Degradation of Pharmaceutical Pollutants under UV Light using TiO2 Nanomaterial Synthesized through Reverse Micelle Nanodomains
K.S. Varma, B. Bharatiya, R.J. Tayade, A.D. Shukla, P.A. Joshi, Vimal Gandhi
Controlling water pollution are huge challenges throughout the world especially concerning pharmaceutical pollutants. Common practices at industrial wastewater treatment facilities need to be upgraded with advanced wastewater treatment techniques. TiO2 based photocatalytic processes have shown great potential for removal of these aqueous pharmaceutical pollutants. Reverse micelle based modified sol-gel method is utilized for the synthesis of TiO2 nanomaterial. Generated reverse micelle nanodomains have controlled size and particle size distribution (PSD) of synthesized TiO2 nanomaterial, as revealed by SEM and DLS analysis. Thermal behaviour of synthesized sample is characterized by TGA analysis. TiO2 photocatalyst is also characterized through XRD, BET surface area, and UV-Vis spectroscopy. TiO2 photocatalyst is used for degradation of three model pharmaceutical pollutants viz. Levofloxacin hemihydrate (LFX), Metronidazole (MNZ) and Ketorolac tromethamine (KRL) under a UV light source. Reverse micelle mediated modified sol-gel method synthesized TiO2 nanomaterial has shown excellent photocatalytical performance, where degradation efficiency of LFX, KRL and MNZ were found to be 99.6%, 98% and 91.4% respectively within a little as 60 minutes.
Keywords
Pharmaceutical Pollutants, Degradation, Photocatalyst, TiO2 Nanomaterial, Reverse Micelle, UV Light
Published online 12/15/2020, 24 pages
Citation: K.S. Varma, B. Bharatiya, R.J. Tayade, A.D. Shukla, P.A. Joshi, Vimal Gandhi, Degradation of Pharmaceutical Pollutants under UV Light using TiO2 Nanomaterial Synthesized through Reverse Micelle Nanodomains, Materials Research Foundations, Vol. 91, pp 87-110, 2021
DOI: https://doi.org/10.21741/9781644901144-3
Part of the book on Advances in Wastewater Treatment I
References
[1] A. Bielen, A. Šimatović, J. Kosić-Vukšić, I. Senta, M. Ahel, S. Babić, T. Jurina, J.J. González Plaza, M. Milaković, N. Udiković-Kolić, Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries, Water Res. 126 (2017) 79-87. https://doi.org/10.1016/j.watres.2017.09.019
[2] D. Fatta-Kassinos, S. Meric, A. Nikolaou, Pharmaceutical Residues in Environmental Waters and Wastewater: Current State of Knowledge and Future Research, Anal. Bioanal. Chem. 399 (2010) 251-275. https://doi.org/10.1007/s00216-010-4300-9
[3] Q. Bu, X. Shi, G. Yu, J. Huang, B. Wang, Assessing the persistence of pharmaceuticals in the aquatic environment: Challenges and needs, Emerg. Contam. 2 (2016) 145-147. https://doi.org/10.1016/j.emcon.2016.05.003
[4] A. Jelić, M. Gros, M. Petrović, A. Ginebreda, D. Barceló, Occurrence and Elimination of Pharmaceuticals During Conventional Wastewater Treatment BT – Emerging and Priority Pollutants in Rivers: Bringing Science into River Management Plans, in: H. Guasch, A. Ginebreda, A. Geiszinger (Eds.), Springer Berlin Heidelberg, Berlin, Heidelberg, 2012: pp. 1-23. https://doi.org/10.1007/978-3-642-25722-3_1
[5] P. Bottoni, S. Caroli, A.B. Caracciolo, Pharmaceuticals as priority water contaminants, Toxicol. Environ. Chem. 92 (2010) 549-565. https://doi.org/10.1080/02772241003614320
