Absorber Materials for Solar Cells
Pallavi Jain, Palak Pant, Sapna Raghav, Dinesh Kumar
Solar cell production has grown rapidly in the last few decades. Essentially a solar cell (SC), known as a photovoltaic (PV) cell, is nothing more than a p-n junction, composed of a p-type and n-type semiconductor. The electric field is generated at the junction when electrons and holes pass towards the positive and negative terminals respectively. Light consists of photons, and when the light of a sufficient wavelength falls on the cells, the energy from the photon is passed to the valence band electrons, allowing electrons to move to a higher energy state called the conductive band. The entire process is carried out in the absorber layer that lies under the anti-reflective coating of the SC. Since most energy in sunlight and artificial light is within the visible range of electromagnetic radiation (EMR), a SC absorber can absorb radiation effectively at these wavelengths. Because a SC can be made using a variety of materials, its output depends solely on the properties of the material used. This chapter discusses different absorbent materials that are used for solar cells.
Keywords
Solar Cell, Photovoltaic Cell, p-n Junction, Absorber Layer
Published online 11/15/2020, 23 pages
Citation: Pallavi Jain, Palak Pant, Sapna Raghav, Dinesh Kumar, Absorber Materials for Solar Cells, Materials Research Foundations, Vol. 88, pp 236-258, 2021
DOI: https://doi.org/10.21741/9781644901090-8
Part of the book on Materials for Solar Cell Technologies I
References
[1] M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, A. W.Y. Ho-Baillie, Solar cell efficiency tables (Version 53), Prog. Photovolt. Res. Appl. 27 (2019) 3–12. https://doi.org/10.1002/pip.3102
[2] J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells, Nano Lett. 13 (2013) 1764–1769. https://doi.org/10.1021/nl400349b
[3] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-hole diffusion lengths>175 μm in solution-grown CH3NH3PbI3 single crystals, Science 347 (2015) 967–970. https://doi.org/10.1126/science.aaa5760
[4] S. De Wolf, J. Holovsky, S.-J. Moon, P. L€oper, B. Niesen, M. Ledinsky, F.J. Haug, J.H. Yum, C. Ballif, Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance, J. Phys. Chem. Lett. 5 (2014) 1035–1039. https://doi.org/10.1021/jz500279b
[5] S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science 342 (2013) 341–344. https://doi.org/10.1126/science.1243982
[6] NREL, in: B.R.C.E. Chart (Ed.), Best Research-Cell Efficiency Chart, 2019
[7] T. Zhou, M. Wang, Z. Zang, L. Fang, Stable dynamics performance and high efficiency of ABX3-type super-alkali perovskites first obtained by introducing H5O2 cation, Adv. Energy Mater. 9 (2019) 1900664. https://doi.org/10.1002/aenm.201900664
[8] M. Wang, Z. Zang, B. Yang, X. Hu, K. Sun, L. Sun, Performance improvement of perovskite solar cells through enhanced hole extraction: the role of iodide concentration gradient, Sol. Energ. Mater. Sol. Cell. 185 (2018) 117–123. https://doi.org/10.1016/j.solmat.2018.05.025
[9] T. Zhou, M. Wang, Z. Zang, X. Tang, L. Fang, Two-dimensional lead-free hybrid halide perovskite using superatom anions with tunable electronic properties, Sol. Energ. Mater. Sol. Cell. 191 (2019) 33–38. https://doi.org/10.1016/j.solmat.2018.10.021
[10] T. Zhou, Y. Zhang, M. Wang, Z. Zang, X. Tang, Tunable electronic structures and high efficiency obtained by introducing superalkali and superhalogen into AMX3-type perovskites, J. Power. Sourc. 429 (2019) 120–126. https://doi.org/10.1016/j.jpowsour. 2019.04.111
