Advanced Oxidation Processes for Wastewater Remediation: Fundamental Concepts to Recent Advances

$30.00

Advanced Oxidation Processes for Wastewater Remediation: Fundamental Concepts to Recent Advances

T.S. Rajaraman, Vimal Gandhi, S.P. Parikh

Industrialization and modernization in recent times have led to a water crisis across the world. Conventional methods of water treatment like physical, chemical and biological methods which comprise of many commonly used techniques like membrane separation, adsorption, chemical treatment etc. have been in use for many decades. However, problems like sludge disposal, high operating costs etc. have led to increased focus on Advanced Oxidation Processes (AOPs) as alternative treatment methods. AOPs basically involve reactions relying on the high oxidation potential of the hydroxyl (OH•) free radical. They have the potential to efficiently treat various toxic, organic pollutants and complete degradation of contaminants (mineralization) of emerging concern. Many different types of homogenous as well as heterogenous AOPs have been studied viz: UV/H2O2, Fenton, Photo-Fenton, Sonolysis, Photocatalysis etc. for treatment of a wide variety of organic pollutants. Different AOPs are suitable for different types of wastewater and hence proper selection of the right technique for a particular type of pollutant is required. The inherent advantages offered by AOPs like elimination of sludge disposal problems, operability under mild conditions, ability to harness sunlight, non selective nature (ability to degrade all organic and microbial contamination) etc. have made it one of the most actively researched areas in recent times for wastewater treatment. Despite the benefits and intense research, commercial applicability of AOPs as a practical technique for treating wastewater on a large scale is still far from satisfactory. Nevertheless, positive results in lab scale and pilot plant studies make them a promising water treatment technique for the future. In the present chapter, an attempt has been made to discuss all aspects of AOPs beginning with the fundamental concepts, classification, underlying mechanism, comparison, commercialization to the latest developments in AOPs.

Keywords
Advanced Oxidation Processes (AOPs), Wastewater Treatment, Degradation, Organic Pollutants, Hydroxyl Radicals, Chemical Oxygen Demand (COD)

Published online 12/15/2020, 50 pages

Citation: T.S. Rajaraman, Vimal Gandhi, S.P. Parikh, Advanced Oxidation Processes for Wastewater Remediation: Fundamental Concepts to Recent Advances, Materials Research Foundations, Vol. 91, pp 37-86, 2021

DOI: https://doi.org/10.21741/9781644901144-2

Part of the book on Advances in Wastewater Treatment I

References
[1] S.C. Ameta, Introduction, in: S. C. Ameta, R. Ameta (Eds.), Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology, Academic Press, 2018, pp. 1-12. https://doi.org/10.1016/B978-0-12-810499-6.00001-2.
[2] N.S. Topare, S.J. Attar, M.M. Manfe, Sewage / Wastewater treatment technologies : a review, Scietific Rev. Chem. Commun. 1 (2011) 18–24.
[3] M. Muruganandham, R.P.S. Suri, S. Jafari, M. Sillanpää, G.J. Lee, J.J. Wu, M. Swaminathan, Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment, Int. J. Photoenergy. 2014 (2014) 821674. https://doi.org/10.1155/2014/821674.
[4] N. Azbar, Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent, Chemosphere 55 (2004) 35–43. https://doi.org/10.1016/j.chemosphere.2003.10.046.
[5] Y. Deng, R. Zhao, Advanced Oxidation Processes (AOPs) in Wastewater Treatment, Curr. Pollut. Reports. 1(3) (2015) 167–176. https://doi.org/10.1007/s40726-015-0015-z.
[6] J.H. Carey, An introduction to advanced oxidation processes (AOP) for destruction of organics in wastewater, Water Poll. Res J. Canada. 27 (2018) 43. https://doi.org/10.1017/CBO9781107415324.004.
[7] D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner, Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review, Water Res. 139 (2018) 118–131. https://doi.org/10.1016/j.watres.2018.03.042.
[8] S. Sharma, J. Ruparelia, M. Patel, A general review on advanced oxidation processes for waste water treatment, Int. Conf. Curr. Trends Technol. (2011) 8–10. https://nuicone.org/site/common/proceedings/Chemical/poster/CH_33.pdf.
[9] R. Munter, Advanced Oxidation Processes- current status and prospects, Proc. Est. Acad. Sci. Chem. 50 (2011) 59–80. https://doi.org/10.1016/B978-0-444-53199-5.00093-2.
[10] K. Ikehata, Y. Li, Ozone-Based Processes, in: S. C. Ameta, R. Ameta (Eds.), Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology, Academic Press, 2018, pp. 115–134. https://doi.org/10.1016/B978-0-12-810499-6.00005-X.
