Fabrication Techniques for Quantum Dots
Jyoti Patel, Bhawana Jain, Ajaya Kumar Singh
The nanotechnological expansion involves the innovation and designing of materials at the nanoscale regime with controlled properties. Production of nanomaterials with good crystallinity, shape control, and narrow distribution of size plays a significant role in QD-based devices and applications. Various strategies ranging from simple wet chemical methods to advanced atomic layer deposition strategies have been employed for the production of QDs. In this chapter, a prominent and detailed discussion of conventional techniques in addition to the up-to-date development in the synthesis of recent QDs is given. Synthesis routes based on the microwave or ultrasonically assisted and cluster-seed process are of great significance.
Keywords
Quantum Dots, Lithography, Etching, Microemulsion, Epitaxy, Ultrasonic, Microwave, Hydrothermal, Solvothermal
Published online 2/1/2020, 28 pages
Citation: Jyoti Patel, Bhawana Jain, Ajaya Kumar Singh, Fabrication Techniques for Quantum Dots, Materials Research Foundations, Vol. 96, pp 53-80, 2021
DOI: https://doi.org/10.21741/9781644901250-2
Part of the book on Quantum Dots
References
[1] S. Raj, J.H. Yun, G.R. Adilbish, K.Ch, I.H. Lee, M.S. Lee, Y.T.Yu, Formation of core@multi-shell CdSe@CdZnS–ZnS quantum dot heterostructure films by pulse electrophoresis deposition, Superlattices Microstruct. 83 (2015) 618-626. https://doi.org/10.1016/j.spmi.2015.03.043
[2] P. Matagne, J.P. Leburton, Quantum Dots: Artificial Atoms and Molecules, in: H.S. Nalwa, S. Bandyopadhyay (Eds.) Quantum Dots and Nanowires, American Scientific Publishers Stevenson Ranch, California, 2003, pp. 2-66.
[3] W.C. Chan, D.J. Maxwell, X.Gao, R.E. Bailey, M. Han, Luminescent quantum dots for multiplexed biological detection and imaging, Curr. Opin. Biotechnol. 13 (2002) 40–46. https://doi.org/10.1016/S0958-1669(02)00282-3
[4] A.P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals, J. Phys. Chem., 100 (1996) 13226-13239. https://doi.org/10.1021/jp9535506
[5] A.M. Smith, S. Nie, Semiconductor nanocrystals: structure, properties, and band gap engineering, Acc. Chem. Res. 43 (2010) 190-200. https://doi.org/10.1021/ar9001069
[6] L.Pang, Y.Zhou, W.Gao, J. Zhang, H. Song, X. Wang, Y. Wang, X. Peng, Curcuminbased fluorescent and colorimetric probe for detecting cysteine in living cells and zebrafish, Ind. Eng. Chem. Res. 56 (2017) 7650−7655. https://doi.org/10.1021/acs.iecr.7b02133
[7] F. Cai, D. Wang, M. Zhu, S. He, Pencil-like imaging spectrometer for biosamples sensing, Biomed. Opt. Express 8 (2017) 5427−5436. https://doi.org/10.1364/BOE.8.005427
[8] D. Zhang, N. Xu, H. Li, Q. Yao, F. Xu, J. Fan, J. Du, X .Peng, Probing thiophenol pollutant in solutions and cells with bodipy based fluorescent probe, Ind. Eng. Chem. Res. 56 (2017) 9303−9309. https://doi.org/10.1021/acs.iecr.7b02557
[9] Y. Chen, T. Wei, Z. Zhang, T. Chen, J. Li, J. Qiang, J. Lv, F. Wang, X. Chen, A Benzothiazole-based fluorescent probe for ratiometric detection of Al3+ in aqueous medium and living cells, Ind. Eng. Chem. Res. 56 (2017) 12267−12275. https://doi.org/10.1021/acs.iecr.7b02979