[11] E. Bi, H. Chen, F. Xie, Y. Wu, W. Chen, Y. Su, A. Islam, M. Gratzel, X. Yang, L. Han, Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells, Nat. Commun. 8 (2017) 15330. https://doi.org/10.1038/ncomms15330
[12] H. Wei, X. Zhao, Y. Wei, H. Ma, D. Li, G. Chen, H. Lin, S. Fan, K. Jiang, Flash evaporation printing methodology for perovskite thin films, NPG Asia Mater. 9 (2017) e395. https://doi.org/10.1038/am.2017.91
[13] Z. Wang, Z. Shi, T. Li, Y. Chen, W. Huang, Stability of perovskite solar cells: a prospective on the substitution of the A Cation and X Anion, Angew. Chem. Int. Ed. 56 (2017) 1190–1212. https://doi.org/10.1002/anie.201603694
[14] N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nat. Mater. 13 (2014) 897‒903. https://doi.org/10.1038/nmat4014
[15] M. Becker, M. Wark, Recent progress in the solution-based sequential deposition of planar perovskite solar cells, Cryst. Growth Des. 18 (2018) 4790–4806. https://doi.org/10.1021/acs.cgd.8b00686
[16] J. Avila, C. Momblona, P.P. Boix, M. Sessolo, H.J. Bolink, Vapor-deposited perovskites: the route to high-performance solar cell production? Joule 1 (2017) 431–442. https://doi.org/10.1016/j.joule.2017.07.014
[17] N. Bloembergen, Solid state infrared quantum counters, Phys. Rev. Lett. 2 (1959) 84–85. https://doi.org/10.1103/PhysRevLett.2.84
[18] F. Auzel, Computeur quantique par transfert d’energie entre de Yb3+ a Tm3+ dans un tungstate mixte et dans verre germinate, C.R. Acad. SCi Paris 263 (1966) 819–821
[19] S.R. Bowman, L.B. Shaw, B.J. Feldman, J. Ganem, A 7-μm praseodymium based solid-state laser, IEEE J. Quan. Electr. 32 (1996) 646–649. https://doi.org/10.1109/3.488838
[20] M. Haase, H. Schafer, Upconverting nanoparticles, Angew. Chem. Int. Ed. 50 (2011) 5808–5829. https://doi.org/ 10.1002/anie.201005159
[21] H.Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, C.J. Brabec, Rare earth ion doped up conversion materials for photovoltaic applications, Adv. Mater. 23 (2011) 2675–2680. https://doi.org/10.1002/adma.201100511
[22] J. Zhou, Q. Liu, W. Feng, Y. Sun, F. Li, Upconversion luminescent materials: advances and applications, Chem. Rev. 115 (2014) 395–465. https://doi.org/10.1021/cr400478f
[23] G. Liu, B. Jacquier (Eds.), Spectroscopic properties of rare earths in optical materials, Springer (2005). https://doi.org/10.1007/3-540-28209-2
[24] J.C. Boyer, L.A. Cuccia, J.A. Capobianco, Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals, Nano Lett. 7 (2007) 847–852. https://doi.org/10.1021/nl070235+
[25] Q. Su, S. Han, X. Xie, H. Zhu, H. Chen, C.K. Chen, R.S. Liu, X. Chen, F. Wang, X. Liu, The effect of surface coating on energy migration-mediated upconversion, J. Am. Chem. Soc. 134 (2012) 20849–20857. https://doi.org/10.1021/ja3111048
[26] M. Puchalska, E. Zych, M. Sobczyk, A. Watras, P. Deren, Cooperative energy transfer in Yb3+-Tb3+ co-doped CaAl4O7 upconverting phosphor, Mater. Chem. Phys. 156 (2015) 220–226. https://doi.org/10.1016/j.matchemphys.2015.03.004
[27] A. Khare, A critical review on the efficiency improvement of upconversion assisted solar cells, J. Alloys Comp. 821 (2020) 153214. https://doi.org/10.1016/j.jallcom.2019.153214
[28] A.G. Bhuiyan, K. Sugita, A. Hashimoto, A. Yamamoto, InGaN solar cells: present state of the art and important challenge, IEEE J. Photovolt. 2 (2012) 276–293. https://doi.org/10.1109/JPHOTOV.2012.2193384
[29] Y. El Gmili, G. Orsal, K. Pantzas, T. Moudakir, S. Sundaram, G. Patriarche, J. Hester, A. Ahaitouf, J.P. Salvestrini, A. Ougazzaden, Multilayered InGaN/GaN structure vs. single InGaN layer for solar cell applications: a comparative study, Acta Mater. 61 (2013) 6587–6596. https://doi.org/10.1016/j.actamat.2013.07.041