[11] A. Matilainen, M. Sillanpää, Removal of natural organic matter from drinking water by advanced oxidation processes, Chemosphere. 80 (2010) 351–365. https://doi.org/10.1016/j.chemosphere.2010.04.067.
[12] N. Mishra, R. Reddy, A. Kuila, A. Rani, A. Nawaz, S. Pichiah, A Review on Advanced Oxidation Processes for Effective Water Treatment, Curr. World Environ. 12 (2017) 469–489. https://doi.org/10.12944/cwe.12.3.02.
[13] J. Groele, J. Foster, Hydrogen Peroxide Interference in Chemical Oxygen Demand Assessments of Plasma Treated Waters, Plasma. 2 (2019) 294–302. https://doi.org/10.3390/plasma2030021.
[14] M. I. Stefan, UV photolysis: background , in: S. Parsons (Ed.), Advanced oxidation processes for water and wastewater treatment, IWA publishers, 2018, pp. 7–48. https://doi.org/10.1007/s11356-018-3411-2.
[15] J.C. Mierzwa, R. Rodrigues, A.C.S.C. Teixeira, UV-Hydrogen Peroxide Processes, in: S. C. Ameta, R. Ameta (Eds.), Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology, Academic Press, 2018. pp. 13-48. https://doi.org/10.1016/B978-0-12-810499-6.00002-4.
[16] T. A. Tuhkanen, UV/H2O2 processes, in: S. Parsons (Ed.), Advanced oxidation processes for water and wastewater treatment, IWA publishers, 2018, pp.86-110. https://doi.org/10.1007/s11356-018-3411-2.
[17] I. Peternel, N. Koprivanac, H. Kusic, UV-based processes for reactive azo dye mineralization, Water Res. 40 (2006) 525–532. https://doi.org/10.1016/j.watres.2005.11.029.
[18] H. Kusic, N. Koprivanac, A.L. Bozic, Minimization of organic pollutant content in aqueous solution by means of AOPs: UV- and ozone-based technologies, Chem. Eng. J. 123 (2006) 127–137. https://doi.org/10.1016/j.cej.2006.07.011.
[19] C. Walling, Fenton’s Reagent Revisited, Acc. Chem. Res. 8 (1975) 125–131. https://doi.org/10.1021/ar50088a003.
[20] R. Ameta, A.K. Chohadia, A. Jain, P.B. Punjabi, Fenton and Photo-Fenton Processes, in: S. C. Ameta, R. Ameta (Eds.), Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology, Academic Press, 2018, pp. 49-87. https://doi.org/10.1016/B978-0-12-810499-6.00003-6.
[21] M. hui Zhang, H. Dong, L. Zhao, D. xi Wang, D. Meng, A review on Fenton process for organic wastewater treatment based on optimization perspective, Sci. Total Environ. 670 (2019) 110–121. https://doi.org/10.1016/j.scitotenv.2019.03.180.
[22] J.H. Sun, S.P. Sun, M.H. Fan, H.Q. Guo, L.P. Qiao, R.X. Sun, A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process, J. Hazard. Mater. 148 (2007) 172–177. https://doi.org/10.1016/j.jhazmat.2007.02.022.
[23] H. Hansson, F. Kaczala, M. Marques, W. Hogland, Photo-Fenton and Fenton oxidation of recalcitrant industrial wastewater using nanoscale zero-valent iron, Int. J. Photoenergy. 2012 (2012) 531076. https://doi.org/10.1155/2012/531076.
[24] M. Tokumura, M. Sekine, M. Yoshinari, H.T. Znad, Y. Kawase, Photo-Fenton process for excess sludge disintegration, Process Biochem. 42 (2007) 627–633. https://doi.org/10.1016/j.procbio.2006.11.010.
[25] D. Beydoun, R. Amal, G. Low, S. McEvoy, Role of Nanoparticles in Photocatalysis, J. Nanoparticle Res. 1 (1999) 439–458. https://doi.org/10.1023/a:1010044830871.
[26] X. Yan, Y. Li, T. Xia, Black Titanium Dioxide Nanomaterials in Photocatalysis, Int. J. Photoenergy. 2017 (2017) 8529851. https://doi.org/10.1155/2017/8529851.
[27] L. V. Bora, R.K. Mewada, Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review, Renew. Sustain. Energy Rev. 76 (2017) 1393–1421. https://doi.org/10.1016/j.rser.2017.01.130.
[28] A. Talebian, M.H. Entezari, N. Ghows, Complete mineralization of surfactant from aqueous solution by a novel sono-synthesized nanocomposite (TiO2-Cu2O) under sunlight irradiation, Chem. Eng. J. 229 (2013) 304–312. https://doi.org/10.1016/j.cej.2013.05.117.
