Quantum Dots: Properties and Applications

$30.00

Quantum Dots: Properties and Applications

Amal I. Hassan, Hosam M. Saleh

Quantum dots (QDs) are very small nanoparticles and are composed of hundreds to thousands of atoms. These semiconducting materials can be made from an element, such as silicon or germanium, or compounds such as cadmium sulphide (CdS) or cadmium selenide (CdSe). The colour of these small particles does not depend on the type of semiconducting material from which the dots are made, but rather on its diameter. Besides, ODs attract the most attention because of their unique visual properties. Therefore, these are used in all kinds of applications where precise control of coloured light is important. As these dots are of great importance in chemical, biological and medical applications, they can be designed to deliver anti-cancer drugs and direct them to specific areas of the body. Therefore, with this technique, the harmful side effects of chemical treatments can be reduced. It is possible to examine and study the properties of these nanomaterials and make sure they are analyzed using some scientific devices and techniques, the most important of which are: transmittance electron microscopy (TEM), scanning electron microscopy (SEM), atomic forces microscopy (AFM) with dielectrics, and X-ray diffraction (XRD). This chapter opens horizons towards knowing what quantum dots are and their unique properties, as well as methods of preparation and then placing our hands on the chemical, and biological applications of these dots.

Keywords
Quantum Dots, Nanotechnology, Cadmium Sulphide, Cadmium Selenide, Semiconducting Materials

Published online 2/1/2020, 18 pages

Citation: Amal I. Hassan, Hosam M. Saleh, Quantum Dots: Properties and Applications, Materials Research Foundations, Vol. 96, pp 331-348, 2021

