Role of Quantum Dots in Separation Processes

$30.00

Role of Quantum Dots in Separation Processes

Neelam Verma, Rajni Sharma, Mohsen Asadnia

Quantum dots (QDs), the fluorescent nanoparticles with multiplexing competency are applicable in broad range of fields. The application of QDs in separation processes is a relatively new approach, still presenting the spectacular advancement and wider future scope. The unique features of QDs endorse their use in wastewater treatment, chromatographic separation and heavy metal remediation. QDs also assist the separation of biomarkers, pathogens and tumor cells for biomedical applications. These tiny particles possess tremendous potential to deal with bigger global issues such as water desalination and early cancer diagnosis. To the best of our knowledge, it is the first most report summarizing the QDs uses for multiple separation processes.

Keywords
Quantum Dots, Magnetic Separation, Wastewater, Cancer, Membrane

Published online 2/1/2020, 29 pages

Citation: Neelam Verma, Rajni Sharma, Mohsen Asadnia, Role of Quantum Dots in Separation Processes, Materials Research Foundations, Vol. 96, pp 251-279, 2021

DOI: https://doi.org/10.21741/9781644901250-10

Part of the book on Quantum Dots

References
[1] K.J. McHugh, L. Jing, A.M. Behrens, S. Jayawardena, W. Tang, M. Gao, R. Langer, A. Jaklenec, Biocompatible semiconductor quantum dots as cancer imaging agents, Adv. Mater. 30 (2018) 1706356. https://doi.org/10.1002/adma.201706356
[2] A.M. Wagner, J.M. Knipe, G. Orive, N.A. Peppas, Quantum dots in biomedical applications, Acta Biomater. 94 (2019) 44–63.
[3] A. Cayuela, M.L. Soriano, C. Carrillo-Carrión, M. Valcárcel, Semiconductor and carbon-based fluorescent nanodots: The need for consistency, Chem. Commun. 52 (2016) 1311–1326. https://doi.org/10.1039/c5cc07754k
[4] X. Wang, Y. Feng, P. Dong, J. Huang, A mini review on carbon quantum dots : preparation, properties and electrocatalytic application, Frontiers in chemistry. 7 (2019) 1–9. https://doi.org/10.3389/fchem.2019.00671
[5] U. Kaiser, D. Jimenez De Aberasturi, M. Vázquez-González, C. Carrillo-Carrion, T. Niebling, W.J. Parak, W. Heimbrodt, Determining the exact number of dye molecules attached to colloidal CdSe/ZnS quantum dots in Förster resonant energy transfer assemblies, J. Appl. Phys. 117 (2015) 024701. https://doi.org/10.1063/1.4905025
[6] N. Gogoi, M. Barooah, G. Majumdar, D. Chowdhury, Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions, ACS Appl. Mater. Interfaces. 7 (2015) 3058–3067. https://doi.org/10.1021/am506558d
[7] H. Cui, R. Li, J. Du, Q.F. Meng, Y. Wang, Z.X. Wang, F.F. Chen, W.F. Dong, J. Cao, L.L. Yang, S.S. Guo, Rapid and efficient isolation and detection of circulating tumor cells based on ZnS:Mn2+ quantum dots and magnetic nanocomposites, Talanta. 202 (2019) 230–236. https://doi.org/10.1016/j.talanta.2019.05.001
[8] X. Zhang, H. Ji, X. Zhang, Z. Wang, D. Xiao, Capillary column coated with graphene quantum dots for gas chromatographic separation of alkanes and aromatic isomers, Anal. Methods. 7 (2015) 3229–3237. https://doi.org/10.1039/c4ay03068k
[9] D.L. Zhao, T.S. Chung, Applications of carbon quantum dots (CQDs) in membrane technologies: A review, Water Res. 147 (2018) 43–49. https://doi.org/10.1016/j.watres.2018.09.040
[10] E. Song, J. Hu, C. Wen, Z. Tian, X. Yu, Z. Zhang, Y. Shi, D.-W. Pang, Fluorescent-magnetic-biotargeting multifunctional nanobioprobes for detecting and isolating multiple types of tumor cells, ACS Nano. 5 (2011) 761–770.