[29] M. Sboui, M.F. Nsib, A. Rayes, M. Swaminathan, A. Houas, TiO2–PANI/Cork composite: A new floating photocatalyst for the treatment of organic pollutants under sunlight irradiation, J. Environ. Sci. 60 (2017) 3–13. https://doi.org/10.1016/j.jes.2016.11.024.
[30] W.J. Chung, D.D. Nguyen, X.T. Bui, S.W. An, J.R. Banu, S.M. Lee, S.S. Kim, D.H. Moon, B.H. Jeon, S.W. Chang, A magnetically separable and recyclable Ag-supported magnetic TiO2 composite catalyst: Fabrication, characterization, and photocatalytic activity, J. Environ. Manage. 213 (2018) 541–548. https://doi.org/10.1016/j.jenvman.2018.02.064.
[31] Q. Gao, Z. Liu, FeWO4 nanorods with excellent UV–Visible light photocatalysis, Prog. Nat. Sci. Mater. Int. 27 (2017) 556–560. https://doi.org/10.1016/j.pnsc.2017.08.016.
[32] R. Xiao, Z. Wei, D. Chen, L.K. Weavers, Kinetics and mechanism of sonochemical degradation of pharmaceuticals in municipal wastewater, Environ. Sci. Technol. 48 (2014) 9675–9683. https://doi.org/10.1021/es5016197.
[33] R.A. Torres-Palma, E.A. Serna-Galvis, Sonolysis, in: S. C. Ameta, R. Ameta (Eds.), Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology, Academic Press, 2018, pp.177-213. https://doi.org/10.1016/B978-0-12-810499-6.00007-3.
[34] C.G. Joseph, G. Li Puma, A. Bono, D. Krishnaiah, Sonophotocatalysis in advanced oxidation process: A short review, Ultrason. Sonochem. 16 (2009) 583–589. https://doi.org/10.1016/j.ultsonch.2009.02.002.
[35] M.P. Rayaroth, U.K. Aravind, C.T. Aravindakumar, Sonochemical degradation of Coomassie Brilliant Blue: Effect of frequency, power density, pH and various additives, Chemosphere. 119 (2015) 848–855. https://doi.org/10.1016/j.chemosphere.2014.08.037.
[36] P. Verma, S.K. Samanta, Microwave-enhanced advanced oxidation processes for the degradation of dyes in water, Environ Chem Lett. 16 (2018) 969-1007. https://doi.org/10.1007/s10311-018-0739-2.
[37] A. Chavoshani, M.M. Amin, G. Asgari, A. Seidmohammadi, M. Hashemi, Microwave/Hydrogen Peroxide Processes, in: S. C. Ameta, R. Ameta (Eds.), Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology, Academic Press, 2018, pp. 215-255. https://doi.org/10.1016/B978-0-12-810499-6.00008-5.
[38] N. Remya, J.G. Lin, Current status of microwave application in wastewater treatment-A review, Chem. Eng. J. 166 (2011) 797–813. https://doi.org/10.1016/j.cej.2010.11.100.
[39] C.J. Jou, Degradation of pentachlorophenol with zero-valence iron coupled with microwave energy, J. Hazard. Mater. 152 (2008) 699–702. https://doi.org/10.1016/j.jhazmat.2007.07.036.
[40] F. Parolin, U.M. Nascimento, E.B. Azevedo, Microwave-enhanced UV/H2O2 degradation of an azo dye (tartrazine): Optimization, colour removal, mineralization and ecotoxicity, Environ. Technol. (United Kingdom). 34 (2013) 1247–1253. https://doi.org/10.1080/09593330.2012.744431.
[41] M.D. Bermejo and M. J.Cocero, Supercritical Water Oxidation: A Technical Review, AIChE J. 52 (2006) 3933–3951. https://doi.org/10.1002/aic.
[42] V. Vadillo, J. Sánchez-Oneto, J.R. Portela, E.J. Martínez de la Ossa, Supercritical Water Oxidation, in: S. C. Ameta, R. Ameta (Eds.), Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology, Academic Press, 2018, pp. 333–358. https://doi.org/10.1016/B978-0-12-810499-6.00010-3.
[43] Y. Gong, Y. Guo, S. Wang, W. Song, Supercritical water oxidation of Quinazoline: Effects of conversion parameters and reaction mechanism, Water Res. 100 (2016) 116–125. https://doi.org/10.1016/j.watres.2016.05.001.
[44] V. Vadillo, M.B. García-Jarana, J. Sánchez-Oneto, J.R. Portela, E.J.M. de la Ossa, Supercritical water oxidation of flammable industrial wastewaters: Economic perspectives of an industrial plant, J. Chem. Technol. Biotechnol. 86 (2011) 1049–1057. https://doi.org/10.1002/jctb.2626.
