New Generation Transparent Conducting Electrode Materials for Solar Cell Technologies
Sandeep Pandey, Manoj Karakoti, Amit Kumar, Sunil Dhali, Aniket Rana, Kuldeep K. Garg, Rajiv K Singh, Nanda Gopal Sahoo
Transparent conducting electrodes (TCEs) play a vital role for the fabrication of solar cells and pivoted almost 50% of the total cost. Recently several materials have been identified as TCEs in solar cell applications. Still, indium tin oxide (ITO) based TCEs have dominated the market due to their outstanding optical transparency and electrical conductivity. However, inadequate availability of indium has increased the price of ITO based TCEs, which attracts the researchers to find alternative materials to make solar technology economical. In this regard, various kinds of conducting materials are available and synthesized worldwide with high electrical conductivity and optical transparency in order to find alternative to ITO based electrodes. Especially, new generation nanomaterials have opened a new window for the fabrication of cost effective TCEs. Carbon nanomaterials such as graphene, carbon nanotubes (CNTs), metal nanowires (MNWs) and metal mesh (MMs) based electrodes especially attracted the scientific community for fabrication of low cost photovoltaic devices. In addition to it, various conducting polymers such as poly (3, 4-ethylene dioxythiophene): poly (styrenesulfonate) (PEDOT:PSS) based TCEs have also showed their candidacy as an alternative to ITO based TCEs. Thus, the present chapter gives an overview on materials available for the TCEs and their possible use in the field of solar cell technology
Keywords
Solar Cells, Transparent Conducting Electrodes, Indium Tin Oxide, Carbon Nanomaterials, Metal Nanowires, Metal Mesh, Poly (3, 4-ethylene dioxythiophene): poly (styrenesulfonate) PEDOT: PSS
Published online 11/15/2020, 43 pages
Citation: Sandeep Pandey, Manoj Karakoti, Amit Kumar, Sunil Dhali, Aniket Rana, Kuldeep K. Garg, Rajiv K Singh, Nanda Gopal Sahoo, New Generation Transparent Conducting Electrode Materials for Solar Cell Technologies, Materials Research Foundations, Vol. 88, pp 86-128, 2021
DOI: https://doi.org/10.21741/9781644901090-4
Part of the book on Materials for Solar Cell Technologies I
References
[1] G.A. Brian, A. Zaban, S. Ferrere, Dye sensitized solar cells: energetic considerations and applications, Z. Phys. Chem. 212 (1999) 11-22. https://doi.org/10.1524/zpch.1999.212.Part_1.011
[2] V.V Tyagi, N.A.A. Rahim, N.A. Rahim, J.A.L. Selvaraj, Progress in solar PV technology: research and achievement, Renew Sustain Energy Rev. 20 (2013) 443–61. https://doi.org/10.1016/j.rser.2012.09.028.
[3] M. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 36), Prog. Photovolt: Res. Appl.18 (2010) 346-352. https://doi.org/10.1002/pip.1021
[4] A. Kumar, Z. Chongwu, The race to replace tin-doped indium oxide: which material will win?, ACS Nano. 4.1 (2010) 11-14. https://doi.org/10.1021/nn901903b
[5] H.S. Jung, K. Eun, Y.T. Kim, E.K. Lee, S.H. Choa, Experimental and numerical investigation of flexibility of ITO electrode for application in flexible electronic devices. Microsyst Technol. 23 (2017) 1961-1970. Http://doi.org/10.1007/s00542-016-2959-3
[6] K. Sakamoto, H. Kuwae, N. Kobayashi, A. Nobori, S. Shoji, J. Mizuno, Highly flexible transparent electrodes based on mesh-patterned rigid indium tin oxide, Sci. Rep. 8 (2018) 2825. Http://doi.org/10.1038/s41598-018-20978-x.