[30] W. Zhao, L. Wang, J. Wang, Z. Hao, Y. Luo, Theoretical study on critical thicknesses of InGaN grown on (0001) GaN, J. Cryst. Growth 327 (2011) 202–204. https://doi.org/10.1016/j.jcrysgro.2011.05.002
[31] M. Arif, W. Elhuni, J. Streque, S. Sundaram, S. Belahsene, Y. El Gmili, M. Jordan, X. Li, G. Patriarche, A. Slaoui, A. Migan, R. Abderrahim, Z. Djebbour, P.L. Voss, J.P. Salvestrini, A. Ougazzaden, Improving InGaN heterojunction solar cells efficiency using a semibulk absorber, Sol. Energ. Mater. Sol. Cell. 159 (2017) 405–411. https://doi.org/10.1016/j.solmat.2016.09.030
[32] A. Mukhtarova, S. Valdueza-Felip, L. Redaelli, C. Durand, C. Bougerol, E. Monroy, J. Eymery, Dependence of the photovoltaic performance of pseudomorphic InGaN/GaN multiple-quantum-well solar cells on the active region thickness, Appl. Phys. Lett. 108 (2016) 161907. https://doi.org/10.1063/1.4947445
[33] C. Jiang, L. Jing, X. Huang, M. Liu, C. Du, T. Liu, X. Pu, W. Hu, Z.L. Wang, Enhanced solar cell conversion efficiency of InGaN/GaN multiple quantum wells by piezo-phototronic effect, ACS Nano 11 (2017) 9405–9412. https://doi.org/10.1021/acsnano. 7b04935
[34] N.G. Young, R.M. Farrell, Y.L. Hu, Y. Terao, M. Iza, S. Keller, S.P. DenBaars, S. Nakamura, J.S. Speck, High performance thin quantum barrier InGaN/GaN solar cells on sapphire and bulk (0001) GaN substrates, Appl. Phys. Lett. 103 (2013) 173903. https://doi.org/10.1063/1.4826483
[35] B.W. Liou, Design and fabrication of InxGa1−xN/GaN solar cells with a multiple-quantum-well structure on SiCN/Si(111) substrates, Thin Solid Films 520 (2011) 1084–1090. https://doi.org/10.1016/j.tsf.2011.01.086
[36] J.J. Wierer, Q. Li, D.D. Koleske, S.R. Lee, G.T. Wang, III-nitride core–shell nanowire arrayed solar cells, Nanotechnology 23 (2012) 194007. https://doi.org/10.1088/0957-4484/23/19/194007/meta
[37] Y. Dong, B. Tian, T.J. Kempa, C.M. Lieber, Coaxial group III−nitride nanowire photovoltaics, Nano Lett. 9 (2009) 2183–2187. https://doi.org/10.1021/nl900858v
[38] D. Zubia, S.H. Zaidi, S.R.J. Brueck, S.D. Hersee, Nanoheteroepitaxial growth of GaN on Si by organometallic vapor phase epitaxy, Appl. Phys. Lett. 76 (2000) 858–860. https://doi.org/10.1063/1.125608
[39] K. Young-Ho, K. Je-Hyung, G. Su-Hyun, K. Joosung, K. Taek, C. Yong-Hoon, Red emission of InGaN/GaN double heterostructures on GaN nanopyramid structures, ACS Photon. 2 (2015) 515–520. https://doi.org/10.1021/ph500415c
[40] S. Sundaram, Y. El Gmili, R. Puybaret, X. Li, P.L. Bonanno, K. Pantzas, G. Patriarche, P.L. Voss, J.P. Salvestrini, A. Ougazzaden, Nanoselective area growth and characterization of dislocation-free InGaN nanopyramids on AlN buffered Si(111) templates, Appl. Phys. Lett. 107 (2015) 113105. https://doi.org/10.1063/1.4931132
[41] W. El-Huni, A. Migan, Z. Djebbour, J. Salvestrini, A. Ougazzaden, High-efficiency indium gallium nitride/Si tandem photovoltaic solar cells modeling using indium gallium nitride semibulk material: monolithic integration versus 4-terminal tandem cells, Prog. Photovolt. Res. Appl. 24 (2016) 1436–1447. https://doi.org/10.1002/pip.2807
[42] M. Hamdi, B. Chrif, A. Lafond, B. Louati, C. Guillot-Deudon, F. Hle, Electrical properties of Cu2Zn(Sn1-xSix)S4 (x=0.1, x=0.4) compounds for absorber materials in solar-cells, J. Alloys Comp. 643 (2015) 129–136. https://doi.org/10.1016/j.jallcom.2015.04.033
[43] S. Kahraman, S. Çetinkaya, H.A. Çetinkara, H.S. Guder, Effects of diethanolamine on sol-gel-processed Cu2ZnSnS4 photovoltaic absorber thin films, Mater. Res. Bull. 50 (2014) 165–171. https://doi.org/10.1016/j.materresbull.2013.10.043