[45] M. Trojanowicz, K. Bobrowski, T. Szreder, A. Bojanowska-Czajka, Gamma-ray, X-ray and Electron Beam Based Processes, in: S. C. Ameta, R. Ameta (Eds.), Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology, Academic Press, 2018, pp. 257-331. https://doi.org/10.1016/B978-0-12-810499-6.00009-7.
[46] A. Vahdat, S.H. Bahrami, M. Arami, A. Bahjat, F. Tabakh, M. Khairkhah, Decoloration and mineralization of reactive dyes using electron beam irradiation, Part I: Effect of the dye structure, concentration and absorbed dose (single, binary and ternary systems), Radiat. Phys. Chem. 81 (2012) 851–856. https://doi.org/10.1016/j.radphyschem.2012.03.005.
[47] P. Gehringer, H. Eschweiler, The use of radiation-induced advanced oxidation for water reclamation, Water Sci. Technol. 34 (1996) 343–349. https://doi.org/10.1016/S0273-1223(96)00763-9.
[48] V.S. Mishra, V. V. Mahajani, J.B. Joshi, Wet Air Oxidation, Ind. Eng. Chem. Res. 34 (1995) 2–48. https://doi.org/10.1021/ie00040a001.
[49] K.H. Kim, S.K. Ihm, Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review, J. Hazard. Mater. 186 (2011) 16–34. https://doi.org/10.1016/j.jhazmat.2010.11.011.
[50] J. Fu, G.Z. Kyzas, Wet air oxidation for the decolorization of dye wastewater: An overview of the last two decades, Chinese J. Catal. 35 (2014) 1–7. https://doi.org/10.1016/S1872-2067(12)60724-4.
[51] R. Dewil, D. Mantzavinos, I. Poulios, M.A. Rodrigo, New perspectives for Advanced Oxidation Processes, J. Environ. Manage. 195 (2017) 93–99. https://doi.org/10.1016/j.jenvman.2017.04.010.
[52] F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters, Appl. Catal. B Environ. 202 (2017) 217–261. https://doi.org/10.1016/j.apcatb.2016.08.037.
[53] P. V. Nidheesh, R. Gandhimathi, Trends in electro-Fenton process for water and wastewater treatment: An overview, Desalination. 299 (2012) 1–15. https://doi.org/10.1016/j.desal.2012.05.011.
[54] V. Poza-Nogueiras, E. Rosales, M. Pazos, M.Á. Sanromán, Current advances and trends in electro-Fenton process using heterogeneous catalysts – A review, Chemosphere. 201 (2018) 399–416. https://doi.org/10.1016/j.chemosphere.2018.03.002.
[55] R.H. Waldemer, P.G. Tratnyek, R.L. Johnson, J.T. Nurmi, Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products, Environ. Sci. Technol. 41 (2007) 1010–1015. https://doi.org/10.1021/es062237m.
[56] G. Moussavi, M. Pourakbar, E. Aghayani, M. Mahdavianpour, S. Shekoohiyan, Comparing the efficacy of VUV and UVC/S2O82- advanced oxidation processes for degradation and mineralization of cyanide in wastewater, Chem. Eng. J. 294 (2016) 273–280. https://doi.org/10.1016/j.cej.2016.02.113.
[57] T. Olmez-Hanci, I. Arslan-Alaton, Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol, Chem. Eng. J. 224 (2013) 10–16. https://doi.org/10.1016/j.cej.2012.11.007.
[58] B.T. Oh, Y.S. Seo, D. Sudhakar, J.H. Choe, S.M. Lee, Y.J. Park, M. Cho, Oxidative degradation of endotoxin by advanced oxidation process (O3/H2O2 & UV/H2O2), J. Hazard. Mater. 279 (2014) 105–110. https://doi.org/10.1016/j.jhazmat.2014.06.065.
[59] L.W. Gassie, J.D. Englehardt, Mineralization of greywater organics by the ozone-UV advanced oxidation process: Kinetic modeling and efficiency, Environ. Sci. Water Res. Technol. 5 (2019) 1956–1970. https://doi.org/10.1039/c9ew00653b.
[60] L.A. Gonzalez-Burciaga, C.M. Nunez-Nunez, M.M. Morones-esquivel, M. Avila-Santos, A. Lemus-Santana, J. B. Proal-Najera, Characterization and Comparative Performance of TiO2 Photocatalysts on 6-Mercaptopurine Degradation by Solar Heterogeneous Photocatalysis, Catalysts. 10 (2020) 118. https://doi.org/10.3390/catal10010118
[61] M. Pirsaheb, H. Hossaini, H. Janjani, Reclamation of hospital secondary treatment effluent by sulfate radicals based–advanced oxidation processes (SR-AOPs) for removal of antibiotics, Microchem. J. 153 (2020) 104430. https://doi.org/10.1016/j.microc.2019.104430.