[10] J. Pardo, Z. Peng, R.M. Leblanc, Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes, Molecules 23 (2018) 378-398. https://doi.org/10.3390/molecules23020378
[11] H.R. Rajabi, F. Karimia,; H. Kazemdehdashti, L. Kavoshi, Fast sonochemically-assisted synthesis of pure and doped zinc sulfide quantum dots and their applicability in organic dye removal from aqueous media, J. Photochem. Photobiol. 181 (2018) 98–105. https://doi.org/10.1016/j.jphotobiol.2018.02.016
[12] G. Shen, Z. Du, Z. Pan, J. Du, X. Zhong, Solar paint from TiO2 particles supported quantum dots for photoanodes in quantum dot−sensitized solar cells, ACS Omega 3 (2018) 1102–1109. https://doi.org/10.1021/acsomega.7b01761
[13] K. Jiang, L. Zhang, J. Lu, C. Xu, C. Cai, H. Lin, Triple-mode emission of carbon dots: applications for advanced anti-counterfeiting, Angew. Chem. Int. Ed. 55 (2016) 7231−7235. https://doi.org/10.1002/anie.201602445
[14] M. You, M. Lin, S. Wang, X. Wang, G. Zhang, Y. Hong, Y. Dong, G. Jin, F. Xu, Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting, Nanoscale 8 (2016) https://doi.org/10096−10104. 10.1039/c6nr01353h
[15] Y.W. Zhang, G. Wu, H. Dang, K. Ma, S. Chen, Multicolored mixed-organic-cation perovskite quantum dots (FAxMA1‑xPbX3,X=Br and I) for white light-emitting diode, Ind. Eng. Chem. Res. 56 (2017) 10053−10059. https://doi.org/10.1021/acs.iecr.7b02309
[16] D.V. Talapin, J.S. Lee, M.V. Kovalenko, E.V. Shevchenko, Prospects of colloidal nanocrystals for electronic and optoelectronic applications, Chem. Rev. 110 (2010) 389–458. https://doi.org/10.1021/cr900137k
[17] U. Resch-genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Quantum dots versus organic dyes as fluorescent labels, Nat. Methods 5 (2008) 763−775. https://doi.org/10.1038/nmeth.1248
[18] X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics, Science 307 (2005) 538−544. https://doi.org/10.1126/science.1104274
[19] M. Bruchez Jr, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels, Science 281 (1998) 2013–2016. https://doi.org/10.1126/science.281.5385.2013
[20] W.C. Chan, S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science 281 (1998) 2016–2018. https://doi.org/10.1126/science.281.5385.2016
[21] H.M. Azzazy, M.M. Mansour, S.C. Kazmierczak, From diagnostics to therapy: prospects of quantum dots, Clin. Biochem. 40 (2007) 917–927. https://doi.org/10.1016/j.clinbiochem.2007.05.018
[22] T.J. Deerinck, The application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging. Toxicol. Pathol. 36 (2008) 112–116. https://doi.org/10.1177/0192623307310950
[23] Y. Yin, A.P. Alivisatos, Colloidal nanocrystal synthesis and the organic– inorganic interface, Nature 437 (2005) 664–670. https://doi.org/10.1038/nature04165
[24] Z.A. Peng, X.G. Peng, Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth, J. Am. Chem. Soc. 124 (2002) 3343–3353. https://doi.org/10.1021/ja0173167
[25] A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science, 271 (1996) 933–937. https://doi.org/10.1126/science.271.5251.933
[26] R. Dhar, Deepika, Synthesis and current applications of quantum dots: A Review, Nanosci. Nanotech. An Inter. J. 4 (2014) 32-38.
[27] S. Mishra, B. Panda, S.S. Rout, An elaboration of quantum dots and its applications, Inter. J. of Adv. in Engin. Technol. 5 (2012) 141-145.