[44] N.M. Shinde, R.J. Deokate, C.D. Lokhande, Properties of spray deposited Cu2ZnSnS4 (CZTS) thin films, J. Anal. Appl. Pyrolysis 100 (2013) 12–16. https://doi.org/10.1016/j.jaap.2012.10.018
[45] Y. Lin, S. Ikeda, W. Septina, Y. Kawasaki, T. Harada, M. Matsumura, Mechanistic aspects of preheating effects of electrodeposited metallic precursors on structural and photovoltaic properties of Cu2ZnSnS4 thin films, Sol. Energ. Mater. Sol. Cell. 120 (2014) 218–225. https://doi.org/10.1016/j.solmat.2013.09.006
[46] C.H. Ruan, C.C. Huang, Y.J. Lin, G.R. He, H.C. Chang, Y.H. Chen, Electrical properties of CuxZnySnS4 films with different Cu/Zn ratios, Thin Solid Films 550 (2014) 525–529. https://doi.org/10.1016/j.tsf.2013.10.134
[47] J.W. Lekse, B.M. Leverett, C.H. Lake, J.A. Aitken, Synthesis, Physicochemical characterization and crystallographic twinning of Li2ZnSnS4, J. Solid State Chem. 181 (2008) 3217–3222. https://doi.org/10.1016/j.jssc.2008.08.026
[48] M.L. Liu, F.Q. Huang, L.D. Chen, I.W. Chen, A Wide-band-gap p-type thermoelectric material based on quaternary chalcogenides of Cu2ZnSnQ4 (Q=S, Se), Appl. Phys. Lett. 94 (2009) 202103. https://doi.org/10.1063/1.3130718
[49] J.W. Lekse, M.A. Moreau, K.L. McNerny, J. Yeon, P.S. Halasyamani, J.A. Aitken, Second-harmonic generation and crystal structure of the diamond-like semiconductors Li2CdGeS4 and Li2CdSnS4, Inorg. Chem. 48 (2009) 7516–7518. https://doi.org/10.1021/ic9010339
[50] H. Matsushita, T. Ochiai, A. Katsui, Preparation and characterization of CuZnGeSe thin films by selenization method using the Cu-Zn-Ge evaporated layer precursors, J. Cryst. Growth 275 (2005) 995–999. https://doi.org/10.1016/j.jcrysgro.2004.11.154
[51] R.A. Wibowo, E.S. Lee, B. Munir, K.H. Kim, Pulsed laser deposition of quaternary Cu2ZnSnSe4 thin films, Phys. Status Solidi A 204 (2007) 3373–3379. https://doi.org/10.1002/pssa.200723144
[52] S. Levcenco, D. Dumcenco, Y.S. Huang, E. Arushanov, V. Tezlevan, K.K. Tiong, C.H. Du, Absorption-edge anisotropy of Cu2ZnSiQ4 (Q=S,Se) quaternary compound semiconductors, J. Alloys Compd. 509 (2011) 4924–4928. https://doi.org/10.1016/j.jallcom.2011.01.169
[53] C. Sevik, T. Cagin, Ab initio study of thermoelectric transport properties of pure and doped quaternary compounds, Phys. Rev. B 82 (2010) 045202. https://doi.org/10.1103/PhysRevB.82.045202
[54] V. Kheraj, K.K. Patel, S.J. Patel, D.V. Shah, Synthesis and characterisation of Copper Zinc Tin Sulphide (CZTS) compound for absorber material in solar-cells, J. Cryst. Growth 362 (2013) 174–177. https://doi.org/10.1016/j.jcrysgro.2011.10.034
[55] M. Xie, D. Zhuang, M. Zhao, B. Li, M. Cao, J. Song, Fabrication of Cu2ZnSnS4 thin films using a ceramic quaternary target, J. Vac. 101 (2014) 146–150. https://doi.org/10.1016/j.vacuum.2013.08.001
[56] K. Ito, T. Nakazawa, Electrical and optical properties of stannite-type quaternary semiconductor thin films, J. Appl. Phys. 27 (1988) 2094–2097. https://doi.org/10.1143/JJAP.27.2094
[57] K. Tanaka, Y. Fukui, N. Moritake, H. Uchiki, Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol-gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency, Sol. Energ. Mater Sol. Cell. 95 (2011) 838–842. https://doi.org/10.1016/j.solmat.2010.10.031
[58] J. Nelson, The physics of solar cells, Imperial College Press, London, (2003). https://doi.org/10.1142/p276
[59] M. Hamdi, A. Lafond, C. Guillot-Deudon, F. Hlel, M. Gargouri, S. Jobic, Crystal chemistry and optical investigations of the Cu2Zn(Sn,Si)S4 series for photovoltaic applications, J. Solid State Chem. 220 (2014) 232–237. https://doi.org/10.1016/j.jssc.2014.08.030