[6] H. Zhou, D.W. Smith, Advanced technologies in water and wastewater treatment, J. Environ. Eng. Sci. 1 (2002) 247-264. https://doi.org/10.1139/s02-020
[7] L.V. Bora, R.K. Mewada, Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review, Renew. Sustain. Energy Rev. 76 (2017) 1393-1421. https://doi.org/10.1016/j.rser.2017.01.130
[8] E. GilPavas, I. Dobrosz-Gómez, M.Á. Gómez-García, Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment, J. Environ. Manage. 191 (2017) 189-197. https://doi.org/10.1016/j.jenvman.2017.01.015
[9] S. Loaiza-Ambuludi, M. Panizza, N. Oturan, M.A. Oturan, Removal of the anti-inflammatory drug ibuprofen from water using homogeneous photocatalysis, Catal. Today. 224 (2014) 29-33. https://doi.org/10.1016/j.cattod.2013.12.018
[10] L. Fu, C. Wu, Y. Zhou, J. Zuo, G. Song, Y. Tan, Ozonation reactivity characteristics of dissolved organic matter in secondary petrochemical wastewater by single ozone, ozone/H2O2, and ozone/catalyst, Chemosphere. 233 (2019) 34-43. https://doi.org/10.1016/j.chemosphere.2019.05.207
[11] J.C. Cardoso, G.G. Bessegato, M.V. Boldrin Zanoni, Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization, Water Res. 98 (2016) 39-46. https://doi.org/10.1016/j.watres.2016.04.004
[12] F. Martínez, M.J. López-Muñoz, J. Aguado, J.A. Melero, J. Arsuaga, A. Sotto, R. Molina, Y. Segura, M.I. Pariente, A. Revilla, L. Cerro, G. Carenas, Coupling membrane separation and photocatalytic oxidation processes for the degradation of pharmaceutical pollutants, Water Res. 47 (2013) 5647-5658. https://doi.org/10.1016/j.watres.2013.06.045
[13] K. Natarajan, T. Natarajan, H. Bajaj, R. Tayade, High photocatalytic activity of rutile phase dominant TiO2 synthesized by thermal treatment under narrow spectrum ultraviolet light emitting diodes, Mater. Res. Express. 6 (2018). https://doi.org/10.1088/2053-1591/aae861
[14] R.J. Tayade, W.K. Jo, Enhanced Photocatalytic Activity of TiO2 Supported on Different Carbon Allotropes for Degradation of Pharmaceutical Organic Compounds, in: R.J. Tayade, V. Gandhi (Eds.), Photocatalytic Nanomaterials for Environmental Applications, Materials Research Forum LLC, Millersville, PA, 2018, pp. 140-159. https://dx.doi.org/10.21741/9781945291593-4
[15] A. Eslami, M. Amini, A. Yazdanbakhsh, A. Mohseni-Bandpei, A. Safari, A. Asadi, N,S co-doped TiO2 nanoparticles and nanosheets in simulated solar light for photocatalytic degradation of non-steroidal anti-inflammatory drugs in water: A comparative study, J. Chem. Technol. Biotechnol. 91 (2015) n/a-n/a. https://doi.org/10.1002/jctb.4877
[16] S.S. Boxi, S. Paria, Visible light induced enhanced photocatalytic degradation of organic pollutants in aqueous media using Ag doped hollow TiO2 nanospheres, RSC Adv. 5 (2015) 37657-37668. https://doi.org/10.1039/C5RA03421C
[17] R. Fagan, D.E. McCormack, D.D. Dionysiou, S.C. Pillai, A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern, Mater. Sci. Semicond. Process. 42 (2016) 2-14. https://doi.org/10.1016/j.mssp.2015.07.052
[18] C. Byrne, G. Subramanian, S.C. Pillai, Recent advances in photocatalysis for environmental applications, J. Environ. Chem. Eng. 6 (2018) 3531-3555. https://doi.org/10.1016/j.jece.2017.07.080