[28] E. Petryayeva, W.R. Algar, I.L. Medintz, Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl.Spectrosc. 67 (2013) 215-252. https://doi.org/10.1366/12-06948
[29] X. Cheng, S.B. Lowe, P.J. Reece, J.J. Gooding, Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem. Soc. Rev. 43 (2014) 2680-2700. https://doi.org/10.1039/c3cs60353a
[30] P. Mulpur, T.M. Rattan, V. Kamisetti, One-step synthesis of colloidal quantum dots of iron selenide exhibiting narrow range fluorescence in the green region. J.Nanosci. 2013 (2013) 1-5. https://doi.org/10.1155/2013/804290
[31] H. Zhang, Y. Li, X. Liu, P. Liu, Y. Wang, T. An, H. Yang, D. Jing, H. Zhao, Determination of iodide via direct fluorescence quenching at nitrogen-doped carbon quantum dot fluorophores, Environ. Sci. Technol. Lett. 1 (2014) 87-91. https://doi.org/10.1021/ez400137j
[32] K. Hoshino, A. Gopal, M.S. Glaz, D.A. Vanden Bout, X. Zhang, Nanoscale fluorescence imaging with quantum dot near-field electroluminescence, Appl. Phys. Lett. 101 (2012) 043118. https://doi.org/10.1063/1.4739235.
[33] J. Zhang, W. Sun, L. Yin, X. Miao, D. Zhang, One-pot synthesis of hydrophilic CuInS2 and CuInS2-ZnS colloidal quantum dots, J. Mater. Chem. C 2 (2014) 4812-4817. https://doi.org/10.1039/C3TC32564D
[34] M. Bottrill, M. Green, Some aspects of quantum dot toxicity, Chem. Commun. 47 (2011) 7039-7050. https://doi.org/10.1039/c1cc10692a
[35] A. Kitai, Luminescent Materials and Applications, John Wiley & Sons Ltd. West Sessex, England, 2008.
[36] D. Bera, L. Qian, P.H. Holloway, Semiconducting Quantum Dots for Bioimaging, in:Y.Pathak, D.Thassu (Eds.), Drug Delivery Nanoparticles Formulation and Characterization, first ed., CRC Press, UK, 2009, pp. 349-366.
[37] S. Bandyopadhyay, H.S. Nalwa, Quantum Dots and Nanowires. American ScientificPublishers, USA, 2003.
[38] H.S. Nalwa, Nanostructured Materials and Nanotechnology, Academic Press: San Diego, California, USA, 2002.
[39] T.R. Groves, Electron beam lithography, in: M. Feldman (Ed.), Nanolithography: The Art of Fabricating Nanoelectronic and Nanophotonic devices and systems, Woodhead Publishing, Philadelphia, USA, 2014, pp. 80-115.
[40] I. Brodie, J.J. Muray, The Physics of Micro/Nano-Fabrication, Plenum Press, New York, USA, 1992.
[41] G. Timp, Nanotechnology, Springer-Verlag, American Institute of Physics, New York,USA, 1999.
[42] N. Pala, M. Karabiyik, Electron Beam Lithograph, in: B. Bhushan (Eds.), Encyclopedia of Nanotechnology. Springer, Dordrecht, New York, 2016, pp. 19-77.
[43] A.A. Tseng, K. Chen, C.D. Chen, K.J. Ma, Electron beam lithography in nanoscale fabrication: recent development, IEEE Trans. Electron. Packag. Manuf. 26 (2003) 141-149. https://doi.org/10.1109/TEPM.2003.817714
[44] S.K. Ghandhi, VLSI Fabrication Principles: Silicon and Gallium Arsenide, second ed. Wiley, New York, 1994.
[45] M. Zheng, Y. Chen, Z. Liu, Y. Liu, Y. Wang, P. Liu, Q. Liu, K. Bi, Z.Shu,Y. Zhang, H.Duan, Kirigami-inspired multiscale patterning of metallic structures via predefined nanotrench templates,Microsyst. Nanoeng. 5 (2019) 1-11. https://doi.org/10.1038/s41378-019-0100-3
[46] S.D. Berger,J.M.Gibson, New approach to projection electron lithography with demonstrated 0.1 micron linewidth, Appl. Phys. Lett., 57 (1990) 153–155.
[47] H.C. Pfeiffer, Advanced e-beam systems for manufacturing, in: M. Peckerar, (Ed.), Proceedings Electron-Beam, X-Ray, Ion Beam Submicrometer Lithographies for Manufacturing II, Microlithography CA, USA, 1671 (1992) 100–110.