[60] W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu ,D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6 % efficiency, Adv. Energy Mater. 4 (2014) 1301465–5. https://doi.org/10.1002/aenm.201301465
[61] W. El Hunia, S. Karrakchou, Nanopyramid-based absorber to boost the efficiency of InGaN solar cells, Sol. Energy 190 (2019) 93–103. https://doi.org/10.1016/j.solener. 2019.07.090
[62] Y. Shao, X. Li, L. Wu, D. Wang, Cu diffusion in CdTe detected by nano-metal-plasmonic enhanced resonant Raman scattering, J. Appl. Phys. 125 (2019) 013101. https://doi.org/10.1063/1.5051191
[63] J. Perrenoud, L. Kranz, C. Gretener, F. Pianezzi, S. Nishiwaki, S. Buecheler, A.N. Tiwari, A comprehensive picture of Cu doping in CdTe solar cells, J. Appl. Phys. 114 (2013) 174505. https://doi.org/10.1063/1.4828484
[64] F.D.M. Flores, J.G.Q. Galvan, A.G. Cervantes, J.S.A. Ceron, G.C. Puente, A.H. Hernandex, J.S. Salazar, M.D.L.L. Olvera, M.A.S. Aranda, M.Z. Torres, J.G.M. Alvarez, M.M. Lira, Physical properties of CdTe: Cu films grown at low temperature by pulsed laser deposition, J. Appl. Phys. 112 (2012) 113110. https://doi.org/10.1063/1.4768455
[65] M. Jhang, L. Qiu, W. Li, J. Zhang, L. Wu, L. Feng, Copper doping of MoOx thin films for CdTe solar cells, Mater. Sci. Semicond. Process. 86 (2018) 49–57. https://doi.org/10.1016/j.mssp.2018.06.008
[66] A. Bosio, R. Ciprian, A. Lamperti, I. Rago, B. Ressel, G. Rosa, M. Stupar, E. Weschke, Interface phenomena between CdTe and ZnTe:Cu back contact, Sol. Energy 176 (2018) 186–193. https://doi.org/10.1016/j.solener.2018.10.035
[67] S. Kim, J. Jeon, J. Suh, J. Hong, T. Kim, K. Kim, S. Cho, Comparative study of Cu2Te and Cu Back contact in CdS/CdTe solar cell, J. Korean Phys. Soc. 72 (2018) 780–785. https://doi.org/10.3938/jkps.72.780
[68] Himanshu, S.L. Patel, D. Agrawal, S. Chander, A. Thakur, M.S. Dhaka, Towards cost effective absorber layer to solar cells: Optimization of physical properties to Cu doped thin CdTe films, Mater. Lett. 254 (2019) 141–144. https://doi.org/10.1016/j.matlet.2019.07.037
[69] M. Kauk, K. Muska, M. Altosaar, J. Raudoja, M. Pilvet, T. Varema, K.Timmo, O. Volobujeva, Effects of sulphur and tin disulphide vapour treatments of Cu2ZnSnS(Se)4 absorber materials for monograin solar cells, Energy Procedia 10 (2011) 197–202. https://doi.org/10.1016/j.egypro.2011.10.177
[70] V. Kheraj, K.K. Patel, S.J. Patel, D.V. Shah, Synthesis and characterisation of Copper Zinc Tin Sulphide (CZTS) compound for absorber material in solar-cells, J. Cryst. Growth 362 (2013) 174–177. https://doi.org/10.1016/j.jcrysgro.2011.10.034
[71] M. Li, U. Guler, Y. Li, A. Rea, E.K. Tanyi, Y. Kim, N.A. Kotov, Plasmonic biomimetic nanocomposite with spontaneous subwavelength structuring as broadband Absorbers, ACS Energy Lett. 3 (2018) 1578–1583. https://doi.org/10.1021/acsenergy lett.8b00583
[72] B.X. Wang, C. Tang, Q. Niu, Y. He, T. Chen, Design of narrow discrete distances of dual-/triple-band terahertz metamaterial absorbers, Nanoscale Res. Lett. 14 (2019) 1–7. https://doi.org/10.1186/s11671-019-2876-3
[73] W. Guo, Y. Liu, T. Han, Ultra-broadband infrared metasurface absorber, Opt. Express 24 (2016) 20586–20592. https://doi.org/10.1364/OE.24.020586
[74] F. Xiong, J. Zhang, Z. Zhu, X. Yuan, S. Qin, Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping, Sci. Rep. 5 (2015) 16998. https://doi.org/10.1038/srep16998
[75] D. Katrodiya, C. Jani, V. Sorathiya, S.K. Patel, Metasurface based broadband solar absorber, Opt. Mater. 89 (2019) 34–41. https://doi.org/10.1038/srep20347.