[7] Y.B. Park, L. Hu, G. Gruner, G. Irvin, P. Drzaic, Late-News Paper: Integration of carbon nanotube transparent electrodes into display applications, SID Symp. Dig. Tech. Pap. 39 (2008) 537. https://doi.org/10.1889/1.3069721
[8] https://www.fep.fraunhofer.de/content/dam/fep/en/documents/Produktflyer/Advancedtransparent conductive coatings on flat and flexible substrates_EN_V2.0_net.pdf
[9] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007)183–191. https://doi.org/10.1142/9789814287005_0002
[10] K.S. Novoselov, A.K. Geim, S.V. Morozov, Electric field effect in atomically thin carbon films, Science. 306 (2004) 666–669. https://doi.org/10.1126/science.1102896
[11] P. Avouris, Z. Chen, V. Perebeinos, Carbon-based electronics, Nat. Nanotechnol. 2 (2007) 605–615. https://doi.org/10.1142/9789814287005_0018
[12] C. Cai, F. Jia, A. Li, Crackless transfer of large-area graphene films for superior-performance transparent electrodes, Carbon. 98 (2016) 457–462. https://doi.org/10.1016/j.carbon.2015.11.041
[13] W. Aloui, A. Ltaief, A. Bouazizi, Transparent and conductive multi walled carbon nanotubes flexible electrodes for optoelectronic applications, Supperlattice. Microst. 64 (2013)581–589. https://doi.org/10.1016/j.spmi.2013.10.027
[14] J.Y. Lee, Solution-processed metal nanowire mesh transparent electrodes, Nano Lett. 8 (2008) 689-692. https://doi.org/10.1021/nl073296g
[15] S. De, T. M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J. N. Coleman, Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios, ACS Nano. 3 (2009) 1767-1774. https://doi.org/10.1021/nn900348c
[16] H. Park, P.R. Brown, V. Bulovi, J. Kong, Graphene as transparent conducting electrodes inorganic photovoltaics: studies in graphene morphology, hole transporting layers, and counter electrodes, Nano Lett. 12 (2011) 133–140. https://doi.org/10.1021/nl2029859
[17] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y.Yan, Z.X. Shen, Atomic-layer graphene as asaturable absorber for ultra fast pulsed lasers, Adv. Funct. Mater. 19 (2009) 3077–3083. https://doi.org/10.1002/adfm.200901007
[18] K.S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, K. Kim, A road map for graphene, Nature. 490 (2012)192–200. https://doi.org/10.1038/nature11458
[19] J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on Si02, Nature Nanotech. 4 (2008) 206. https://doi.org/10.1038/nnano.2008.58
[20] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, Superior thermal conductivity of single-layer graphene, Nano Lett. 3 (2008) 902. https://doi.org/10.1021/nl0731872
[21] S. De, J.N. Coleman, Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films?, ACS Nano. 5 (2010) 2713. https://doi.org/10.1021/nn100343f
[22] J. Wu, M. Agrawal, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic light-emitting diodes on solution-processed graphene transparent electrodes, ACS Nano. 1 (2009) 43. https://doi.org/10.1021/nn900728d
[23] W. Cao, J. Li, H. Chen, J. Xue, Transparent electrodes for organic optoelectronic devices: a review. J. Photon. Energ. 4 (2014) 040990. Http://doi.org/10.1117/1.JPE.4.040990
[24] C. Linda, J.C. Bernède, M. Morsli, Toward indium-free optoelectronic devices: Dielectric/metal/dielectric alternative transparent conductive electrode in organic photovoltaic cells, physica status solidi (a). 210 (2013)1047-1061. https://doi.org/10.1002/pssa.201228089
[25] S. Nam, M. Song, D. H. Kim, B. Cho, H. M. Lee, J.D. Kwon, Y.C. Park, Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode, Sci. Rep. 4 (2014) 4788. https://doi.org/10.1038/srep04788
[26] M. Song, D.S. You, K. Lim, S. Park, S. Jung, C.S. Kim, Y.C. Kang, Highly efficient and bendable organic solar cells with solution-processed silver nanowire electrodes. Adv. Funct. Mater. 23 (2013) 4177-4184. https://doi.org/10.1002/adfm.201202646
[27] M. Song, J.H. Park, C.S. Kim, D.H. Kim, Y.C. Kang, S.H. Jin, J.W. Kang, Highly flexible and transparent conducting silver nanowire/ZnO composite film for organic solar cells. Nano Res. 7 (2014) 1370-1379. https://doi.org/10.1007/s12274-014-0502-3