[48] Prevail: IBM’s e-beam technology for next-generation lithography, IBM MicroNews, 6 (2000) 41–44. https://doi.org/10.1117/12.390056
[49] R.S. Dhaliwal, W.A. Enichen, S.D. Golladay, R.A. Kendall, J.E. Lieberman, H.C. Pfeiffer, D.J. Pinckney, C.F. Robinson, J.D. Rockrohr, W. Stickle, and E.V. Tressler, Prevail: Electron projection technology approach for next-generation lithography, IBM J. Res. Develop., 45(2000) 615–638. https://doi.org/10.1147/rd.455.0615
[50] A. del Campo, E. Arzt, Fabrication approaches for generating complex micro- and nanopatterns on polymeric surfaces, Chem. Rev. 108 (2008) 911. https://doi.org/10.1021/cr050018y
[51] M.H.V. Werts, M. Lambert, J.P. Bourgoin and M. Brust, Nanometer scale patterning of langmuir−blodgett films of gold nanoparticles by electron beam lithography, Nano Lett. 2 (2002) 43-47. https://doi.org/10.1021/nl015629u
[52] V. Nandwana, C. Subramani, Y.C. Yeh, B. Yang, S. Dickert, M.D. Barnes, M.T. Tuominen, V.M. Rotello, Direct patterning of quantum dot nanostructures via electron beam lithography, J. Mater. Chem. 21 (2011) 16859-16862. https://doi.org/10.1039/C1jm11782c
[53] N.W. Parker, A.D. Brodie, J.H. McCoy, A high throughput NGL electron beam direct-write lithography system, SPIE Emerg.Lithograph. Technol.3997 (2000)
[54] T.H.P. Chang, D.P. Kern, L.P. Muray, Arrayed miniature electron beam columns for high throughput sub-100 nm lithography, J. Vac. Sci. Technol. B 10 (1992) 2743-2748. https://doi.org/10.1116/1.585994
[55] T.R. Groves, R.A. Kendall, Distributed multiple variable shaped electron beam column for high throughput maskless lithography, J. Vac. Sci. Technol. B 16 (1998) 3168-3173. https://doi.org/10.1116/1.590458
[56] H.C. Pfeiffer, Variable spot shaping for electron-beam lithography, J. Vac. Sci. Technol. 15 (1978) 887-890. https://doi.:10.1116/1.569621
[57] K. Hattori, Electron-beam direct writing system EX-8D employing character projection exposure method, J. Vac. Sci. Technol. B 11 (1993)2346-2351. https://doi.org/10.1116/1.586984
[58] G.I. Winograd, L. Han, M.A. McCord, R.F.W. Pease, V. Krishnamurthi, Multipexed blanker array for parallel electron beam lithography, J. Vac. Sci. Technol. B 16 (1998) 3174-3176. https://doi.org/10.1116/1.590345
[59] J. Schneider, Patterned negative affinity photocathodes for maskless electron beam lithography, J. Vac. Sci. Technol. B 16 (1998)3192-3196. https://doi.org/10.1116/1.590349
[60] M. Utlaut, Focused Ion Beams For Nano-Machining And Imaging, in: M. Feldman (Ed.), Nanolithography: The Art of Fabricating Nanoelectronic and Nanophotonic devices and systems, Woodhead Publishing, Philadelphia, USA, 2014, pp. 116-157.
[61] E. Chason, S.T. Picraux, J.M. Poate, J.O. Borland, M.I. Current, T.D. delaRubia, D.J. Eaglesham, O.W. Holland, M.E. Law, C.W. Magee, J.W. Mayer, J. Melngailis, A.F. Tasch, Ion beams in silicon processing and characterization,J. Appl. Phys. 81 (1997) 6513-6561. https://doi.org/10.1063/1.365193
[62] R. Karmakar, Quantum dots and it method of preparations-revisited, Prajnan O Sadhona. 2 (2015) 116-142.