[62] A. Hossein Panahi, A. Meshkinian, S.D. Ashrafi, M. Khan, A. Naghizadeh, G. Abi, H. Kamani, Survey of sono-activated persulfate process for treatment of real dairy wastewater, Int. J. Environ. Sci. Technol. 17 (2020) 93–98. https://doi.org/10.1007/s13762-019-02324-4.
[63] A. Shokri, K. Mahanpoor, D. Soodbar, Degradation of Ortho-Toluidine in petrochemical wastewater by ozonation, UV/O3, O3/H2O2 and UV/O3/H2O2 processes, Desalin. Water Treat. 57 (2016) 16473–16482. https://doi.org/10.1080/19443994.2015.1085454.
[64] M. Sayed, J.A. Khan, L.A. Shah, N.S. Shah, H.M. Khan, F. Rehman, A.R. Khan, A.M. Khan, Degradation of quinolone antibiotic, norfloxacin, in aqueous solution using gamma-ray irradiation, Environ. Sci. Pollut. Res. 23 (2016) 13155–13168. https://doi.org/10.1007/s11356-016-6475-x.
[65] J. Li, S. Wang, Y. Li, L. Wang, T. Xu, Y. Zhang, Z. Jiang, Supercritical water oxidation of semi-coke wastewater: Effects of operating parameters, reaction mechanism and process enhancement, Sci. Total Environ. 710 (2020) 134396. https://doi.org/10.1016/j.scitotenv.2019.134396.
[66] Q. Jing, H. Li, Hierarchical nickel cobalt oxide spinel microspheres catalyze mineralization of humic substances during wet air oxidation at atmospheric pressure, Appl. Catal. B Environ. 256 (2019) 117858. https://doi.org/10.1016/j.apcatb.2019.117858.
[67] J.R. Domínguez, M.J. Muñoz, P. Palo, T. González, J.A. Peres, E.M. Cuerda-Correa, Fenton advanced oxidation of emerging pollutants: Parabens, Int. J. Energy Environ. Eng. 5 (2014) 89. https://doi.org/10.1007/s40095-014-0089-1.
[68] M.S. Yahya, N. Oturan, K. El Kacemi, M. El Karbane, C.T. Aravindakumar, M.A. Oturan, Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-fenton process: Kinetics and oxidation products, Chemosphere. 117 (2014) 447–454. https://doi.org/10.1016/j.chemosphere.2014.08.016.
[69] J.H. Kim, H.K. Lee, Y.J. Park, S.B. Lee, S.J. Choi, W. Oh, H.S. Kim, C.R. Kim, K.C. Kim, B.C. Seo, Studies on decomposition behavior of oxalic acid waste by UVC photo-Fenton advanced oxidation process, Nucl. Eng. Technol. 51 (2019) 1957–1963. https://doi.org/10.1016/j.net.2019.06.011.
[70] K. Sivagami, D. Anand, G. Divyapriya, I. Nambi, Treatment of petroleum oil spill sludge using the combined ultrasound and Fenton oxidation process, Ultrason. Sonochem. 51 (2019) 340–349. https://doi.org/10.1016/j.ultsonch.2018.09.007.
[71] N. Remya, A. Swain, Soft drink industry wastewater treatment in microwave photocatalytic system – Exploration of removal efficiency and degradation mechanism, Sep. Purif. Technol. 210 (2019) 600–607. https://doi.org/10.1016/j.seppur.2018.08.051.
[72] S. Zuo, D. Li, H. Xu, D. Xia, An integrated microwave-ultraviolet catalysis process of four peroxides for wastewater treatment: Free radical generation rate and mechanism, Chem. Eng. J. 380 (2020) 122434. https://doi.org/10.1016/j.cej.2019.122434.
[73] A.L. Garcia-Costa, L. Lopez-Perela, X. Xu, J.A. Zazo, J.J. Rodriguez, J.A. Casas, Activated carbon as catalyst for microwave-assisted wet peroxide oxidation of aromatic hydrocarbons, Environ. Sci. Pollut. Res. 25 (2018) 27748–27755. https://doi.org/10.1007/s11356-018-2291-9.
[74] H. Milh, K. Van Eyck, R. Dewil, Degradation of 4-chlorophenol by microwave-enhanced advanced oxidation processes: Kinetics and influential process parameters, Water (Switzerland). 10 (2018) 247. https://doi.org/10.3390/w10030247.
[75] Y. Zhang, Y. Hou, F. Chen, Z. Xiao, J. Zhang, X. Hu, The degradation of chlorpyrifos and diazinon in aqueous solution by ultrasonic irradiation: Effect of parameters and degradation pathway, Chemosphere. 82 (2011) 1109–1115. https://doi.org/10.1016/j.chemosphere.2010.11.081.