[76] Y. Jiang, W. Xinguo, J. Wang, J. Wang, Tunable terahertz absorber based on bulk-Dirac-semimetal metasurface, IEEE Photonics J. 10 (5) (2018) 1–7. https://doi.org/10.1109/JPHOT.2018.2866281
[77] A.D. Khan, A.D. Khan, S.D. Khan, M. Noman, Light absorption enhancement in trilayered composite metasurface absorber for solar cell applications, Opt. Mater. 84 (2018) 195–198. https://doi.org/10.1016/j.optmat.2018.07.009
[78] J. Li, Y. Chen, Y. Liu, Mathematical simulation of metamaterial solar cells, Adv. Appl. Math. Mech. 3 (6) (2011) 702–715. https://doi.org/10.4208/aamm.11-m1109
[79] A.K. Azad, W.J. Kort-Kamp, M. Sykora, N.R. Weisse-Bernstein, T.S. Luk, A.J. Taylor, H.T. Chen, Metasurface broadband solar absorber, Sci. Rep. 6 (2016) 20347. https://doi.org/10.1038/srep20347
[80] B.X. Wang, X. Zhai, G.Z. Wang, W.Q. Huang, L.L. Wang, Design of a four-band and polarization-insensitive terahertz metamaterial absorber, IEEE Photonics J. 7 (2015) 1–8. https://doi.org/10.1109/JPHOT.2014.2381633
[81] E.S. Torabi, A. Fallahi, A. Yahaghi, Evolutionary optimization of graphene-metal metasurfaces for tunable broadband terahertz absorption, IEEE Trans. Antennas Propag. 65 (2017) 1464–1467. https://doi.org/10.1109/TAP.2016.2647580
[82] B.X. Wang, L.L. Wang, G.Z. Wang, W.Q. Huang, X.F. Li, X. Zhai, Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber, IEEE Photonics Technol. Lett. 26 (2014) 111–114. https://doi.org/10.1109/LPT.2013.2289299
[83] D. Hu, H.Y. Wang, Q.F. Zhu, Design of an ultra-broadband and polarization-insensitive solar absorber using a circular-shaped ring resonator, J. Nanophotonics 10 (2016) 026021. https://doi.org/10.1117/1.JNP.10.026021
[84] H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, X. Yang, Broadband perfect absorber based on one ultrathin layer of refractory metal, Opt. Lett. 40 (2015) 2592–2595. https://doi.org/10.1364/OL.40.002592
[85] S.K. Patel, S. Charola, C. Jani, M. Ladumor, J. Parmar, T. Guo, Graphene-based highly efficient and broadband solar absorber, Opt. Mater. 96 (2019) 109330. https://doi.org/10.1016/j.optmat.2019.109330
[86] H.E. Suess, H.C. Urey, Abundances of the elements, Rev. Mod. Phys. 28 (1956) 53. https://doi.org/10.1103/RevModPhys.28.53
[87] P.D. Matthews, P.D. McNaughter, D.J. Lewis, P. O’Brien, Shining a light on transition metal chalcogenides for sustainable photovoltaics, Chem. Sci. 8 (2017) 4177–4187. https://doi.org/10.1039/C7SC00642J
[88] C. Wadia, A.P. Alivisatos, D.M. Kammen, Materials availability expands the opportunity for large-scale photovoltaics deployment, Environ. Sci. Technol. 43 (2009) 2072–2077. https://doi.org/10.1021/es8019534
[89] L. Yu, Y. Lv, G. Chen, X. Zhang, Y. Zeng, H. Huang, Y. Feng, A generally synthetic route to semiconducting metal sulfide nanocrystals by using corresponding metal powder and cysteine as metallic and sulfuric sources, respectively, Inorg. Chim. Acta 376 (2011) 659–663. https://doi.org/10.1016/j.ica.2011.06.046
[90] Z. Zhuang, X. Lu, Q. Peng, Y. Li, A facile “dispersion–decomposition” route to metal sulfide nanocrystals, Chem. Eur J. 17 (2011) 10445–10452. https://doi.org/10.1002/chem.201101145
[91] R. Scheer, H.W. Schock, Chalcogenide photovoltaics: physics, technologies, and thin film devices, John Wiley & Sons, 2011. https://doi.org/10.1002/9783527633708
[92] D. Abou-Ras, T. Kirchartz, U. Rau, Advanced characterization techniques for thin film solar cells, John Wiley & Sons, 2016. https://doi.org/10.1002/9783527636280
[93] N.P. Dasgupta, X. Meng, J.W. Elam, A.B. Martinson, Atomic layer deposition of metal sulfide materials, Acc. Chem. Res. 48 (2015) 341–348. https://doi.org/10.1021/ar500360d