[63] S. Friedensen, J.T. Mlack, M. Drndic, Materials analysis and focused ion beam nanofabrication of topological insulator Bi2Se3, Sci. Rep. 7 (2017) 13466-13473. https://doi.org/10.1038/s41598-017-13863-6
[64] K. Tsutsui, E.L. Hu, C.D.W. Wilkinson, Reactive ion etched II-VI quantum dots: dependence of etched profile on pattern geometry. Jpn. J. Appl. Phys. 32 (1993) 6233-6236. https://doi.org/10.1143/JJAP.32.6233
[65] W. Chen, Y. Liu, L. Yang, J. Wu, Q. Chen, Y. Zhao, Y. Wang, X. Du, Difference in anisotropic etchingcharacteristics of alkaline andcopper based acid solutions for single-crystalline Si, 8 (2018)3408-3416. https://doi.org/10.1038/s41598-018-21877-x
[66] C. Burda, X.B. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev. 105 (2005) 1025–1102. https://doi.org/10.1021/cr030063a
[67] B. Mashford, J. Baldauf, T.L. Nguyen, A.M. Funston, P. Mulvaney, Synthesis of quantum dot doped chalcogenide glasses via sol-gel processing. J. Appl. Phys. 109 (2011) 94305-94312. https://doi.org/10.1063/1.3579442
[68] L. Korala, Z. Wang, Y. Liu, S. Maldonado, S.L. Brock, Uniform thin films of CdSe and CdSe(ZnS) core shell) quantum dots by sol–gel assembly: enabling photoelectrochemical characterization and electronic applications, ACS Nano 7 (2013), 1215-1223. https://doi.org/10.1021/nn304563j
[69] J. Bang, H. Yang, P.H. Holloway, Enhanced and stable green emission of ZnO nanoparticles by surface segregation of Mg. Nanotechnology 17 (2006), 973-978. https://doi.org/10.1088/0957-4484/17/4/022
[70] H.Y. Park, I. Ryu, J. Kim, S. Jeong, S. Yim, S.Y. Jang, PbS quantum dot solar cells integrated with sol–gel-derived ZnO as an n-type charge-selective layer,J. Phys. Chem. C. 118 (2014), 17374-17382. https://doi.org/10.1021/jp504156c
[71] M.A. Lopez-Quintela, Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control, Curr. Opin. Colloid Interface Sci. 8 (2003) 137-144. https://doi.org/10.1016/S1359-0294(03)00019-0
[72] V.L. Colvin, A.N. Goldstein, A.P. Alivisatos, Semiconductor nanocrystals covalently bound to metal-surfaces with self-assembled monolayers, J. Am. Chem. Soc. 114 (1992) 5221-5230. https://doi.org/10.1021/ja00039a038
[73] K. Lemke, J. Koetz, Polycation-capped CdS quantum dots synthesized in reverse microemulsions. J. Nanomater. 10 (2012)1-10. https://doi.org/10.1155/2012/478153
[74] H.Yang, P.H. Holloway, Enhanced photoluminescence from CdS:Mn/ZnS core/shell quantum dots. Appl. Phys. Lett. 82 (2003) 1965-1967. https://doi.org/10.1063/1.1563305
[75] H.Yang, P.H. Holloway, G. Cunningham, K.S. Schanze, CdS:Mn nanocrystals passivated by ZnS: Synthesis and luminescent properties, J. Chem. Phys. 121 (2004) 10233-10240. https://doi.org/10.1063/1.1808418
[76] K. Linehan, H. Doyle, Size controlled synthesis of carbon quantum dots using hydride reducing agents, J. Mater. Chem. C 2 (2014) 6025-6031. https://doi.org/10.1039/C4TC00826J
[77] M. Darbandi, R. Thomann, T. Nann, Single quantum dots in silica spheres by microemulsion synthesis. Chem. Mater. 17 (2005) 5720-5725. https://doi.org/10.1021/cm051467h
[78] C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperseCdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115 (1993) 8706-8715. https://doi.org/10.1021/ja00072a025