DOI: https://doi.org/10.21741/9781644901250-13

Part of the book on Quantum Dots

References
[1] A. Aboulaich, D. Billaud, M. Abyan, L. Balan, J.-J. Gaumet, G. Medjadhi, J. Ghanbaja, R. Schneider, One-pot noninjection route to CdS quantum dots via hydrothermal synthesis, ACS Appl. Mater. Interfaces. 4 (2012) 2561–2569. https://doi.org/10.1021/am300232z
[2] F.C. Adams, C. Barbante, Nanoscience, nanotechnology and spectrometry, Spectrochim. Acta Part B At. Spectrosc. 86 (2013) 3–13. https://doi.org/10.1016/j.sab.2013.04.008
[3] C. Adlhart, J. Verran, N.F. Azevedo, H. Olmez, M.M. Keinänen-Toivola, I. Gouveia, L.F. Melo, F. Crijns, Surface modifications for antimicrobial effects in the healthcare setting: A critical overview, J. Hosp. Infect. 99 (2018) 239–249. https://doi.org/10.1016/j.jhin.2018.01.018
[4] Á. Andrade-Eiroa, M. Canle, V. Cerdá, Environmental applications of excitation-emission spectrofluorimetry: an in-depth review I, Appl. Spectrosc. Rev. 48 (2013) 1–49. https://doi.org/10.1080/05704928.2012.692105
[5] M. Bawendi, K.F. Jensen, B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, Highly luminescent color selective nanocrystalline materials, (2005).
[6] D. Bera, L. Qian, T.-K. Tseng, P.H. Holloway, Quantum dots and their multimodal applications: a review, Materials (Basel). 3 (2010) 2260–2345. https://doi.org/10.3390/ma3042260
[7] S. Berardi, S. Drouet, L. Francas, C. Gimbert-Suriñach, M. Guttentag, C. Richmond, T. Stoll, A. Llobet, Molecular artificial photosynthesis, Chem. Soc. Rev. 43 (2014) 7501–7519. https://doi.org/10.1039/C3CS60405E
[8] V. Biju, T. Itoh, A. Anas, A. Sujith, M. Ishikawa, Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications, Anal. Bioanal. Chem. 391 (2008) 2469–2495. https://doi.org/10.1007/s00216-008-2185-7
[9] J.B. Blanco-Canosa, M. Wu, K. Susumu, E. Petryayeva, T.L. Jennings, P.E. Dawson, W.R. Algar, I.L. Medintz, Recent progress in the bioconjugation of quantum dots, Coord. Chem. Rev. 263 (2014) 101–137. https://doi.org/10.1016/j.ccr.2013.08.030
[10] G. Blasse, B.C. Grabmaier, A general introduction to luminescent materials, in: Lumin. Mater., Springer, 1994: pp. 1–9. https://doi.org/10.1007/978-3-642-79017-1_1
[11] P.C.J. Clark, H. Radtke, A. Pengpad, A.I. Williamson, B.F. Spencer, S.J.O. Hardman, M.A. Leontiadou, D.C.J. Neo, S.M. Fairclough, A.A.R. Watt, The passivating effect of cadmium in PbS/CdS colloidal quantum dots probed by nm-scale depth profiling, Nanoscale. 9 (2017) 6056–6067. https://doi.org/10.1039/C7NR00672A
[12] S. Coe-Sullivan, J.S. Steckel, W. Woo, M.G. Bawendi, V. Bulović, Large-area ordered quantum-dot monolayers via phase separation during spin-casting, Adv. Funct. Mater. 15 (2005) 1117–1124. https://doi.org/10.1002/adfm.200400468
[13] C.P. Collier, T. Vossmeyer, A.J.R. Heath, Nanocrystal superlattices, Annu. Rev. Phys. Chem. 49 (1998) 371–404. https://doi.org/10.1146/annurev.physchem.49.1.371
[14] A. Das, P.T. Snee, Synthetic developments of nontoxic quantum dots, ChemPhysChem. 17 (2016) 598–617. https://doi.org/10.1002/cphc.201500837
[15] C. Delerue, M. Lannoo, Nanostructures: theory and modelling. 2004, (n.d.). https://doi.org/10.1007/978-3-662-08903-3_6
[16] T. Desai, R.H. Daniels, V. Sahi, Medical device applications of nanostructured surfaces, (2010).
[17] A.I. Ekimov, A.A. Onushchenko, Quantum size effect in three-dimensional microscopic semiconductor crystals, Jetp Lett. 34 (1981) 345–349.
[18] C. Feldmann, T. Jüstel, C.R. Ronda, P.J. Schmidt, Inorganic luminescent materials: 100 years of research and application, Adv. Funct. Mater. 13 (2003) 511–516. https://doi.org/10.1002/adfm.200301005
[19] K.A.S. Fernando, S. Sahu, Y. Liu, W.K. Lewis, E.A. Guliants, A. Jafariyan, P. Wang, C.E. Bunker, Y.-P. Sun, Carbon quantum dots and applications in photocatalytic energy conversion, ACS Appl. Mater. Interfaces. 7 (2015) 8363–8376. https://doi.org/10.1021/acsami.5b00448
[20] A.M. Fox, Fundamentals of Semiconductors: Physics and Materials Properties, 4th Edn., by Peter Y. Yu, Manuel Cardona: Scope: manual. Level: postgraduate, (2012). https://doi.org/10.1080/00107514.2012.661781
[21] C. Frigerio, D.S.M. Ribeiro, S.S.M. Rodrigues, V.L.R.G. Abreu, J.A.C. Barbosa, J.A. V Prior, K.L. Marques, J.L.M. Santos, Application of quantum dots as analytical tools in automated chemical analysis: a review, Anal. Chim. Acta. 735 (2012) 9–22. https://doi.org/10.1016/j.aca.2012.04.042