[28] J. Yang, C. Bao, K. Zhu, T. Yu, Q. Xu, High-performance transparent conducting metal network electrodes for perovksite photodetectors. ACS Appl. Mater. Interfaces. 10 (2018) 1996-2003. https://doi.org/10.1021/acsami.7b15205
[29] H.D. Um, D. Choi, A. Choi, J. H. Seo, K. Seo, Embedded metal electrode for organic–inorganic hybrid nanowire solar cells. ACS Nano. 11 (2017) 6218-6224. https://doi.org/10.1021/acsnano.7b02322
[30] M. Layani, A. Kamyshny, S. Magdassi, Transparent conductors composed of nanomaterials. Nanoscale. 6 (2014) 5581-5591. https://doi.org/10.1039/C4NR00102H
[31] G. Haacke, New figure of merit for transparent conductors. J Appl. Phys. 47 (1976) 4086-4089. https://doi.org/10.1063/1.323240
[32] M. Dressel, G. Gruner, Electrodynamics of solids optical properties of electron in matter, Cam. Uni. Press, Cambridge, (2002) 159-165. https://doi.org/10.1017/CBO9780511606168
[33] R. Gupta, G.U. Kulkarni, Holistic method for evaluating large area transparent conducting electrodes, ACS Appl. Mater. Interfaces. 5 (2013) 730–736. https://doi.org/10.1021/am302264a
[34] Y.H. Kim, C. Sachse, M.L. MacHala, C. May, L. Müller-Meskamp, K. Leo, Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells, Adv. Funct. Mater. 21 (2011) 1076–1081. https://doi.org/10.1002/adfm.201002290
[35] E.N. Dattoli, W. Lu, ITO nanowires and nanoparticles for transparent films, MRS Bulletin, 36 (2011) 782-788. https://doi.org/10.1557/mrs.2011.212
[36] J. Pütz,, N. Al-Dahoudi, M. A. Aegerter, Processing of transparent conducting coatings made with redispersible crystalline nanoparticles. Adv. Eng. Mater. 6 (2004) 733-737. https://doi.org/10.1002/adem.200400078
[37] J. Puetz, M. A. Aegerter, Direct gravure printing of indium tin oxide nanoparticle patterns on polymer foils, Thin Solid Films. 516 (2008) 4495-4501. https://doi.org/10.1016/j.tsf.2007.05.086
[38] S. Heusing, P.W. De Oliveira, E. Kraker, A. Haase, C. Palfinger, M. Veith, Wet chemical deposited ITO coatings on flexible substrates for organic photodiodes, Thin Solid Films. 518 (2009) 1164-1169. https://doi.org/10.1016/j.tsf.2009.06.056
[39] J.Yun, Y. H. Park, T.S. Bae, S. Lee, G. H. Lee, Fabrication of a completely transparent and highly flexible ITO nanoparticle electrode at room temperature, ACS Appl. Mater. Interfaces. 5 (2013)164−172. https://doi.org/10.1021/am302341p
[40] B. Azzopardi, C.J. Emmott, A. Urbina, F.C. Krebs, J. Mutale, J. Nelson, Economic assessment of solar electricity production from organic-based photovoltaic modules in a domestic environment, Energy Environ. Sci. 4 (2011) 3741-3753. https://doi.org/10.1039/C1EE01766G
[41] M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells, Sol Energ Mat Sol C. 92 (2008) 686-714. https://doi.org/10.1016/j.solmat.2008.01.005.
[42] P. Cheng, X. Zhan, Stability of organic solar cells: challenges and strategies, Chem. Soc. Rev. 45 (2016) 2544-2582. Http://doi.org/10.1039/C5CS00593K
[43] https://www.pilkington.com/en/global/products/productcategories/specialapplications/nsg-tec-for-technical-applications, 2019
[44] Y. Ma, L. Zhi, Graphene-based transparent conductive films: Material systems, preparation and applications, Small Methods. 3 (2019) 1–32. https://doi.org/10.1002/smtd.201800199
[45] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, A.A. Firsov, Electric field effect in atomically thin carbon films. Science. 306 (2004). 666-669. https://doi.org/10.1126/science.1102896
[46] P. Avouris, Z. Chen, V. Perebeinos, Carbon-based electronics, Nat. Nanotechnol. 2 (2007) 605–615. https://doi.org/10.1142/9789814287005_0018
[47] L.J. Cote, F. Kim, J. Huang, Langmuir− Blodgett assembly of graphite oxide single layers, J. Am. Chem. Soc. 131 (2008) 1043-1049. https://doi.org/https://doi.org/10.1021/ja806262m
[48] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Highly conducting graphene sheets and Langmuir–Blodgett films, Nat. Nanotechnol. 3 (2008) 538. https://doi.org/10.1038/nnano.2008.210