[79] H. Lee, P.H. Holloway, H. Yang, Synthesis and characterization of colloidal ternary ZnCdSe semiconductor nanorods. J. Chem. Phys. 125 (2006) 2363181–2363189. https://doi.org/10.1063/1.2363181
[80] L. Bakueva, S. Musikhin, M.A. Hines, T.W.F. Chang, M. Tzolov, G.D. Scholes, E.H. Sargent, Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dotnanocrystals in a semiconducting polymer. Appl. Phys. Lett. 82 (2003) 2895–2897. https://doi.org/10.1063/1.1570940
[81] D. Battaglia, X.G. Peng, Formation of high quality InP and InAsnanocrystals in a noncoordinating solvent. Nano Lett. 2 (2002) 1027–1030. https://doi.org/10.1021/nl025687v
[82] E. Kurtz, J. Shen, M. Schmidt, M. Grun, S.K. Hong, D. Litvinov, D. Gerthsen, T. Oka, T. Yao, C. Klingshirn, Formation and properties of self-organized II–VI quantum islands, Thin Solid Films 367 (2000) 68-74. https://doi.org/10.1016/S0040-6090(00)00665-9
[83] M.T. Swihart, Vapor-phase synthesis of nanoparticles. Curr. Opin. Colloid Interface Sci. 8 (2003) 127-133. https://doi.org/10.1016/S1359-0294(03)00007-4
[84] F.C. Frank, J.H. van der Merwe, One-Dimensional Dislocations. I. Static Theory. Proceedings of the Royal Society A, London, 1949.
[85] M. Volmer, A.Z. Weber, Nucleus formation in supersaturated systems, J. Phys. Chem. 119 (1926) 277-301.
[86] I.N. Stranski, V.L. Krastanow, Self-assembled quantum dots. Akad. Wiss. Lit. Mainz Math.-Natur. KI. IIb 146 (1939) 797.
[87] D.J. Eaglesham, M. Cerullo, Dislocation-free Stranski-Krastanow growth of Ge on Si(100). Phys. Rev. Lett. 64 (1990) 1943-1946. https://doi.org/10.1103/PhysRevLett.64.1943
[88] K. Alavi, Molecular Beam Epitaxy, Encyclopedia of Materials: Science and Technology, Elsevier, Second Ed. 2001
[89] G. Trevisi, L. Seravalli, P. Frigeri, C. Bocchi, V. Grillo, L. Nasi, I. Suarez, D. Rivas, G. Munoz-Matutano, J. Martínez-Pastor, MBE growth and properties of low-density InAs/GaAs quantum dot structures, Cryst. Res. Technol. 46 (2011) 801-804. https://doi.org/10.1002/crat.201000622
[90] Y. Ma, S. Huang, C. Zeng, T. Zhou, Z. Zhong, T. Zhou, Y. Fan, X. Yang, J. Xia, Z. Jiang, Towards controllable growth of self-assembled SiGe single and double quantum dot nanostructures. Nanoscale 6 (2014) 3941-3948. https://doi.org/10.1039/C3NR04114J
[91] S.H. Xin, P.D. Wang, A. Yin, C. Kim, M. Dobrowolska, J.L. Merz, J.K. Furdyna, Formation of self‐assembling CdSe quantum dots on ZnSe by molecular beam epitaxy. Appl. Phys. Lett. 69 (1996) 3884-3886. https://doi.org/10.1063/1.117558
[92] S. Nakamura, K. Kitamura, H. Umeya, A. Jia, M. Kobayashi, A.Yoshikawa, M. Shimotomai, S. Nakamura, K. Takahashi, Bright electroluminescence from CdS quantum dot LED structures. Electron. Lett. 34 (1998) 2435-2436. https://doi.org/10.1049/el:19981668
[93] Q. Lei, M.Golalikhani, B.A. Davidson, G. Liu, D.G. Schlom, Q. Qiao, Y. Zhu, R.U. Chandrasena, W. Yang, A.X. Gray, E.Arenholz, A.K. Farrar, D.A. Tenne, M. Hu, J.Guo, R.K. Singh, X. Xi, Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy,npj Quant. Mater. 10 (2017) 1-7. https://doi.org/10.1049/el:19981668
[94] E. Comini, One and Two Dimentional Metal Oxide Nano Structures for Chemical Sensing,in: R. Jaaniso, O.K. Tan, (Eds.), Semiconductor Gas Sensors, Woodhead Publising Limited, 2013, 299-310.