[94] S.M. Ho, T. Anand, A review of chalcogenide thin films for solar cell applications, Indian J. Sci. Technol. 8 (2015) 67499. https://doi.org/10.17485/ijst/2F2015/2Fv8i12/2F67499
[95] H. Noguchi, A. Setiyadi, H. Tanamura, T. Nagatomo, O. Omoto, Characterization of vacuum-evaporated tin sulfide film for solar cell materials, Sol. Energ. Mater. Sol. Cell. 35 (1994) 325–331. https://doi.org/10.1016/0927-0248(94)90158-9
[96] H. Pathan, P. Salunkhe, B. Sankapal, C. Lokhande, Photoelectrochemical investigation of Ag2S thin films deposited by SILAR method, Mater. Chem. Phys. 72 (2001) 105–108. https://doi.org/10.1016/S0254-0584(01)00319-4
[97] Y. Guo, H. Lei, B. Li, Z. Chen, J. Wen, G. Yang, G. Fang, Improved performance in Ag2S/P3HT hybrid solar cells with a solution processed SnO2 electron transport layer, RSC Adv. 81 (2016) 77701-77708. https://doi.org/10.1039/C6RA19590C
[98] D.H. Yeon, B.C. Mohanty, C.Y. Lee, S.M. Lee, Y.S. Cho, High-efficiency double absorber PbS/CdS heterojunction solar cells by enhanced charge collection using a ZnO nanorod array, ACS Omega 2 (2017) 4894–4899. https://doi.org/10.1021/acsomega.7b00999
[99] O. Agnihotri, B. Gupta, R. Thangaraj, Cd1-xZnx/PbS heterojunctions prepared by spray pyrolysis, Solid State Electron. 22 (1979) 218–220. https://doi.org/10.1016/0038-1101(79)90118-7
[100] P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, R.G. Gordon, Overcoming efficiency limitations of SnS-based solar cells, Adv. Energy Mater. 4 (2014) 1400496. https://doi.org/10.1002/aenm.201400496
[101] O. Savadogo, K. Mandal, Characterizations of antimony tri-sulfide chemically deposited with silicotungstic acid, J. Electrochem. Soc. 139 (1992) L16–L18. https://doi.org/10.1149/1.2069211
[102] R.R. Ahire, R.P. Sharma, Photoelectrochemical characterization of Bi2S3 thin films deposited by modified chemical bath deposition, Indian J. Eng. Mater. Sci. 13 (2006) 140–144
[103] A. Kirkeminde, R. Scott, S. Ren, All inorganic iron pyrite nano-heterojunction solar cells, Nanoscale 24 (2012) 7649–7654. https://doi.org/10.1039/C2NR32097E
[104] S. Yuan, H. Deng, X. Yang, C. Hu, J. Khan, W. Ye, J. Tang, H. Song, Postsurface selenization for high performance Sb2S3 planar thin film solar cells, ACS Photonics 4 (2017) 2862–2870. https://doi.org/10.1021/acsphotonics.7b00858
[105] A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonso-Vante, K. Buker, M. Bronold, C. Hpfner, H. Tributsch, Iron disulfide for solar energy conversion, Sol. Energ. Mater. Sol. Cell. 29 (1993) 289–370. https://doi.org/10.1016/0927-0248(93)90095-K
[106] R. Mane, B. Sankapal, C. Lokhande, Photoelectrochemical (PEC) characterization of chemically deposited Bi2S3 thin films from non-aqueous medium, Mater. Chem. Phys. 60 (1999) 158–162. https://doi.org/10.1016/S0254-0584(99)00099-1
[107] A. Collord, H. Xin, H. Hillhouse, Combinatorial exploration of the effects of intrinsic and extrinsic defects in Cu2ZnSn(S,Se)4, IEEE J. Photovolt. 5 (2015) 288–298. https://doi.org/10.1109/JPHOTOV.2014.2361053
[108] M. Bohm, R. Kern, H. Wagemann, The Influence of Grain-Boundary Recombination and Grain Size on the I (V)-characteristics of polycrystalline silicon solar cells. Fourth EC Photovoltaic Solar Energy Conference, Springer, (1982) 516–521. https://doi.org/10.1007/978-94-009-7898-0_84
[109] J.S. Park, S. Kim, Z. Xie, A. Walsh, Point defect engineering in thin-film solar cells, Nat. Rev. Mater. 3 (2018) 194–210. https://doi.org/10.1038/s41578-018-0026-7
[110] L.L. Kazmerski, The effects of grain boundary and interface recombination on the performance of thin-film solar cells, Solid State Electron. 21 (1978) 1545–1550. https://doi.org/10.1016/0038-1101(78)90239-3