[19] W.H.M. Abdelraheem, M.K. Patil, M.N. Nadagouda, D.D. Dionysiou, Hydrothermal synthesis of photoactive nitrogen- and boron- codoped TiO2 nanoparticles for the treatment of bisphenol A in wastewater: Synthesis, photocatalytic activity, degradation byproducts and reaction pathways, Appl. Catal. B Environ. 241 (2019) 598-611. https://doi.org/10.1016/j.apcatb.2018.09.039
[20] V.G. Gandhi, M. Mishra, S. Meka, A. Kumar, P. Joshi, D. Shah, Comparative study on nano-crystalline titanium dioxide catalyzed photocatalytic degradation of aromatic carboxylic acids in aqueous medium, J. Ind. Eng. Chem. 17 (2011) 331-339. https://doi.org/10.1016/j.jiec.2011.02.035
[21] N. Venkatachalam, M. Palanichamy, V. Murugesan, Sol–gel preparation and characterization of nanosize TiO2: Its photocatalytic performance, Mater. Chem. Phys. 104 (2007) 454-459. https://doi.org/10.1016/j.matchemphys.2007.04.003
[22] R.S. Dubey, K.V. Krishnamurthy, S. Singh, Experimental studies of TiO2 nanoparticles synthesized by sol-gel and solvothermal routes for DSSCs application, Results Phys. 14 (2019) 102390. https://doi.org/10.1016/j.rinp.2019.102390
[23] J.-K. Oh, J.-K. Lee, S.J. Kim, K.-W. Park, Synthesis of phase- and shape-controlled TiO2 nanoparticles via hydrothermal process, J. Ind. Eng. Chem. 15 (2009) 270-274. https://doi.org/10.1016/j.jiec.2008.10.001
[24] M.S. Lee, S.S. Park, G.-D. Lee, C.-S. Ju, S.-S. Hong, Synthesis of TiO2 particles by reverse microemulsion method using nonionic surfactants with different hydrophilic and hydrophobic group and their photocatalytic activity, Catal. Today. 101 (2005) 283-290. https://doi.org/10.1016/j.cattod.2005.03.018
[25] C. Dhand, N. Dwivedi, X.J. Loh, A.N. Jie Ying, N.K. Verma, R.W. Beuerman, R. Lakshminarayanan, S. Ramakrishna, Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview, RSC Adv. 5 (2015) 105003–105037. https://doi.org/10.1039/C5RA19388E
[26] P. Arabkhani, S. Abedini-Khorrami, Synthesis of SrAl2O4 nanoparticles by reverse micelle method: An investigation of the effect of aging time, hydrophilic chain length and calcination temperature, Nano-Structures and Nano-Objects. 17 (2019) 84-91. https://doi.org/10.1016/j.nanoso.2018.12.003
[27] B. Richard, J.-L. Lemyre, A.M. Ritcey, Nanoparticle Size Control in Microemulsion Synthesis, Langmuir. 33 (2017) 4748-4757. https://doi.org/10.1021/acs.langmuir.7b00773
[28] L. Hu, P.M. Flanders, P.L. Miller, T.J. Strathmann, Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis, Water Res. 41 (2007) 2612-2626. https://doi.org/10.1016/j.watres.2007.02.026
[29] A.L. Giraldo, G.A. Peñuela, R.A. Torres-Palma, N.J. Pino, R.A. Palominos, H.D. Mansilla, Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension, Water Res. 44 (2010) 5158-5167. https://doi.org/10.1016/j.watres.2010.05.011
[30] Y. Lin, C. Ferronato, N. Deng, J.-M. Chovelon, Study of benzylparaben photocatalytic degradation by TiO2, Appl. Catal. B Environ. 104 (2011) 353-360. https://doi.org/10.1016/j.apcatb.2011.03.006
[31] N. Laoufi, S. Hout, T. Djilali, A. Ounnar, A. Djouadi, N. Chekir, F. Bentahar, Removal of a Persistent Pharmaceutical Micropollutant by UV/TiO2 Process Using an Immobilized Titanium Dioxide Catalyst: Parametric Study, Chem. Eng. Trans. 32 (2013) 1951-1956. https://doi.org/10.3303/CET1332326
[32] J.L. WANG, L.E.J.I.N. XU, Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application, Crit. Rev. Environ. Sci. Technol. 42 (2012) 251-325. https://doi.org/10.1080/10643389.2010.507698