[95] D.M. Mattox, Hand book of Physical Vapor Deposition (PVD) Processing,second ed. Elsevier Inc., USA, 2010.
[96] C. Burda, X.B. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105 (2005) 1025-1102. https://doi.org/10.1021/cr030063a
[97] S. Dhawan, T. Dhawan, A.G. Vedeshwar, Growth of Nb2O5 quantum dots by physical vapor deposition, Mater. lett. 126 (2014) 32-35. https://doi.org/10.1016/j.matlet.2014.03.107
[98] M.M.D. Kumar, S. Devadason, S. Rajesh, Formation of CdSe/CdTe quantum dots in multilayer thin films using PVD method, AIP Conf. Proc. 1451 (2012) 176-178. https://doi.org/10.1063/1.4732406
[99] Y.G. Kim, Y.S. Joh, J.H. Song, K.S. Baek, S.K. Chang, E.D. Sim, Temperature-dependent photoluminescence of ZnSe/ZnS quantum dots fabricated under the Stranski–Krastanov mode. Appl. Phys. Lett. 83 (2003) 2656-2658. https://doi.org/10.1063/1.1612898
[100] T. Dhawan, R.Tyagi, R.K. Bag, M. Singh, P. Mohan, T. Haldar, R. Murlidharan, R.P. Tandon, Growth of InAs quantum dots on germanium substrate using metal organic chemical vapor deposition technique, Nanoscale Res. Lett. 5 (2010) 31-37. https://doi.org/10.1007/s11671-009-9439-y
[101] M.H. Entezari, N. Ghows, Micro-emulsion under ultrasound facilitates the fast synthesis of quantum dots of CdS at low temperature, Ultrason. Sonochem. 18 (2011) 127-134. https://doi.org/10.1016/j.ultsonch.2010.04.001
[102] H.F. Qian, L. Li, J. Ren, One-step and rapid synthesis of high quality alloyed quantum dots (CdSe–CdS) in aqueous phase by microwave irradiation with controllable temperature. Mater. Res. Bull. 40 (2005) 1726-1736. https://doi.org/10.1016/j.materresbull.2005.05.022
[103] H. Gao, C. Xue, G. Hu, K. Zhu, Production of graphene quantum dots by ultrasoundassisted exfoliation in supercritical CO2/H2O medium, Ultrason. Sonochem. 37 (2017) 120–127. https://doi.org/10.1016/j.ultsonch.2017.01.001
[104] W. Yang, B. Zhang, N. Ding, W. Ding, L. Wang, M. Yu, Q. Zhang, Fast synthesize ZnO quantum dots via ultrasonic method, Ultrason. Sonochem. 30 (2016) 103–112. https://doi.org/10.1016/j.ultsonch.2015.11.015
[105] J.C. Wang, Y. Zhou, Suppressing bubble shielding effect in shock wave lithotripsy by low intensity pulsed ultrasound, Ultrasonics 55 (2015) 65–74. https://doi.org/10.1016/j.ultras.2014.08.004
[106] E. Moghaddam, A.A. Youzbashi, A. Kazemzadeh, M.J. Eshraghi, Preparation ofsurface-modified ZnO quantum dots through an ultrasound assisted sol–gel process,Appl. Surf. Sci. 346 (2015) 111–114. https://doi.org/10.1016/j.apsusc.2015.03.207
[107] L.C. Wang, L.Y. Chen, T. Luo, Y.T. Qian, A hydrothermal method to prepare the spherical ZnS and flower-like CdSmicrocrystallites, Mater. Lett. 60 (2006) 3627-3630. https://doi.org/10.1016/j.matlet.2006.03.072
[108] H. Yang, W. Yin, H. Zhao, R. Yang, Y. Song, A complexant-assisted hydrothermal procedure for growing well-dispersed InPnanocrystals, J. Phys. Chem. Solids 69 (2008) 1017-1022. https://doi.org/10.1016/j.jpcs.2007.11.017