[49] W. Junbo, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic light-emitting diodes on solution-processed graphene transparent electrodes, ACS Nano. 4 (2009) 43-48. https://doi.org/10.1021/nn900728d
[50] B.A. Héctor, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano. 2 (2008) 463-470. https://doi.org/10.1021/nn700375n
[51] W. Junbo, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic solar cells with solution-processed graphene transparent electrodes, Appl. Phys. Lett. 92 (2008) 237. Http://doi.org/10.1063/1.2924771
[52] G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol. 3 (2008) 270-274. https://doi.org/10.1038/nnano.2008.83
[53] J. Wang, M. Liang, Y. Fang, T. Qiu, J. Zhang, L. Zhi, Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens, Adv. Mater. 24 (2012) 2874-2878. https://doi.org/10.1002/adma.201200055
[54] J. Zhao, S. Pei, W. Ren, L. Gao, H.M. Cheng, Efficient preparation of large-area graphene oxide sheets for transparent conductive films, ACS Nano. 4 (2010) 5245-5252. https://doi.org/10.1021/nn1015506
[55] J. Kang, S. Hwang, J.H. Kim, M.H. Kim, J. Ryu, S.J. Seo, B.H. Hong, M.K. Kim, J.B. Choi, Efficient transfer of large-area graphene films onto rigid substrates by hot pressing, ACS Nano. 6 (2012) 5360–5365. https://doi.org/10.1021/nn301207d
[56] X. Huang, F. Liu, P. Jiang, T. Tanaka, Is graphene oxide an insulating material?, Proc. IEEE Int. Conf. Solid Dielectr. ICSD. (2013) 904–907. https://doi.org/10.1109/ICSD.2013.6619690.
[57] M. Cecilia, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films, Advanced Adv. Funct. Mater. 19 (2009) 2577-2583. https://doi.org/10.1002/adfm.200900166
[58] L. Yanyu, J. Frisch, L. Zhi, H. N. Arasi, Xi. Feng, J. P. Rabe, N. Koch, K. Müllen, Transparent, highly conductive graphene electrodes from acetylene-assisted thermolysis of graphite oxide sheets and nanographene molecules, Nanotechnology. 20 (2009) 434007. https://doi.org/10.1088/0957-4484/20/43/434007
[59] W. Xuan, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett. 8 (2008) 323-327. https://doi.org/10.1021/nl072838r
[60] Z. Lu, L. Zhao, Y. Xu, T. Qiu, L. Zhi, G. Shi, Polyaniline electrochromic devices with transparent graphene electrodes, Electrochim. Acta. 55 (2009) 491-497. https://doi.org/10.1016/j.electacta.2009.08.063
[61] L. Yangqiao, L. Gao, J. Sun, Y. Wang, J. Zhang, Stable Nafion-functionalized graphene dispersions for transparent conducting films, Nanotechnology. 20 (2009) 465605. https://doi.org/10.1088/0957-4484/20/46/465605
[62] E. Goki, Y.Y. Lin, S. Miller, C.W. Chen, W.F. Su, M. Chhowalla, Transparent and conducting electrodes for organic electronics from reduced graphene oxide, Appl. Phys. Lett. 92 (2008) 209. https://doi.org/10.1063/1.2937846
[63] M. Shun, S. Cui, G. Lu, K. Yu, Z. Wen, J. Chen, Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals, J. Mater. Chem. 22 (2012) 11009-11013. https://doi.org/10.1039/C2JM30378G
[64] Z. Jinping, S. Pei, W. Ren, L. Gao, H.M. Cheng, Efficient preparation of large-area graphene oxide sheets for transparent conductive films, ACS Nano. 4 (2010) 5245-5252. https://doi.org/10.1021/nn1015506
[65] E. Goki, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol. 3 (2008) 270-274. https://doi.org/10.1038/nnano.2008.83
[66] G.A. Alexander, M.C. Hersam, Solution phase production of graphene with controlled thickness via density differentiation, Nano Lett. 9 (2009) 4031-4036. https://doi.org/10.1021/nl902200b
[67] H. Yenny, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, High-yield production of graphene by liquid-phase exfoliation of graphite, Nat. Nanotechnol. 3 (2008) 563. https://doi.org/10.1038/nnano.2008.215
[68] B. Peter, P.D. Brimicombe, R.R. Nair, T. J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko, Graphene-based liquid crystal device, Nano Lett. 8 (2008) 1704-1708. https://doi.org/10.1021/nl080649i
[69] C.M. Gee, C.C. Tseng, F.Y. Wu, Flexible transparent Electrodes made of electro chemically exfoliated graphene sheets from low-cost graphite pieces, Displays. 34 (2013) 315– 319. https://doi.org/10.1016/j.displa.2012.11.002