[76] E. Villaroel, J. Silva-Agredo, C. Petrier, G. Taborda, R.A. Torres-Palma, Ultrasonic degradation of acetaminophen in water: Effect of sonochemical parameters and water matrix, Ultrason. Sonochem. 21 (2014) 1763–1769. https://doi.org/10.1016/j.ultsonch.2014.04.002.
[77] S. Papoutsakis, S. Miralles-Cuevas, N. Gondrexon, S. Baup, S. Malato, C. Pulgarin, Coupling between high-frequency ultrasound and solar photo-Fenton at pilot scale for the treatment of organic contaminants: An initial approach, Ultrason. Sonochem. 22 (2015) 527–534. https://doi.org/10.1016/j.ultsonch.2014.05.003.
[78] X. Hu, X. Wang, Y. Ban, B. Ren, A comparative study of UV-Fenton, UV-H2O2 and Fenton reaction treatment of landfill leachate, Environ. Technol. 32 (2011) 945–951. https://doi.org/10.1080/09593330.2010.521953.
[79] J. Tejera, R. Miranda, D. Hermosilla, I. Urra, C. Negro, Á. Blanco, Treatment of a mature landfill leachate: Comparison between homogeneous and heterogeneous photo-fenton with different pretreatments, Water (Switzerland). 11 (2019) 1849. https://doi.org/10.3390/w11091849.
[80] J. Beltran-Heredia, J. Torregrosa, J.R. Dominguez, J.A. Peres, Comparison of the degradation of p-hydroxybenzoic acid in aqueous solution by several oxidation processes, Chemosphere. 42 (2001) 351–359. https://doi.org/10.1016/S0045-6535(00)00136-3.
[81] S. Esplugas, J. Giménez, S. Contreras, E. Pascual, M. Rodríguez, Comparison of different advanced oxidation processes for phenol degradation, Water Res. 36 (2002) 1034–1042. https://doi.org/10.1016/S0043-1354(01)00301-3.
[82] M. Muruganandham, S.H. Chen, J.J. Wu, Mineralization of N-methyl-2-pyrolidone by advanced oxidation processes, Sep. Purif. Technol. 55 (2007) 360–367. https://doi.org/10.1016/j.seppur.2007.01.009.
[83] M.R. Assalin, S.G. de Moraes, S.C.N. Queiroz, V.L. Ferracini, N. Duran, Studies on degradation of glyphosate by several oxidative chemical processes: Ozonation, photolysis and heterogeneous photocatalysis, J. Environ. Sci. Heal. – Part B Pestic. Food Contam. Agric. Wastes. 45 (2010) 89–94. https://doi.org/10.1080/03601230903404598.
[84] K. Kovács, J. Farkas, G. Veréb, E. Arany, G. Simon, K. Schrantz, A. Dombi, K. Hernádi, T. Alapi, Comparison of various advanced oxidation processes for the degradation of phenylurea herbicides, J. Environ. Sci. Heal. – Part B Pestic. Food Contam. Agric. Wastes. 51 (2016) 205–214. https://doi.org/10.1080/03601234.2015.1120597.
[85] G. Boczkaj, A. Fernandes, P. Makoś, Study of Different Advanced Oxidation Processes for Wastewater Treatment from Petroleum Bitumen Production at Basic pH, Ind. Eng. Chem. Res. 56 (2017) 8806–8814. https://doi.org/10.1021/acs.iecr.7b01507.
[86] S.B. Kausley, K.S. Desai, S. Shrivastava, P.R. Shah, B.R. Patil, A.B. Pandit, Mineralization of alkyd resin wastewater: Feasibility of different advanced oxidation processes, J. Environ. Chem. Eng. 6 (2018) 3690–3701. https://doi.org/10.1016/j.jece.2017.04.001.
[87] M. Muruganandham, K. Selvam, M. Swaminathan, A comparative study of quantum yield and electrical energy per order (EEo) for advanced oxidative decolourisation of reactive azo dyes by UV light, J. Hazard. Mater. 144 (2007) 316–322. https://doi.org/10.1016/j.jhazmat.2006.10.035.
[88] Y. Laftani, A. Boussaoud, B. Chatib, M. Hachkar, M. El Makhfouk, M. Khayar, Comparison of advanced oxidation processes for degrading ponceau S dye: Application of the photo-fenton process, Maced. J. Chem. Chem. Eng. 38 (2019) 197–205. https://doi.org/10.20450/mjcce.2019.1888.
[89] K. Kowalska, G. Maniakova, M. Carotenuto, O. Sacco, V. Vaiano, G. Lofrano, L. Rizzo, Removal of carbamazepine, diclofenac and trimethoprim by solar driven advanced oxidation processes in a compound triangular collector based reactor: A comparison between homogeneous and heterogeneous processes, Chemosphere. 238 (2020) 124665. https://doi.org/10.1016/j.chemosphere.2019.124665.
