Semiconductor Quantum Dots
N.B. Singh, Richa Tomar
Semiconductor particles in the range of 2-10 nm are known as quantum dots (QDs) and nano-crystals where in all the three spatial dimensions, excitons are confined. Because of very small size and special electronic properties, QDs are expected to be building blocks of many electronic and optoelectronic devices. These particles possess tunable quantum efficiency, continuous absorption spectra, narrow emission and long term photostability. These are important for various biomedical applications. In this chapter definition of semiconductor QDs, their methods of preparation and characterization along with their properties and applications have been discussed.
Keywords
Semiconductor, Quantum Dots, Band Gap, Photodetectors, Photovoltaics
Published online 2/1/2020, 26 pages
Citation: N.B. Singh, Richa Tomar, Semiconductor Quantum Dots, Materials Research Foundations, Vol. 96, pp 305-330, 2021
DOI: https://doi.org/10.21741/9781644901250-12
Part of the book on Quantum Dots
References
[1] J. Xu, J. Zheng, Nano-inspired biosensors for protein assay with clinical applications, quantum dots and nanoclusters, Elsevier, 2019, pp. 67-90. https//doi.org/10.1016/C2016-0-01779-5
[2] D. Dorfs, R. Krahne, A. Falqui, L. Manna, C. Giannini, D. Zanchet, Quantum Dots: Synthesis and characterization, comprehensive nanoscience and nanotechnology (Second Edition), Elsevier, 2011, pp. 17-60. https//doi.org/10.1016/b978-0-12-374396-1.00028-3
[3] S. Chand, N. Thakur, S. C. Katyal, P. B. Barman, Vineet Sharma, Pankaj Sharma, Recent developments on the synthesis, structural and optical properties of chalcogenide quantum dots, Sol. Energy Mater. Sol. Cells 168 (2017) 183–200. https//doi.org/10.1016/j.solmat.2017.04.033
[4] F. X. Redl, K.-S. Cho, C. B. Murray and S. O’Brien, Three Dimensional Binary superlattices of magnetic nanocrystals and semiconductor quantum dots, Nature 423 (2003) 968-971. https//doi.org/10.1038/nature01702
[5] S. K. Mandal, N. Lequeux, B.Rotenberg, M. Tramier, J. Fattaccioli, J. Bibette, B. Dubertret, Encapsulation of magnetic and flourescent nanoparticles in emulsion droplets, Langmuir 21(2005) 4175-4179. https://doi.org/10.1021/la047025m
[6] H. Zhang, L. Wang, H. Xiong, L. Hu, B. Yang, W. Li, Hydrothermal synthesis for high-quality CdTe nanocrystals, Adv. Mater. 15 (2003) 1712–1715. https//doi.org/10.1002/adma.200305653
[7] J.-P. Ge, S. Xu, J. Zhuang, X. Wang, Q. Peng, Y.-D. Li, Synthesis of CdSe, ZnSe, and ZnxCd1 − xSe nanocrystals and their silica sheathed core/shell structures, Inorg. Chem. 45 (2006) 4922–4927. https//doi.org/10.1021/ic051598k
[8] Y. He, H.-T. Lu, L.-M. Sai, Y.-Y. Su, M. Hu, C.-H. Fan, W. Huang, L.-H. Wang, Microwave synthesis of water-dispersed CdTe/CdS/ZnS core shell-shell quantum dots with excellent photostability and biocompatibility, Adv. Mater. 20 (2008) 3416–3421. https//doi.org/10.1002/adma.200701166
[9] F. Shen, W. Que, Y. Liao, X. Yin, Photocatalytic activity of TiO2 nanoparticles sensitized by CuInS2 quantum dots, Ind. Eng. Chem. 50 (2011) 9131–9137. https//doi.org/10.1021/ie2007467