[33] K.S. Varma, R.J. Tayade, K.J. Shah, P.A. Joshi, A.D. Shukla, V.G. Gandhi, Photocatalytic degradation of pharmaceutical and pesticide compounds (PPCs) using doped TiO2 nanomaterials: A review, Water-Energy Nexus. 3 (2020) 46-61. https://doi.org/10.1016/j.wen.2020.03.008
[34] O. Dalrymple, D. Yeh, M. Trotz, Removing Pharmaceuticals and Endocrine-Disrupting Compounds from Wastewater by Photocatalysis, J. Chem. Technol. Biotechnol. 82 (2007) 121-134. https://doi.org/10.1002/jctb.1657
[35] K.M. Reza, A.S.W. Kurny, F. Gulshan, Parameters affecting the photocatalytic degradation of dyes using TiO2: a review, Appl. Water Sci. 7 (2017) 1569-1578. https://doi.org/10.1007/s13201-015-0367-y
[36] V. Gandhi, M. Mishra, P.A. Joshi, Titanium dioxide catalyzed photocatalytic degradation of carboxylic acids from waste water: A review, Mater. Sci. Forum. 712 (2012) 175-189. https://doi.org/10.4028/www.scientific.net/MSF.712.175
[37] S.G. Fard, M. Haghighi, M. Shabani, Facile one-pot ultrasound-assisted solvothermal fabrication of ball-flowerlike nanostructured (BiOBr)x(Bi7O9I3)1-x solid-solution for high active photodegradation of antibiotic levofloxacin under sun-light, Appl. Catal. B Environ. 248 (2019) 320–331. https://doi.org/10.1016/j.apcatb.2019.02.021
[38] R.S. Dariani, A. Esmaeili, A. Mortezaali, S. Dehghanpour, Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles, Optik (Stuttg). 127 (2016) 7143-7154. https://doi.org/10.1016/j.ijleo.2016.04.026
[39] G.H. Safari, M. Hoseini, M. Seyedsalehi, H. Kamani, J. Jaafari, A.H. Mahvi, Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution, Int. J. Environ. Sci. Technol. 12 (2015) 603-616. https://doi.org/10.1007/s13762-014-0706-9
[40] A. Hassani, A. Khataee, S. Karaca, Photocatalytic degradation of ciprofloxacin by synthesized TiO2 nanoparticles on montmorillonite: Effect of operation parameters and artificial neural network modeling, J. Mol. Catal. A Chem. 409 (2015) 149-161. https://doi.org/10.1016/j.molcata.2015.08.020
[41] H. Yang, G. Li, T. An, Y. Gao, J. Fu, Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: A case of sulfa drugs, Catal. Today. 153 (2010) 200-207. https://doi.org/10.1016/j.cattod.2010.02.068
[42] M. Malakootian, A. Nasiri, M. Gharaghani, Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate, Chem. Eng. Commun. (2019) 1-17. https://doi.org/10.1080/00986445.2019.1573168
[43] A. Nickheslat, M.M. Amin, H. Izanloo, A. Fatehizadeh, S.M. Mousavi, Phenol Photocatalytic Degradation by Advanced Oxidation Process under Ultraviolet Radiation Using Titanium Dioxide, J. Environ. Public Health. 2013 (2013) 815310. https://doi.org/10.1155/2013/815310
[44] J.R. Alvarez-Corena, J.A. Bergendahl, F.L. Hart, Advanced oxidation of five contaminants in water by UV/TiO2: Reaction kinetics and byproducts identification, J. Environ. Manage. 181 (2016) 544-551. https://doi.org/10.1016/j.jenvman.2016.07.015
[45] J. Vyas, M. Mishra, V. Gandhi, Photocatalytic Degradation of Alizarin Cyanine Green G, Reactive Red 195 and Reactive Black 5 Using UV/TiO2 Process, Mater. Sci. Forum. 764 (2013) 284-292. https://doi.org/10.4028/www.scientific.net/MSF.764.284