[11] A. Pramanik, S. Jones, F. Pedraza, A. Vangara, C. Sweet, M.S. Williams, V. Ruppa-Kasani, S.E. Risher, D. Sardar, P.C. Ray, Fluorescent, magnetic multifunctional carbon dots for selective separation, identification, and eradication of drug-resistant superbugs, ACS Omega. 2 (2017) 554–562. https://doi.org/10.1021/acsomega.6b00518
[12] K.D. Mahajan, G.B. Vieira, G. Ruan, B.L. Miller, B. Maryam, J.J. Chalmers, R. Sooryakumar, J.O. Winter, A MagDot-nanoconveyor assay detects and isolates molecular biomarkers, Chem Eng Prog. 2012. 108 (2012) 41–46.
[13] A. Soroush, J. Barzin, M. Barikani, M. Fathizadeh, Interfacially polymerized polyamide thin film composite membranes: Preparation, characterization and performance evaluation, Desalination. 287 (2012) 310–316. https://doi.org/10.1016/j.desal.2011.07.048
[14] M. Fathizadeh, H.N. Tien, K. Khivantsev, Z. Song, F. Zhou, M. Yu, Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination, Desalination. 451 (2019) 125–132. https://doi.org/10.1016/j.desal.2017.07.014
[15] R. Bi, R. Zhang, J. Shen, Y. Liu, M. He, X. You, Y. Su, Z. Jiang, Graphene quantum dots engineered nanofiltration membrane for ultrafast molecular separation, J. Memb. Sci. 572 (2018) 504–511. https://doi.org/https://doi.org/10.1016/j.memsci.2018.11.044
[16] M. Fathizadeh, A. Aroujalian, A. Raisi, Effect of lag time in interfacial polymerization on polyamide composite membrane with different hydrophilic sub layers, Desalination. 284 (2012) 32–41. https://doi.org/10.1016/j.desal.2011.08.034.
[17] X. Song, Q. Zhou, T. Zhang, H. Xu, Z. Wang, Pressure-assisted preparation of graphene oxide quantum dot-incorporated reverse osmosis membranes: Antifouling and chlorine resistance potentials, J. Mater. Chem. A. 4 (2016) 16896–16905. https://doi.org/10.1039/c6ta06636d
[18] C. Zhang, K. Wei, W. Zhang, Y. Bai, Y. Sun, J. Gu, Graphene oxide quantum dots incorporated into a thin film nanocomposite membrane with high flux and antifouling properties for low-pressure nanofiltration, ACS Appl. Mater. Interfaces. 9 (2017) 11082–11094. https://doi.org/10.1021/acsami.6b12826
[19] Z. Yuan, X. Wu, Y. Jiang, Y. Li, J. Huang, L. Hao, J. Zhang, J. Wang, Carbon dots-incorporated composite membrane towards enhanced organic solvent nanofiltration performance, J. Memb. Sci. 549 (2018) 1–11. https://doi.org/10.1016/j.memsci.2017.11.051
[20] S. Xu, F. Li, B. Su, M.Z. Hu, X. Gao, C. Gao, Novel graphene quantum dots (GQDs)-incorporated thin film composite (TFC) membranes for forward osmosis (FO) desalination, Desalination. 451 (2019) 219–230
[21] Z. Zeng, D. Yu, Z. He, J. Liu, F.X. Xiao, Y. Zhang, R. Wang, D. Bhattacharyya, T.T.Y. Tan, Graphene oxide quantum dots covalently functionalized pvdf membrane with significantly-enhanced bactericidal and antibiofouling performances, Sci. Rep. 6 (2016) 1–11. https://doi.org/10.1038/srep20142
[22] H. Shi, F. Liu, L. Xue, Fabrication and characterization of antibacterial PVDF hollow fibre membrane by doping Ag-loaded zeolites, J. Memb. Sci. 437 (2013) 205–215. https://doi.org/10.1016/j.memsci.2013.03.009