[22] M. Fu, F. Ehrat, Y. Wang, K.Z. Milowska, C. Reckmeier, A.L. Rogach, J.K. Stolarczyk, A.S. Urban, J. Feldmann, Carbon dots: a unique fluorescent cocktail of polycyclic aromatic hydrocarbons, Nano Lett. 15 (2015) 6030–6035. https://doi.org/10.1021/acs.nanolett.5b02215
[23] B.N.G. Giepmans, S.R. Adams, M.H. Ellisman, R.Y. Tsien, The fluorescent toolbox for assessing protein location and function, Science (80-. ). 312 (2006) 217–224. https://doi.org/10.1126/science.1124618
[24] I.A. Gorbachev, I.Y. Goryacheva, E.G. Glukhovskoy, Investigation of multilayers structures based on the Langmuir-Blodgett films of CdSe/ZnS quantum dots, Bionanoscience. 6 (2016) 153–156. https://doi.org/10.1007/s12668-016-0194-0
[25] C. Han, N. Zhang, Y.-J. Xu, Structural diversity of graphene materials and their multifarious roles in heterogeneous photocatalysis, Nano Today. 11 (2016) 351–372. https://doi.org/10.1016/j.nantod.2016.05.008
[26] X. He, Y. Song, Y. Yu, B. Ma, Z. Chen, X. Shang, H. Ni, B. Sun, X. Dou, H. Chen, Quantum light source devices of In (Ga) As semiconductorself-assembled quantum dots, J. Semicond. 40 (2019) 71902.
[27] C.-Y. Hsieh, P. Hawrylak, Quantum circuits based on coded qubits encoded in chirality of electron spin complexes in triple quantum dots, Phys. Rev. B. 82 (2010) 205311. https://doi.org/10.1103/PhysRevB.82.205311
[28] C.-Y. Hsieh, A. Rene, P. Hawrylak, Herzberg circuit and Berry’s phase in chirality-based coded qubit in a triangular triple quantum dot, Phys. Rev. B. 86 (2012) 115312. https://doi.org/10.1103/PhysRevB.86.115312
[29] D.L. Huffaker, G. Park, Z. Zou, O.B. Shchekin, D.G. Deppe, 1.3 μm room-temperature GaAs-based quantum-dot laser, Appl. Phys. Lett. 73 (1998) 2564–2566. https://doi.org/10.1063/1.122534
[30] A.M. Jawaid, S. Chattopadhyay, D.J. Wink, L.E. Page, P.T. Snee, Cluster-seeded synthesis of doped CdSe: Cu4 quantum dots, ACS Nano. 7 (2013) 3190–3197. https://doi.org/10.1021/nn305697q
[31] X. Jiang, Q. Xu, S.K.W. Dertinger, A.D. Stroock, T. Fu, G.M. Whitesides, A general method for patterning gradients of biomolecules on surfaces using microfluidic networks, Anal. Chem. 77 (2005) 2338–2347. https://doi.org/10.1021/ac048440m
[32] T. Jüstel, H. Nikol, C. Ronda, New developments in the field of luminescent materials for lighting and displays, Angew. Chemie Int. Ed. 37 (1998) 3084–3103.
[33] P. Juzenas, W. Chen, Y.-P. Sun, M.A.N. Coelho, R. Generalov, N. Generalova, I.L. Christensen, Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer, Adv. Drug Deliv. Rev. 60 (2008) 1600–1614. https://doi.org/10.1002/(SICI)1521-3773
[34] C.W. Lee, C.H. Chou, J.H. Huang, C.S. Hsu, T.-P. Nguyen, Investigations of organic light emitting diodes with CdSe (ZnS) quantum dots, Mater. Sci. Eng. B. 147 (2008) 307–311. https://doi.org/10.1016/j.mseb.2007.09.068
[35] D. Leonard, K. Pond, P.M. Petroff, Critical layer thickness for self-assembled InAs islands on GaAs, Phys. Rev. B. 50 (1994) 11687. https://doi.org/10.1103/PhysRevB.50.11687
[36] J.W. Lichtman, J.-A. Conchello, Fluorescence microscopy, Nat. Methods. 2 (2005) 910–919. https://doi.org/10.1038/nmeth817
[37] S.A. Lim, M.U. Ahmed, Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: a review, RSC Adv. 6 (2016) 24995–25014. https://doi.org/10.1039/C6RA00333H
[38] S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications, Chem. Soc. Rev. 44 (2015) 362–381. https://doi.org/10.1039/C4CS00269E
[39] S.S. Lucky, K.C. Soo, Y. Zhang, Nanoparticles in photodynamic therapy, Chem. Rev. 115 (2015) 1990–2042. https://doi.org/10.1021/cr5004198
[40] J.R. Manders, D. Bera, L. Qian, P.H. Holloway, Quantum dots for displays and solid state lighting, in; A. Kitai (Ed.) Materials for Solid State Lighting and Displays. (2017) 31–90.
[41] L. Mangolini, U. Kortshagen, Plasma-assisted synthesis of silicon nanocrystal inks, Adv. Mater. 19 (2007) 2513–2519. https://doi.org/10.1002/adma.200700595
[42] L. Mangolini, E. Thimsen, U. Kortshagen, High-yield plasma synthesis of luminescent silicon nanocrystals, Nano Lett. 5 (2005) 655–659. https://doi.org/10.1021/nl050066y
[43] Y. Masumoto, T. Takagahara, Semiconductor quantum dots: physics, spectroscopy and applications, Springer Science & Business Media, 2013.
[44] Cb. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc. 115 (1993) 8706–8715. https://doi.org/10.1021/ja00072a025
[45] K.V.R. Murthy, H.S. Virk, Luminescence phenomena: an introduction, in: Defect Diffus. Forum, Trans Tech Publ, 2014: pp. 1–34. https://doi.org/10.4028/www.scientific.net/DDF.347.1
[46] Z. Ni, X. Pi, M. Ali, S. Zhou, T. Nozaki, D. Yang, Freestanding doped silicon nanocrystals synthesized by plasma, J. Phys. D. Appl. Phys. 48 (2015) 314006. https://doi.org/10.1088/0022-3727/48/31/314006