[111] J. Just, C.M. Sutter-Fella, D. Lutzenkirchen-Hecht, R. Frahm, S. Schorr, T. Unold, Secondary phases and their influence on the composition of the kesterite phase in CZTS and CZTSe thin films, Phys. Chem. Chem. Phys. 18 (2016) 15988–15994. https://doi.org/10.1039/C6CP00178E
[112] D.G. Moon, S. Rehan, D.H. Yeona, S.M. Lee, S.J. Parka, S.J. Ahn, Y.S. Choa, A review on binary metal sulfide heterojunction solar cells, Sol. Energ. Mater Sol. Cell. 200 (2019) 109963. https://doi.org/10.1016/j.solmat.2019.109963
[113] O. Popov, A. Zilbershtein, D. Davidov, Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength, Appl. Phys. Lett. 89 (2006) 191116. https://doi.org/10.1063/1.2364857
[114] E. Heydari, R. Flehr, J. Stumpe, Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing, Appl. Phys. Lett. 102 (2013) 133110. https://doi.org/10.1063/1.4800776
[115] J. Ziegler, M. Djiango, C. Vidal, C. Hrelescu, T.A. Klar, Gold nanostars for random lasing enhancement, Opt. Exp. 23 (2015) 15152–15159. https://doi.org/10.1364/OE.23.015152
[116] T.L. Temple, G.D.K. Mahanama, H.S. Reehal, D.M. Bagnall, Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Sol. Energ. Mater Sol. Cell. 93 (2009) 1978–1985. https://doi.org/10.1016/j.solmat.2009.07.014
[117] H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9 (2010) 205–213. https://doi.org/ 10.1038/nmat2629
[118] Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, S. Pillai, Nanoparticle-enhanced light trapping in thin-film solar cells, Prog. Photovolt. 19 (2011) 917–926. https://doi.org/10.1002/pip.1135
[119] W. Liu, X. Wang, Y. Li, Z. Geng, F. Yang, J. Li, Surface plasmon enhanced GaAs thin film solar cells, Sol. Energ. Mater Sol. Cell. 95 (2011) 693-698. https://doi.org/10.1016/j.solmat.2010.10.004
[120] L. Hong, Rusli, X. Wang, H. Zheng, L. He, X. Xu, H. Wang, H. Yu, Design principles for plasmonic thin film GaAs solar cells with high absorption enhancement, J. Appl. Phys. 112 (2012) 054326. https://doi.org/10.1063/1.4749800
[121] A.A. Miskevich, V.A. Loiko, Light absorption by a layered structure of silicon particles as applied to the solar cells: theoretical study, J. Quant. Spectrosc. Radiat. Transf. 146 (2014) 355–364. https://doi.org/10.1016/j.jqsrt.2013.12.008.
[122] A.J. Haes, R.P. Duyne, A unified view of propagating and localized surface plasmon resonance biosensors, Anal. Bioanal. Chem. 379 (2004) 920–930. https://doi.org/10.1007/s00216-004-2708-9
[123] K.A Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem. 58 (2007) 267–297. https://doi.org/10.1146/annurev.physchem.58.032806.104607
[124] C.S. Kealley, M.D. Arnold, A. Porkovich, M.B. Cortie, Sensors based on monochromatic interrogation of a localized surface plasmon resonance, Sens. Actuators B Chem. 148 (2010) 34–40. https://doi.org/10.1016/j.snb.2010.05.023
[125] F.J. Beck, A. Polman, K.R. Catchpole, Tunable light trapping for solar cells using localized surface plasmons, J. Appl. Phys. 105 (2009) 114310. https://doi.org/10.1063/1.3140609
[126] D.M. Schaadt, B. Feng, E.T. Yu, Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles, Appl. Phys. Lett. 86 (2005) 063106. https://doi.org/10.1063/1.1855423g
[127] K. Nakayama, K Tanabe, H.A. Atwater, Plasmonic nanoparticle enhanced light absorption in GaAs solar cell, Appl. Phys. Lett. 93 (2008) 121904. https://doi.org/10.1063/1.2988288
[128] T.L. Temple, D.M. Bagnal, Broadband scattering of the solar spectrum by spherical metal nanoparticles, Prog. Photovolt. 21 (2013) 600–611. https://doi.org/10.1002/pip.1237