[46] R. Patel, T. Bhingradiya, A. Deshmukh, V. Gandhi, Response Surface Methodology for Optimization and Modeling of Photo-Degradation of Alizarin Cyanine Green and Acid Orange 7 Dyes Using UV/TiO2 Process, Mater. Sci. Forum. 855 (2016) 94-104. https://doi.org/10.4028/www.scientific.net/MSF.855.94
[47] A. Carabin, P. Drogui, D. Robert, Photo-degradation of carbamazepine using TiO2 suspended photocatalysts, J. Taiwan Inst. Chem. Eng. 54 (2015) 109-117. https://doi.org/10.1016/j.jtice.2015.03.006
[48] M. Faramarzpour, M. Vossoughi, M. Borghei, Photocatalytic degradation of furfural by titania nanoparticles in a floating-bed photoreactor, Chem. Eng. J. 146 (2009) 79-85. https://doi.org/10.1016/j.cej.2008.05.033
[49] S. Mathew, P. Ganguly, S. Rhatigan, V. Kumaravel, C. Byrne, S.J. Hinder, J. Bartlett, M. Nolan, S.C. Pillai, Cu-Doped TiO2: Visible Light Assisted Photocatalytic Antimicrobial Activity, Appl. Sci. 8 (2018). https://doi.org/10.3390/app8112067
[50] R. Bashiri, N.M. Mohamed, C.F. Kait, S. Sufian, Hydrogen production from water photosplitting using Cu/TiO2 nanoparticles: Effect of hydrolysis rate and reaction medium, Int. J. Hydrogen Energy. 40 (2015) 6021-6037. https://doi.org/10.1016/j.ijhydene.2015.03.019
[51] H. Benito, T. Sánchez, R. Alamilla, J. Hernandez, G. Robles, F. Paraguay-Delgado, Synthesis and physicochemical characterization of titanium oxide and sulfated titanium oxide obtained by thermal hydrolysis of titanium tetrachloride, Brazilian J. Chem. Eng. 31 (2014) 737-745. https://doi.org/10.1590/0104-6632.20140313s00002506
[52] P. Singla, O.P. Pandey, K. Singh, Study of photocatalytic degradation of environmentally harmful phthalate esters using Ni-doped TiO2 nanoparticles, Int. J. Environ. Sci. Technol. 13 (2016) 849-856. https://doi.org/10.1007/s13762-015-0909-8
[53] S.-S. Hong, M.S. Lee, G.-D. Lee, Photocatalytic decomposition of p-nitrophenol over titanium dioxide prepared by reverse microemulsion method using nonionic surfactants with different hydrophilic groups, React. Kinet. Catal. Lett. 80 (2003) 145-151. https://doi.org/10.1023/A:1026096628817
[54] M. Naderi, Surface Area: Brunauer–Emmett–Teller (BET), in: S. Tarleton (Eds.), Progress in Filtration and Separation, Academic Press, Oxford, 2015, pp. 585-608. https://doi.org/10.1016/B978-0-12-384746-1.00014-8
[55] M. Thommes, Physical Adsorption Characterization of Nanoporous Materials, Chemie Ing. Tech. 82 (2010) 1059–1073. https://doi.org/10.1002/cite.201000064
[56] S.M. Reda, M. Khairy, M.A. Mousa, Photocatalytic activity of nitrogen and copper doped TiO2 nanoparticles prepared by microwave-assisted sol-gel process, Arab. J. Chem. 13 (2020) 86-95. https://doi.org/10.1016/j.arabjc.2017.02.002
[57] K. Elghniji, M. Ksibi, E. Elaloui, Sol–gel reverse micelle preparation and characterization of N-doped TiO2: Efficient photocatalytic degradation of methylene blue in water under visible light, J. Ind. Eng. Chem. 18 (2012) 178-182. https://doi.org/10.1016/j.jiec.2011.11.011
[58] S. Sharma, A. Umar, S. Mehta, A. Ibhadon, S. Kansal, Solar light driven photocatalytic degradation of levofloxacin using TiO2/Carbon-dots nanocomposite, New J. Chem. 42 (2018). https://doi.org/10.1039/C7NJ05118B
[59] A. Kaur, A. Umar, S.K. Kansal, Sunlight-driven photocatalytic degradation of non-steroidal anti-inflammatory drug based on TiO2 quantum dots, J. Colloid Interface Sci. 459 (2015) 257-263. https://doi.org/10.1016/j.jcis.2015.08.010