[23] D.L. Zhao, S. Das, T.S. Chung, Carbon quantum dots grafted antifouling membranes for osmotic power generation via pressure-retarded osmosis process, Environ. Sci. Technol. 51 (2017) 14016–14023. https://doi.org/10.1021/acs.est.7b04190
[24] L. Hui, J. Huang, G. Chen, Y. Zhu, L. Yang, Antibacterial property of graphene quantum dots (both source material and bacterial shape matter), ACS Appl. Mater. Interfaces. 8 (2016) 20–25. https://doi.org/10.1021/acsami.5b10132
[25] F. Chen, W. Gao, X. Qiu, H. Zhang, L. Liu, P. Liao, W. Fu, Y. Luo, Graphene quantum dots in biomedical applications: Recent advances and future challenges, Front. Lab. Med. 1 (2017) 192–199. https://doi.org/10.1016/j.flm.2017.12.006
[26] J. Zhu, J. Wang, J. Hou, Y. Zhang, J. Liu, B. Van der Bruggen, Graphene-based antimicrobial polymeric membranes: a review, J. Mater. Chem. A. 5 (2017) 6776–6793. https://doi.org/10.1039/c7ta00009j
[27] A. Colburn, N. Wanninayake, D.Y. Kim, D. Bhattacharyya, Cellulose-graphene quantum dot composite membranes using ionic liquid, J. Memb. Sci. 556 (2018) 293–302. https://doi.org/10.1016/j.memsci.2018.04.009
[28] B. Safaei, M. Youssefi, B. Rezaei, N. Irannejad, Synthesis and properties of photoluminescent carbon quantum dot/polyacrylonitrile composite nanofibers, Smart Sci. 6 (2017) 117–124. https://doi.org/10.1080/23080477.2017.1399318
[29] Y. Zhang, Y.H. He, P.P. Cui, X.T. Feng, L. Chen, Y.Z. Yang, X.G. Liu, Water-soluble, nitrogen-doped fluorescent carbon dots for highly sensitive and selective detection of Hg2+ in aqueous solution, RSC Adv. 5 (2015) 40393–40401. https://doi.org/10.1039/c5ra04653j
[30] A. Jafari, M.R.S. Kebria, A. Rahimpour, G. Bakeri, Graphene quantum dots modified polyvinylidenefluride (PVDF) nanofibrous membranes with enhanced performance for air Gap membrane distillation, Chem. Eng. Process. – Process Intensif. 126 (2018) 222–231. https://doi.org/10.1016/j.cep.2018.03.010
[31] L.Y. Jiang, T.S. Chung, C. Cao, Z. Huang, S. Kulprathipanja, Fundamental understanding of nano-sized zeolite distribution in the formation of the mixed matrix single- and dual-layer asymmetric hollow fiber membranes, J. Memb. Sci. 252 (2005) 89–100. https://doi.org/10.1016/j.memsci.2004.12.004
[32] U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Quantum dots versus organic dyes as fluorescent labels, Nat. Methods. 5 (2008) 763–775. https://doi.org/10.1038/nmeth.1248
[33] K.D. Mahajan, Q. Fan, J. Dorcéna, G. Ruan, J.O. Winter, Magnetic quantum dots in biotechnology – synthesis and applications, Biotechnol. J. 8 (2013) 1424–1434. https://doi.org/10.1002/biot.201300038
[34] A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials. 26 (2005) 3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012
[35] A.K. Yetisen, M.S. Akram, C.R. Lowe, Paper-based microfluidic point-of-care diagnostic devices, Lab Chip. 13 (2013) 2210. https://doi.org/10.1039/c3lc50169h.