[90] G. Maniakova, K. Kowalska, S. Murgolo, G. Mascolo, G. Libralato, G. Lofrano, O. Sacco, M. Guida, L. Rizzo, Comparison between heterogeneous and homogeneous solar driven advanced oxidation processes for urban wastewater treatment: Pharmaceuticals removal and toxicity, Sep. Purif. Technol. 236 (2020) 116249. https://doi.org/10.1016/j.seppur.2019.116249.
[91] J.F. Pérez, J. Llanos, C. Sáez, C. López, P. Cañizares, M.A. Rodrigo, Treatment of real effluents from the pharmaceutical industry: A comparison between Fenton oxidation and conductive-diamond electro-oxidation, J. Environ. Manage. 195 (2017) 216–223. https://doi.org/10.1016/j.jenvman.2016.08.009.
[92] Information on https://labees.civil.fau.edu/Final_report_Englehardt.pdf
[93] S. Krishnan, H. Rawindran, C.M. Sinnathambi, J.W. Lim, Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants, IOP Conf. Ser. Mater. Sci. Eng. 206 (2017) 012089. https://doi.org/10.1088/1757-899X/206/1/012089.
[94] H. Barndõk, D. Hermosilla, C. Negro, Á. Blanco, Comparison and Predesign Cost Assessment of Different Advanced Oxidation Processes for the Treatment of 1,4-Dioxane-Containing Wastewater from the Chemical Industry, ACS Sustain. Chem. Eng. 6 (2018) 5888–5894. https://doi.org/10.1021/acssuschemeng.7b04234.
[95] P. Asaithambi, R. Saravanathamizhan, M. Matheswaran, Comparison of treatment and energy efficiency of advanced oxidation processes for the distillery wastewater, Int. J. Environ. Sci. Technol. 12 (2015) 2213–2220. https://doi.org/10.1007/s13762-014-0589-9.
[96] E.J. Rosenfeldt, K.G. Linden, S. Canonica, U. von Gunten, Comparison of the efficiency of OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2, Water Res. 40 (2006) 3695–3704. https://doi.org/10.1016/j.watres.2006.09.008.
[97] K. Paździor, L. Bilińska, S. Ledakowicz, A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment, Chem. Eng. J. 376 (2019) 120597. https://doi.org/10.1016/j.cej.2018.12.057.
[98] J. Wang and L. Xu, AOPs for municipal and industrial wastewater treatment, in: M.I. Stefan (Ed.), Advanced Oxidation Processes for Water Treatment, IWA Publishing, 2018, pp.631-666.
[99] Stuart J. Khan, Troy Walker, Benjamin D. Stanford and Jörg E. Drewes, Advanced treatment for potable water reuse, in: M.I. Stefan (Ed.), Advanced Oxidation Processes for Water Treatment, IWA Publishing, 2018,pp. 581-606.
[100] C. Comninellis, A. Kapalka, S. Malato, S. A. Parsons, I. Poulios and D. Mantzavinos, Advanced oxidation processes for water treatment: advances and trends for R&D, J. Chem. Technol. Biotechnol. 83 (2008) 1163–1169. https://doi.org/10.1002/jctb.
[101] L. Patria, C. Maugans, C. Ellis, M. Belkhodja, D. Cretenot, F. Luck and B. Copa, Wet air oxidation processes, in: S. Parsons (Ed.), Advanced oxidation processes for water and wastewater treatment, IWA publishers, 2018, pp. 247-274. https://doi.org/10.1007/s11356-018-3411-2.
[102] T.J. Mason and C. Pétrier, Ultrasound processes, in: S. Parsons (Ed.), Advanced oxidation processes for water and wastewater treatment, IWA publishers, 2018, pp.185-208. https://doi.org/10.1007/s11356-018-3411-2
[103] S. Malato, J. Blanco, D.C. Alarcón, M.I. Maldonado, P. Fernández-Ibáñez, W. Gernjak, Photocatalytic decontamination and disinfection of water with solar collectors, Catal. Today. 122 (2007) 137–149. https://doi.org/10.1016/j.cattod.2007.01.034.
[104] J. Wang, R. Zhuan, L. Chu, The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview, Sci. Total Environ. 646 (2019) 1385–1397. https://doi.org/10.1016/j.scitotenv.2018.07.415.
[105] B. Garza-Campos, E. Brillas, A. Hernández-Ramírez, A. El-Ghenymy, J.L. Guzmán-Mar, E.J. Ruiz-Ruiz, Salicylic acid degradation by advanced oxidation processes. Coupling of solar photoelectro-Fenton and solar heterogeneous photocatalysis, J. Hazard. Mater. 319 (2016) 34–42. https://doi.org/10.1016/j.jhazmat.2016.02.050.