[10] K.T. Lee , C.H. Lin, S.Y. Lu, SnO2 quantum dots synthesized with a carrier solvent assisted interfacial reaction for band-structure engineering of TiO2 photocatalysts. J. Phys. Chem. 118 (2014) 14457–14463. https//doi.org/10.1021/jp5045749
[11] S. Qian, C. Wang, W. Liu, Y. Zhu, W. Yao, X. Lu, An enhanced CdS/TiO2 photocatalyst with high stability and activity: effect of mesoporous substrate and bifunctional linking molecule, J. Mater. Chem. 21 (2011) 4945–4952. https//doi.org/10.1039/c0jm03508d
[12] D. Zhang, P. Ma, S. Wang, M. Xia, S. Zhang, D. Xie, X Zhou, Y. Lin, The in situ ligand exchange linker-assisted assembly of oil-soluble CdSe quantum dots to TiO2 films, Appl. Surf. Sci. 475 (2019) 813–819. https//doi.org/10.1016/j.apsusc.2018.12.289
[13] Q. Zhou, M.L. Fu, B.L. Yuan, H.J. Cui, J.W. Shi, Assembly, characterization, and photocatalytic activities of TiO2 nanotubes/CdS quantum dots nanocomposites, J. Nanopart. Res. 13 (2011) 6661–6672. https//doi.org/10.1007/s11051-011-0573-y
[14] M.A. Mumin, G. Moula, P. A. Charpentier, Supercritical CO2 synthesized TiO2 nanowires covalently linked with core-shell CdS-ZnS quantum dots: enhanced photocatalysis and stability, RSC Adv. 5 (2015) 67767–67779. https//doi.org/10.1039/c5ra08914j
[15] K. Kandasamy, M. Venkatesh, Y. A. Syed Khadar, Paramasivan Rajasingh, One-pot green synthesis of CdS quantum dots using Opuntia ficus-indica fruit sap, Materials today Proc. 2020. https//doi.org/10.1016/j.matpr.2019.06.003
16] B. T Dubertret, P. Skourides, D. J. Norris,V. Noireaux, A. H. Brivanlou, A. Libchaber, In vivo imaging of quantum dots encapsulated in phospholipids micelles, Science 298 (2002) 1759-1762. https//doi.org/10.1126/science.1077194
[17] B. Liu, B. Jiang, Z. Zheng, T. Liu, Semiconductor quantum dots in tumor research, J. Lumin. 209 (2019) 61-68. https//doi.org/10.1016/j.jlumin.2019.01.011
[18] C. Trallero-Giner, A. Debernardi, and M. Cardona, E. Menendez-Proupın, A.I. Ekimov, Optical vibrons in CdSe dots and dispersion relation of the bulk material, Phys. Rev. B 57 (1998) 4664–4669. https//doi.org/10.1103/physrevb.57.4664
[19] B. Bajorowicz, M.P. Kobylański, A. Gołąbiewska, J. Nadolna, D. Zaleska-Medynska, A. Malankowska, Quantum dot-decorated semiconductor micro- and nanoparticles: A review of their synthesis, characterization and application in photocatalysis, Adv. Colloid Interface Sci. 256 (2018) 352–372. https//doi.org/10.1016/j.cis.2018.02.003
[20] I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater. 4 (2005) 435-446. https//doi.org/10.1038/nmat1390
[21] C. Delerue, M. Lannoo, Nanostructures: Theory and modelling, nanoscience and nanotechnology, Springer, 2004, pp. 47-80. https//doi.org/10.1007/978-3-662-08903-3
[22] A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, H. Mattoussi, Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors, J. Am. Chem. Soc. 126 (2004) 301-310. https//doi.org/10.1021/ja037088b
[23] A. Bagga, P. K. Chattopadhyay, S. Ghosh, Stokes shift in quantum dots: Origin of dark exciton, International Workshop on Physics of Semiconductor Devices 2007. https//doi.org/10.1109/iwpsd.2007.4472661