[70] K.K. Soo, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature. 457 (2009) 706-710. https://doi.org/10.1038/nature07719
[71] L. Xuesong, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes, Nano Lett. 9 (2009) 4359-4363. https://doi.org/10.1021/nl902623y
[72] M. Cecilia, H. Kim, M. Chhowalla, A review of chemical vapour deposition of graphene on copper, J. Mater. Chem. 21 (2011) 3324-3334. https://doi.org/10.1039/C0JM02126A
[73] L. Xuesong, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science. 324 (2009) 1312-1314. https://doi.org/10.1126/science.1171245
[74] Y. Zhang, L. Zhang, C. Zhou, Review of chemical vapor deposition of graphene and related applications, Acc. Chem. Res. 46 (2013) 2329–2339. https://doi.org/10.1021/ar300203n
[75] S. Chen, W Cai, R. D. Piner, J. W. Suk, Y. Wu, Y. Ren, J. Kang, R. S. Ruoff, Synthesis and characterization of large-area graphene and graphite Films on commercial Cu–Ni alloy foils. Nano Lett. 11 (2011) 3519–3525. https://doi.org/10.1021/nl201699j.
[76] B. Sukang, H. Kim, Y. Lee, X. Xu, J.S. Park, Yi Zheng, J. Balakrishnan, “Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol. 5 (2010) 574. https://doi.org/10.1038/nnano.2010.132
[77] L. Xuesong, C.W. Magnuson, A. Venugopal, J. An, J.W. Suk, B. Han, M. Borysiak, Graphene films with large domain size by a two-step chemical vapor deposition process, Nano Lett. 10 (2010) 4328-4334. https://doi.org/10.1021/nl101629g
[78] T.C. Vincent, L.M. Chen, M.J. Allen, J.K. Wassei, K. Nelson, R.B. Kaner,Y. Yang, Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors, Nano Lett. 9 (2009) 1949-1955. https://doi.org/10.1021/nl9001525
[79] L. Chunyan, Z. Li, H. Zhu, K. Wang, J. Wei, X. Li, P. Sun, H. Zhang, D. Wu, Graphene nano-“patches” on a carbon nanotube network for highly transparent/conductive thin film applications, J. Phys. Chem. C. 114 (2010) 14008-14012. https://doi.org/10.1021/jp1041487
[80] L.M. Sun, K. Lee, S.Y. Kim, H. Lee, J. Park, K.H. Choi, H.K. Kim, High-performance, transparent, and stretchable electrodes using graphene–metal nanowire hybrid structures, Nano Lett. 13 (2013) 2814-2821. https://doi.org/10.1021/nl401070p
[81] H. Liangbing, D.S. Hecht, G. Gruner, Carbon nanotube thin films: fabrication, properties, and applications, Chem. Rev. 110 (2010) 5790-5844. https://doi.org/10.1021/cr9002962
[82] S.H. Han, B.J. Kim, J.S. Park, Effects of the corona pretreatment of PET substrates on the properties of flexible transparent CNT electrodes, Thin Solid Films. 572 (2014) 73-78. https://doi.org/10.1016/j.tsf.2014.09.066
[83] S.H. Han, B.J. Kim, J.S. Park, Surface modification of plastic substrates via corona-pretreatment and its effects on the properties of carbon nanotubes for use of flexible transparent electrodes, Surf. Coat. Technol. 271 (2015) 100. https://doi.org/10.1016/j.surfcoat.2014.12.077
[84] T.M. Barnes, J.D. Bergeson, R.C. Tenent, Carbon nanotube network electrodes enabling efficient organic solar cells without a hole transport layer, Appl. Phys. Lett. 96 (2010) 243309. https://doi.org/10.1063/1.3453445
[85] V. Scardaci, R. Coull, J.N. Coleman, Very thin transparent,conductive carbon nanotube films on flexible substrates, Appl. Phys. Lett. 97 (2010) 23114. https://doi.org/doi.org/10.1063/1.3462317
[86] A. Schindler, J. Brill, N. Fruehauf, J.P. Novak, Z. Yaniv, Solution-deposited carbon nanotube layers for flexible display applications, Physica E Low Dimens. Syst. Nanostruct. 37 (2007) 119–123. https://doi.org/10.1016/j.physe.2006.07.016
[87] J.G. Ruiz, S. Palmero, D. Iba˜nez, A. Heras, A. Colina, Press-transfer optically transparent electrodes fabricated from commercial single-walled carbon nanotubes, Electrochem. commun. 25 (2012) 1–4. https://doi.org/10.1016/j.elecom.2012.09.004
[88] A. Heras, A. Colina, J.L´opez-Palacios, Flexible optically transparent single-walled carbon nanotube electrodes for UV-Vis absorption spectroelectrochemistry, Electrochem. commun. 11 (2009) 442–445. https://doi.org/10.1016/j.elecom.2008.12.016.