[36] R.M. Lequin, Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA), Clin. Chem. 51 (2005) 2415–2418. https://doi.org/10.1373/clinchem.2005.051532
[37] A. Agrawal, T. Sathe, S. Nie, Single-bead immunoassays using magnetic microparticles and spectral-shifting quantum dots, J. Agric. Food Chem. 55 (2007) 3778–3782. https://doi.org/10.1021/jf0635006
[38] M. Gazouli, A. Lyberopoulou, P. Pericleous, S. Rizos, G. Aravantinos, N. Nikiteas, N.P. Anagnou, E.P. Efstathopoulos, Development of a quantum-dot-labelled magnetic immunoassay method for circulating colorectal cancer cell detection, World J. Gastroenterol. 18 (2012) 4419–4426. https://doi.org/10.3748/wjg.v18.i32.4419
[39] F.B. Wang, Y. Rong, M. Fang, J.P. Yuan, C.W. Peng, S.P. Liu, Y. Li, Recognition and capture of metastatic hepatocellular carcinoma cells using aptamer-conjugated quantum dots and magnetic particles, Biomaterials. 34 (2013) 3816–3827. https://doi.org/10.1016/j.biomaterials.2013.02.018
[40] Y. Shi, A. Pramanik, C. Tchounwou, F. Pedraza, R.A. Crouch, S.R. Chavva, A. Vangara, S.S. Sinha, S. Jones, D. Sardar, C. Hawker, P.C. Ray, multifunctional biocompatible graphene oxide quantum dots decorated magnetic nanoplatform for efficient capture and two-photon imaging of rare tumor cells, ACS Appl. Mater. Interfaces. 7 (2015) 10935–10943. https://doi.org/10.1021/acsami.5b02199
[41] S. Sahu, S. Nayak, S.K. Ghosh, S. Mohapatra, Design of Fe3O4@SiO2@carbon quantum dot based nanostructure for fluorescence sensing, magnetic separation, and live cell imaging of fluoride ion, Langmuir. 31 (2015) 8111–8120. https://doi.org/10.1021/acs.langmuir.5b01513
[42] L. Xue, L. Zheng, H. Zhang, X. Jin, J. Lin, An ultrasensitive fluorescent biosensor using high gradient magnetic separation and quantum dots for fast detection of foodborne pathogenic bacteria, Sensors Actuators, B Chem. 265 (2018) 318–325. https://doi.org/10.1016/j.snb.2018.03.014
[43] F. Cui, J. Ji, J. Sun, J. Wang, H. Wang, Y. Zhang, H. Ding, Y. Lu, D. Xu, X. Sun, A novel magnetic fluorescent biosensor based on graphene quantum dots for rapid, efficient, and sensitive separation and detection of circulating tumor cells, Anal. Bioanal. Chem. 411 (2019) 985–995. https://doi.org/10.1007/s00216-018-1501-0
[44] D. Wang, J. He, N. Rosenzweig, Z. Rosenzweig, Superparamagnetic Fe2O3 Beads − CdSe / ZnS quantum dots core − shell nanocomposite particles for cell, Nano Letters. 4 (2004) 3, 409-413.
[45] M. Chu, X. Song, D. Cheng, S. Liu, J. Zhu, Preparation of quantum dot-coated magnetic polystyrene nanospheres for cancer cell labelling and separation, Nanotechnology. 17 (2006) 3268–3273. https://doi.org/10.1088/0957-4484/17/13/032
[46] E.Q. Song, G.P. Wang, H.Y. Xie, Z.L. Zhang, J. Hu, J. Peng, D.C. Wu, Y.B. Shi, D.W. Pang, Visual recognition and efficient isolation of apoptotic cells with fluorescent-magnetic-biotargeting multifunctional nanospheres, Clin. Chem. 53 (2007) 2177–2185. https://doi.org/10.1373/clinchem.2007.092023
[47] S.T. Selvan, P.K. Patra, C.Y. Ang, J.Y. Ying, Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells, Angew. Chemie – Int. Ed. 119 (2007) 2500–2504. https://doi.org/10.1002/anie.200604245
[48] K. Knop, R. Hoogenboom, D. Fischer, U.S. Schubert, Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives, Angew. Chemie – Int. Ed. 49 (2010) 6288–6308. https://doi.org/10.1002/anie.200902672
[49] A. Kale, S. Kale, P. Yadav, H. Gholap, R. Pasricha, J.P. Jog, B. Lefez, B. Hannoyer, P. Shastry, S. Ogale, Magnetite/CdTe magnetic-fluorescent composite nanosystem for magnetic separation and bio-imaging, Nanotechnology. 22 (2011) 225110. https://doi.org/10.1088/0957-4484/22/22/225101
[50] G. Wang, Y. Gao, H. Huang, X. Su, Multiplex immunoassays of equine virus based on fluorescent encoded magnetic composite nanoparticles, Anal. Bioanal. Chem. 398 (2010) 805–813. https://doi.org/10.1007/s00216-010-4001-4
[51] J.F. Rusling, C. V. Kumar, J.S. Gutkind, V. Patel, Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer, Analyst. 135 (2010) 2496–2511. https://doi.org/10.1039/c0an00204f
[52] A. Son, D. Dosev, M. Nichkova, Z. Ma, Quantitative DNA hybridization in solution using magnetic/luminescent core–shell nanoparticles, Anal. Biochem. 370 (2007) 186–194.