[109] V. Sankaran, C.C. Cummins, R.R. Schrock, R.E. Cohen, R.J. Silbey, Small lead sulfide (PbS) clusters prepared via ROMP block copolymer technology, J. Am. Chem. Soc. 112 (1990) 6858–6859. https://doi.org/10.1021/ja00175a019
[110] J.G. Winiarz, L.M. Zhang, J. Park, P.N. Prasad, Inorganic: organic hybrid nanocomposites for photorefractivity at communication wavelengths, J. Phys. Chem. B 106 (2002) 967–970. https://doi.org/10.1021/jp013805h
[111] R.C. Xie, J.K. Shang, Morphological control in solvothermal synthesis of titanium oxide, J. Mater. Sci. 42 (2007) 6583-6589. https://doi.org/10.1007/s10853-007-1506-0
[112] C. Mohammad, T. Pall, J.A. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication, Nat. Nano. 4 (2009) 30-33. https://doi.org/10.1038/nnano.2008.365
[113] Y. Liu, E. Kim, R. Ghodssi, G.W.Rubloff, J.N. Culver, W.E. Bentley, G.F. Payne,Biofabrication to build the biology-device interface, Biofabrication 2(2010) 1-21. https://doi.org/10.1088/1758-5082/2/2/022002
[114] M.W. Ullah, Z. Shi, X. Shi, D. Zeng, S. Li, G. Yang, Microbes as structural templates in biofabrication: study of surface chemistry and applications, ACS Sustain. Chem. Eng. 5 (2017) 11163-11175. https://doi.org/ 10.1021/acssuschemeng.7b02765
[115] 54 Y. Li, R. Cui, P. Zhang, B.B. Chen, Z.Q. Tian, L. Li, B. Hu, D.W. Pang, Z.X. Xie, Mechanism-oriented controllability of intracellular quantum dots formation: The role of glutathione metabolic pathway, ACS Nano, 7 (2013) 2240–2248. https://doi.org/10.1021/nn305346a
[116] H. Bai, Z. Zhang, Y. Guo, W. Jia, Biological synthesis of size-controlled cadmium sulfide nanoparticles using immobilizedrhodobactersphaeroides, Nanoscale Res. Lett. 4 (2009) 717–723. https://doi.org/10.1007/s11671-009-9303-0
[117] S. Bandyopadhyay, A.E. Miller, H.C. Chang, G. Banerjee, V. Yuzhakov, D.F. Yue, R.E. Ricker, S.Jones, J.A. Eastman, E. Baugher, M. Chandrasekhar, Electrochemically assembled quasi-periodic quantum dot arrays, Nanotechnology.7 (1996) 360. https://doi.org/10.1088/0957-4484/7/4/010
[118] S. Bandyopadhyay, L. Menon, N. Kouklin, H. Zeng, D.J. Sellmyer, Electrochemically self-assembled quantum dot arrays. J. Electron. Mater. 28 (1999) 515-519. https://doi.org/10.1007/s11664-999-0104-0
[119] A. Balandin, K.L. Wang, N. Kouklin, S. Bandyopadhyay, Raman spectroscopy of electrochemically self-assembled CdS quantum dots, Appl. Phys. Lett. 76 (2000) 137-139. https://doi.org/10.1063/1.125681
[120] N. Pickett, Controlled preparation of nanoparticle materials U.S. Patent 7,867,556 B2.
[121] A.M. Jawaid, S.Chattopadhyay, D.J. Wink, L.E. Page, P.T. Snee, Cluster-seeded synthesis of doped CdSe:Cu4 quantum dots, ACS Nano 7 (2013) 3190-3197. https://doi.org/10.1021/nn305697q
[122] N.L. Pickett, O. Masala, J. Harris, Commercial volumes of quantum dots: controlled nanoscale synthesis and micron-scale applications. Material Matters 3 (2008) 24-26.