[47] P.G. Nicholson, F.A. Castro, Organic photovoltaics: principles and techniques for nanometre scale characterization, Nanotechnology. 21 (2010) 492001. https://doi.org/10.1088/0957-4484/21/49/492001
[48] H. Pan, S. Zhu, X. Lou, L. Mao, J. Lin, F. Tian, D. Zhang, Graphene-based photocatalysts for oxygen evolution from water, RSC Adv. 5 (2015) 6543–6552. https://doi.org/10.1039/C4RA09546D
[49] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Shape control of CdSe nanocrystals, Nature. 404 (2000) 59–61.
[50] X. Pi, T. Yu, D. Yang, Water-dispersible silicon-quantum-dot-containing micelles self-assembled from an amphiphilic polymer, Part. Part. Syst. Charact. 31 (2014) 751–756. https://doi.org/10.1002/ppsc.201300346
[51] X.D. Pi, U. Kortshagen, Nonthermal plasma synthesized freestanding silicon–germanium alloy nanocrystals, Nanotechnology. 20 (2009) 295602. https://doi.org/10.1088/0957-4484/20/29/295602
[52] K.E. Sapsford, T. Pons, I.L. Medintz, H. Mattoussi, Biosensing with luminescent semiconductor quantum dots, Sensors. 6 (2006) 925–953. https://doi.org/10.3390/s6080925
[53] P. Senellart, G. Solomon, A. White, High-performance semiconductor quantum-dot single-photon sources, Nat. Nanotechnol. 12 (2017) 1026. https://doi.org/10.1038/nnano.2017.218
[54] N. Sharma, H. Ojha, A. Bharadwaj, D.P. Pathak, R.K. Sharma, Preparation and catalytic applications of nanomaterials: a review, Rsc Adv. 5 (2015) 53381–53403. https://doi.org/10.1039/C5RA06778B
[55] E. Song, M. Yu, Y. Wang, W. Hu, D. Cheng, M.T. Swihart, Y. Song, Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk, Biosens. Bioelectron. 72 (2015) 320–325. https://doi.org/10.1016/j.bios.2015.05.018
[56] A. Srivastava, M. Sidler, A. V Allain, D.S. Lembke, A. Kis, A. Imamoğlu, Optically active quantum dots in monolayer WSe 2, Nat. Nanotechnol. 10 (2015) 491. https://doi.org/10.1038/nnano.2015.60
[57] I.N. Stranski, L. Krastanow, Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander, Monatshefte Für Chemie Und Verwandte Teile Anderer Wissenschaften. 71 (1937) 351–364. https://doi.org/10.1007/BF01798103
[58] D. V Talapin, A.L. Rogach, M. Haase, H. Weller, Evolution of an ensemble of nanoparticles in a colloidal solution: theoretical study, J. Phys. Chem. B. 105 (2001) 12278–12285. https://doi.org/10.1021/jp012229m
[59] R.R. Turnbull, R.C. Knapp, J.K. Roberts, Illuminator assembly incorporating light emitting diodes, (1998).
[60] B. Valeur, M.N. Berberan-Santos, A brief history of fluorescence and phosphorescence before the emergence of quantum theory, J. Chem. Educ. 88 (2011) 731–738. https://doi.org/10.1021/ed100182h
[61] A. Valizadeh, H. Mikaeili, M. Samiei, S.M. Farkhani, N. Zarghami, A. Akbarzadeh, S. Davaran, Quantum dots: synthesis, bioapplications, and toxicity, Nanoscale Res. Lett. 7 (2012) 480. https://doi.org/10.1186/1556-276X-7-480
[62] V. Vatanpour, N. Zoqi, Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes, Appl. Surf. Sci. 396 (2017) 1478–1489. https://doi.org/10.1016/j.apsusc.2016.11.195
[63] K. Vinothini, M. Rajan, Mechanism for the nano-based drug delivery system, in: Charact. Biol. Nanomater. Drug Deliv., Elsevier, 2019: pp. 219–263.
[64] F. Wang, V.N. Richards, S.P. Shields, W.E. Buhro, Kinetics and mechanisms of aggregative nanocrystal growth, Chem. Mater. 26 (2014) 5–21. https://doi.org/10.1021/cm402139r
[65] P.N. Wiecinski, K.M. Metz, T.C. King Heiden, K.M. Louis, A.N. Mangham, R.J. Hamers, W. Heideman, R.E. Peterson, J.A. Pedersen, Toxicity of oxidatively degraded quantum dots to developing zebrafish (Danio rerio), Environ. Sci. Technol. 47 (2013) 9132–9139. https://doi.org/10.1021/es304987r
[66] Z. Xiao, D. Liu, Z. Tang, H. Li, M. Yuan, Synthesis and characterization of poly (lactic acid)-conjugated CdTe quantum dots, Mater. Lett. 148 (2015) 126–129. https://doi.org/10.1016/j.matlet.2015.01.164
[67] Y. Xing, J. Rao, Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging, Cancer Biomarkers. 4 (2008) 307–319. https://doi.org/10.3233/CBM-2008-4603
[68] C. Zhai, H. Zhang, N. Du, B. Chen, H. Huang, Y. Wu, D. Yang, One-pot synthesis of biocompatible CdSe/CdS quantum dots and their applications as fluorescent biological labels, Nanoscale Res Lett. 6 (2011) 31. https://doi.org/10.1007/s11671-010-9774-z
[69] S. Zhu, Y. Song, J. Shao, X. Zhao, B. Yang, Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units, Angew. Chemie Int. Ed. 54 (2015) 14626–14637. https://doi.org/10.1002/anie.201504951