[53] L. Chen, R. Liu, Z.P. Liu, M. Li, K. Aihara, Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers, Sci. Rep. 2 (2012) 1–8. https://doi.org/10.1038/srep00342
[54] J. Thomas, P. Malla, T. Vu. Miniaturized single cell imaging for developing immuno-oncology combinational therapies. In: Tan SL. (eds) Immuno-Oncology. Methods in Pharmacology and Toxicology. Humana, New York, NY, 2020, pp 157-165.
[55] G. Ruan, G. Vieira, T. Henighan, A. Chen, D. Thakur, R. Sooryakumar, J.O. Winter, Simultaneous magnetic manipulation and fluorescent tracking of multiple individual hybrid nanostructures, Nano Lett. 10 (2010) 2220–2224. https://doi.org/10.1021/nl1011855
[56] B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou, A. Libchaber, In vivo imaging of quantum dots encapsulated in phospholipid micelles, Science (80-. ). 298 (2002) 1759–1762. https://doi.org/10.1126/science.1077194
[57] J.H. Park, G. Von Maltzahn, E. Ruoslahti, S.N. Bhatia, M.J. Sailor, Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery, Angew. Chemie – Int. Ed. 120 (2008) 7394 –7398. https://doi.org/10.1002/anie.200801810
[58] G. Ruan, D. Thakur, S. Deng, S. Hawkins, J.O. Winter, Fluorescent-magnetic nanoparticles for imaging and cell manipulation, Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. 223 (2010) 81–86. https://doi.org/10.1243/17403499JNN178
[59] W.J. Allard, J. Matera, M.C. Miller, M. Repollet, M.C. Connelly, C. Rao, A.G.J. Tibbe, J.W. Uhr, L.W.M.M. Terstappen, Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases, Clin. Cancer Res. 10 (2004) 6897– 6904. https://doi.org/10.1158/1078-0432.CCR-04-0378
[60] C.L. O’Connell, R. Nooney, C. McDonagh, Cyanine5-doped silica nanoparticles as ultra-bright immunospecific labels for model circulating tumour cells in flow cytometry and microscopy, Biosens. Bioelectron. 91 (2017) 190–198. https://doi.org/10.1016/j.bios.2016.12.023
[61] X. Wu, T. Xiao, Z. Luo, R. He, Y. Cao, Z. Guo, W. Zhang, Y. Chen, A micro-/nano-chip and quantum dots-based 3D cytosensor for quantitative analysis of circulating tumor cells, J. Nanobiotechnology. 16 (2018) 1–9. https://doi.org/10.1186/s12951-018-0390-x
[62] Q.-Q. Huang, X.-X. Chen, W. Jiang, S.-L. Jin, X.-Y. Wang, W. Liu, S.-S. Guo, J.-C. Guo, X.-Z. Zhao, Sensitive and specific detection of circulating tumor cells promotes precision medicine for cancer, J. Cancer Metastasis Treat. 5 (2019) 1–18. https://doi.org/10.20517/2394-4722.2018.94
[63] P. Augustsson, C. Magnusson, M. Nordin, H. Lilja, T. Laurell, Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis, Anal. Chem. 84 (2012) 7954–7962. https://doi.org/10.1021/ac301723s
