019) 109-121.https://doi.org/10.1016/j.trac.2019.03.011
[30] X. Li, S.P. Lau, L. Tang, R. Ji, P. Yang, Multicolour light emission from chorine-doped graphene quantum dots, J. Mater. Chem. C 1 (2013) 7308-7313.https://doi.org/10.1039/C3TC31473A
[31] W.X. Fu, J.F. Lin, Electrical and optical properties of the specimens with graphene quantum dots prepared by different number of wet transfer, Diam. Relat. Mater. 99 (2019) 107527. https://doi.org/10.1016/j.diamond.2019.107527
[32] F. Temerov, A. Belyaev, B. Ankudze, T.T. Pakkanen, Preparation and photoluminescence properties of graphene quantum dots by decomposition of graphene-encapsulated metal nanoparticles derived from Kraft lignin and transition metal salts, J. Lumin. 206 (2019) 403-411. https://doi.org/10.1016/j.jlumin.2018.10.093
[33] D. Liu, H. Li, B. Lyu, S. Cheng, Y. Zhu, P. Wang, D. Wang, X. Wang, J.Yang, Efficient performance enhancement of GaN-based vertical light-emitting diodes coated with N-doped graphene quantum dots, Opt. Mater. 89 (2019) 468-472. https://doi.org/10.1016/j.optmat.2019.01.026
[34] X. Wang, G. Wang, J. Li, Z. Liu, Y. Chen, L. Liu, J. Han, Direct white emissive Cl-doped graphene quantum dots-based flexible film as a single luminophore for remote tunable UV-WLEDs, Chem. Eng. J. 361 (2019) 773-782. https://doi.org/10.1016/j.cej.2018.12.131
[35] S. Ahirwar, S. Mallick, D. Bahadur, Photodynamic therapy using graphene quantum dot derivatives, J. Solid State Chem. 282 (2020) 121107. https://doi.org/10.1016/j.jssc.2019.121107
[36] W.S. Kuo, H.H. Chen, S.Y. Chen, C.Y. Chang, P.C. Chen, Y.I. Hou, Y.T. Shao, H.F. Kao, C.L.L. Hsu, Y.C. Chen, S.J. Chen, S.R. Wu, J.Y. Wang, Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging, Biomaterials 120 (2017) 185-194. https://doi: 10.1016/j.biomaterials.2016.12.022
[37] J. Ruan, Y. Wang, F. Li, R.B. Jia, G.M. Zhou, C.L. Shao, L.Q. Zhu, M. Cui, D.P. Yang, S.F. Ge, Graphene quantum dots for radiotherapy, ACS Appl. Mater. Interfaces 10 (2018) 14342-14355. https://doi.org/10.1021/acsami.7b18975
[38] J.A. Quek, S.M. Lam, J.C. Sin, A.R. Mohamed, Visible light responsive flower-like ZnO in photocatalytic antibacterial mechanism towards Enterococcus faecalis and Micrococcus luteus, J. Photochem. Photobiol. B: Biol. 187 (2018) 66-75. https://doi.org/10.1016/j.jphotobiol.2018.07.030
[39] F.D. Zhao, W. Gu, J. Zhou, Q. Liu, Y. Chong, Solar-excited graphene quantum dots for bacterial inactivation via generation of reactive oxygen species, J. Environ. Sci. Health C 37 (2019) 67-80. https://doi.org/10.1080/10590501.2019.1591701.
[40] W.S. Kuo, Y.T. Shao, K.S. Huang, T.M. Chou, C.H. Yang, Antimicrobial amino-functionalized nitrogen-doped graphene quantum dots for eliminating multidrug-resistant species in dual-modality photodynamic therapy and bioimaging under two-photon excitation, ACS Appl. Mater. Interfaces 10 (2018) 14438-14446. https://doi.org/10.1021/acsami.8b01429
[41] L.F. Wang, Y. Li, Y.M. Wang, W.H. Kong, Q.P. Lu, X.G. Liu, D.W. Zhang, L.T. Qu, Chlorine-doped graphene quantum dots with enhanced anti- and pro-oxidant properties, ACS Appl. Mater. Interfaces 11 (2019) 21822-21829. https://doi.org/10.1021/acsami.9b03194
[42] L.W. Hui, J.L. Huang, G.X. Chen, Y.W. Zhu, L.H. Yang, Antibacterial property of graphene quantum dots (both source material and bacterial shape matter), ACS Appl. Mater. Interfaces 8 (2016) 20-25. https://doi.org/10.1021/acsami.5b10132
[43] S.H. Su, C.B. Shelton, J.J. Qiu, Size-dependent antibacterial behavior of graphene quantum dots, IMECE2013 15 (2014) 64872. https://doi.org/10.1115/IMECE2013-64872
[44] X.L. Dong, M.A. Awak, N. Tomlinson, Y.G. Tang, Y.P. Sun, L.J. Yang, Antibacterial effects of carbon dots in combination with other antimicrobial reagents, Plos One 12 (2017) 0185324. https://doi.org/10.1371/journal.pone.0185324
[45] H.J. Sun, N. Gao, K. Dong, J.S. Ren, X.G. Qu, Graphene quantum dots-band-aids used for wound disinfection, ACS Nano 8 (2014) 6202-6210. https://doi.org/10.1021/nn501640q