[24] W.C.W. Chan, S.Nie, Quantum dot bioconjugates for ultrasensitive non isotopic detection, Science 281 (1998) 2016–2018. https//doi.org/10.1126/science.281.5385.2016
[25] A. C. Samia, X. Chen , C. Burda , Semiconductor quantum dots for photodynamic theory, J. Am. Chem. Soc. 125 (2003) 15736-15737. https//doi.org/10.1021/ja0386905
[26] I. Costas-Mora, V. Romero, I. Lavilla, C. Bendicho, An overview of recent advances in the application of quantum dots as luminescent probes to inorganic-trace analysis, Trend Anal. Chem. 57 (2014) 64–72. https//doi.org/10.1016/j.trac.2014.02.004
[27] C. Guo, J. Wang, J. Cheng, Z. Dai, Determination of trace copper ions with ultrahigh sensitivity and selectivity utilizing CdTe quantum dots coupled with enzyme inhibition, Biosens. Bioelectro. 36 (2012) 69–74. https//doi.org/10.1016/j.bios.2012.03.040
[28] P. G. Luo, F. Yang, S.T. Yang, S.K. Sonkar, L. Yang, J.J. Broglie, Y. Liu, Y.P. Sun, Carbon-based quantum dots for fluorescence imaging of cells and tissues, RSC Adv. 4 (2014) 10791–10807. https//doi.org/10.1039/c3ra47683a
[29] R. Cui, H.H. Liu, H.Y. Xie, Z.L. Zhang, Y.R. Yang, D.W. Pang, Z.X. Xie, B. Bei Chen, B. Hu, P. Shen, Living yeast cells as a controllable biosynthesizer for fluorescent quantum dots, Adv. Funct. Mater. 19 (2009) 2359–2364. https//doi.org/10.1002/adfm.200801492
[30] S. R. Sturzenbaum, M. Hockner, A. Panneerselvam, J. Levitt, J-S. Bouillard, S. Taniguchi, L-A. Dailey, R. Ahmad Khanbeigi, E. V. Rosca, M. Thanou, K. Suhling, A. V. Zayats, M. Green, Biosynthesis of luminescent quantum dots in an earthworm, Nat. Nanotechnol. 8 (2013) 57–60. https//doi.org/10.1038/nnano.2012.232
[31] Y. Wang, R. Hu, G. Lin, I. Roy, K-T Yong, Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity, ACS Appl. Mater. Inter. 5 (2013) 2786–2799. https//doi.org/10.1021/am302030a
[32] M. Kouhnavard, S. Ikeda, NA Ludin, NB Ahmad Khairudin, BV Ghaffari, MA Mat-Teridi, M. A. Ibrahim, S. Sepeai, K. Sopian, A review of semiconductor materials as sensitizers for quantum dot sensitized solar cells, Renew. Sust. Energ. Rev. 37 (2014) 397–407. https//doi.org/10.1016/j.rser.2014.05.023
[33] B. Fu, C. Deng and L. Yang, Efficiency enhancement of solid-state cuins2 quantum dot-sensitized solar cells by improving the charge recombination, Nanoscale Res. Lett. 14 (2019) 1981-1988. https//doi.org/10.1186/s11671-019-2998-7
[34] X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Weng, X. Peng, Solution-processed, high-performance light-emitting diodes based on quantum dots, Nature 515 (2014) 96–99. https//doi.org/10.1117/12.591299
[35] X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, E. H. Sargent, Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination, Nat. Photon. 12 (2018) 159-164. https//doi.org/10.1038/s41566-018-0105-8
[36] H. Shen, Q. Gao, Y. Zhang, Y. Lin, Q. Lin, Z. Li, L. Chen, Z. Zeng, X. Li, Y. Jia, S. Wang, Z. Du, L. Song Li, Z. Zhang, Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency, Nat. Photon. 13 (2019) 192–197. https//doi.org/10.1038/s41566-019-0364-z