[64] Z. Chen, S.B. Cheng, P. Cao, Q.F. Qiu, Y. Chen, M. Xie, Y. Xu, W.H. Huang, Detection of exosomes by ZnO nanowires coated three-dimensional scaffold chip device, Biosens. Bioelectron. 122 (2018) 211–216. https://doi.org/10.1016/j.bios.2018.09.033
[65] M. Munz, P.A. Baeuerle, O. Gires, The emerging role of EpCAM in cancer and stem cell signaling, Cancer Res. 69 (2009) 5627–5630. https://doi.org/10.1158/0008-5472.CAN-09-0654
[66] G.A.F. Van Tilborg, W.J.M. Mulder, N. Deckers, G. Storm, C.P.M. Reutelingsperger, G.J. Strijkers, K. Nicolay, Annexin A5-functionalized bimodal lipid-based contrast agents for the detection of apoptosis, Bioconjug. Chem. 17 (2006) 741–749. https://doi.org/10.1021/bc0600259
[67] L. Prinzen, R.J.J.H.M. Miserus, A. Dirksen, T.M. Hackeng, N. Deckers, N.J. Bitsch, R.T.A. Megens, K. Douma, J.W. Heemskerk, M.E. Kooi, P.M. Frederik, D.W. Slaaf, M.A.M.J. Van Zandvoort, C.P.M. Reutelingsperger, Optical and magnetic resonance imaging of cell death and platelet activation using annexin A5-functionalized quantum dots, Nano Lett. 7 (2007) 93–100. https://doi.org/10.1021/nl062226r
[68] M. Varga, P. Obrist, S. Schneeberger, G. Mühlmann, C. Felgel-Farnholz, D. Fong, M. Zitt, T. Brunhuber, G. Schäfer, G. Gastl, G. Spizzo, Overexpression of epithelial cell adhesion molecule antigen in gallbladder carcinoma is an independent marker for poor survival, Clin. Cancer Res. 10 (2004) 3131–3136,. https://doi.org/10.1158/1078-0432.CCR-03-0528
[69] D. Fong, M. Steurer, P. Obrist, V. Barbieri, R. Margreiter, A. Amberger, K. Laimer, G. Gastl, A. Tzankov, G. Spizzo, Ep-CAM expression in pancreatic and ampullary carcinomas: Frequency and prognostic relevance, J. Clin. Pathol. 61 (2008) 31–35. https://doi.org/10.1136/jcp.2006.037333
[70] G. Gastl, G. Spizzo, P. Obrist, M. Dünser, G. Mikuz, Ep-CAM overexpression in breast cancer as a predictor of survival, Lancet. 356 (2000) 1981–1982. https://doi.org/10.1016/S0140-6736(00)03312-2
[71] WHO, Food Safety, (2015). https://www.who.int/en/news-room/fact-sheets/detail/food-safety (accessed June 21, 2020).
[72] E. Scallan, R.M. Hoekstra, F.J. Angulo, R. V. Tauxe, M.A. Widdowson, S.L. Roy, J.L. Jones, P.M. Griffin, Foodborne illness acquired in the United States-Major pathogens, Emerg. Infect. Dis. 17 (2011) 7–15. https://doi.org/10.3201/eid1701.P11101
[73] L.-S. Wang, A. Gupta, V.M. Rotello, Nanomaterials for the treatment of bacterial biofilms Li-Sheng, ACS Infect Dis. 2 (2016) 1–4. https://doi.org/10.1021/acsinfecdis.5b00116
[74] WHO, Antimicorbial resistence global report on surveillance, 1 (2014) 1–8. https://prezi.com/nihmdozcvwvo/unidad-didactica-funcion-de-relacion/ (accessed June 21, 2020).