[106] H. Zazou, H. Afanga, S. Akhouairi, H. Ouchtak, A.A. Addi, R.A. Akbour, A. Assabbane, J. Douch, A. Elmchaouri, J. Duplay, A. Jada, M. Hamdani, Treatment of textile industry wastewater by electrocoagulation coupled with electrochemical advanced oxidation process, J. Water Process Eng. 28 (2019) 214–221. https://doi.org/10.1016/j.jwpe.2019.02.006.
[107] D. Cassano, A. Zapata, G. Brunetti, G. Del Moro, C. Di Iaconi, I. Oller, S. Malato, G. Mascolo, Comparison of several combined/integrated biological-AOPs setups for the treatment of municipal landfill leachate: Minimization of operating costs and effluent toxicity, Chem. Eng. J. 172 (2011) 250–257. https://doi.org/10.1016/j.cej.2011.05.098.
[108] H. Liu, L. Fang, J. Wang, C. Lin, Supercritical water oxidation of p-aminonaphthalenesulfonic acid and enhancement by Fenton agent, Environ. Technol. (United Kingdom). (2019) 1–23. https://doi.org/10.1080/09593330.2019.1571115.
[109] O. Ganzenko, C. Trellu, S. Papirio, N. Oturan, D. Huguenot, E.D. van Hullebusch, G. Esposito, M.A. Oturan, Bioelectro-Fenton: evaluation of a combined biological—advanced oxidation treatment for pharmaceutical wastewater, Environ. Sci. Pollut. Res. 25 (2018) 20283–20292. https://doi.org/10.1007/s11356-017-8450-6.
[110] T.K. Nivya, T. Minimol Pieus, Comparison of Photo ElectroFenton Process(PEF) and combination of PEF Process and Membrane Bioreactor in the treatment of Landfill Leachate, Procedia Technol. 24 (2016) 224–231. https://doi.org/10.1016/j.protcy.2016.05.030.
[111] M. Sun, Y. Zhang, S.Y. Kong, L.F. Zhai, S. Wang, Excellent performance of electro-assisted catalytic wet air oxidation of refractory organic pollutants, Water Res. 158 (2019) 313–321. https://doi.org/10.1016/j.watres.2019.04.040.
[112] R. Poblete, E. Cortes, G. Salihoglu, N.K. Salihoglu, Ultrasound and heterogeneous photocatalysis for the treatment of vinasse from pisco production, Ultrason. Sonochem. 61 (2020) 104825. https://doi.org/10.1016/j.ultsonch.2019.104825.
[113] R. Bonora, C. Boaretti, L. Campea, M. Roso, A. Martucci, M. Modesti, A. Lorenzetti, Combined AOPs for formaldehyde degradation using heterogeneous nanostructured catalysts, Nanomaterials. 10 (2020) 148. https://doi.org/10.3390/nano10010148.
[114] X. Zheng, Z.-P. Shen, L. Shi, R. Cheng, D.-H. Yuan, Photocatalytic Membrane Reactors (PMRs) in Water Treatment: Configurations and Influencing Factors, Catalysts. 7 (2017) 224. https://doi.org/10.3390/catal7080224.
[115] J. Gómez-pastora, S. Dominguez, E. Bringas, M.J. Rivero, I. Ortiz, D.D. Dionysiou, Review and perspectives on the use of magnetic nanophotocatalysts ( MNPCs ) in water treatment, Chem. Eng. J. 310 (2017) 407–427. https://doi.org/10.1016/j.cej.2016.04.140.
[116] T. Leshuk, H. Krishnakumar, D. de O. Livera, F. Gu, Floating photocatalysts for passive solar degradation of naphthenic acids in oil sands process-affected water, Water (Switzerland). 10 (2018) 202. https://doi.org/10.3390/w10020202.
[117] T.S. Rajaraman, S.P. Parikh, V.G. Gandhi, Black TiO2: A review of its properties and conflicting trends, Chem. Eng. J. 389 (2020) 123918. https://doi.org/10.1016/j.cej.2019.123918.
[118] J. Rodríguez-Chueca, M.P. Ormad, R. Mosteo, J. Sarasa, J.L. Ovelleiro, Conventional and Advanced Oxidation Processes Used in Disinfection of Treated Urban Wastewater, Water Environ. Res. 87 (2015) 281–288. https://doi.org/10.2175/106143014×13987223590362.
[119] Y. Deng, Advanced oxidation processes (AOPs) for reduction of organic pollutants in landfill leachate: A review, Int. J. Environ. Waste Manag. 4 (2009) 366–384. https://doi.org/10.1504/IJEWM.2009.027402.