[89] J.W. Jo, J.W. Jung, J.U. Lee, W.H. Jo, Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating, ACS Nano. 4 (2010) 5382–5388. https://doi.org/10.1021/nn1009837
[90] J. Zhang, L. Gao, J. Sun, Dispersion of single-walled carbon nanotubes by nafion in water/ethanol for preparing transparent conducting films, J. Phys. Chem. C. 112 (2008) 16370–16376. https://doi.org/10.1021/jp8053839
[91] N.F. Anglada, J.P. Puigdemont, J. Figueras, M.Z. Iqbal, S. Roth, Flexible, transparent electrodes using carbon nanotubes, Nanoscale Res. Lett. 7 (2012) 571–578. https://doi.org/10.1186/1556-276X-7-571
[92] M.W. Rowell, M.A. Topinka, M.D. McGehee, Organic solar cells with carbon nanotube network electrodes, Appl. Phys. Lett. 88 (2006) 233506. https://doi.org/10.1063/1.2209887
[93] W. Aloui, A. Ltaief, A. Bouazizi, Transparent and conductive multi walled carbon nanotubes flexible electrodes for optoelectronic applications, Superlattices Microstruct. 64 (2013) 581–589. https://doi.org/10.1016/j.spmi.2013.10.027
[94] Y. H. Kim, L.M. Meskamp, A.A. Zakhidov, Semitransparent small molecule organic solar cells with laminated free-standing carbon nanotube top electrodes, Sol. Energy Mater. Sol. Cells. 96 (2012) 244–250. https://doi.org/10.1016/j.solmat.2011.10.001
[95] S.I. Na, J.S. Lee, Y.J. Noh, Efficient ITO-free polymer solar cells with pitch-converted carbon nanosheets as novel solution-processable transparent electrodes, Sol. Energy Mater. Sol. Cells. 115 (2013) 1–6. https://doi.org/10.1016/j.solmat.2013.03.019.
[96] T. Andrea, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang, Langmuir- Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy, Nano Lett. 3 (2003) 1229-1233. https://doi.org/10.1021/nl0344209
[97] H. Liangbing, H.S. Kim, J.Y. Lee, P. Peumans, Yi Cui, Scalable coating and properties of transparent, flexible, silver nanowire electrodes, ACS Nano. 4 (2010) 2955-2963. https://doi.org/10.1021/nn1005232
[98] T. Takehiro, M. Nogi, M. Karakawa, J. Jiu, T.T. Nge, Yoshio Aso, K. Suganuma, Fabrication of silver nanowire transparent electrodes at room temperature, Nano Res. 4 (2011) 1215-1222. https://doi.org/10.1007/s12274-011-0172-3
[99] L. Jaemin, I. Lee, T.S. Kim, J.Y. Lee, Efficient welding of silver nanowire networks without post-processing, Small. 9 (2013) 2887-2894. https://doi.org/10.1002/smll.201203142
[100] L. Jinhwan, P. Lee, H. Lee, D. Lee, S.S. Lee, S.H. Ko, Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel, Nanoscale. 4 (2012) 6408-6414. https://doi.org/10.1039/C2NR31254A
[101] R.R. Aaron, S.M. Bergin, Y.L. Hua, Z.Y. Li, B.J. Wiley, The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films, Adv. Mater. 22 (2010) 3558-3563. https://doi.org/10.1002/adma.201000775
[102] Y. Shengrong, A.R. Rathmell, Y.C. Ha, A.R. Wilson, B.J. Wiley, The role of cuprous oxide seeds in the one-pot and seeded syntheses of copper nanowires, Small. 10 (2014) 1771-1778. https://doi.org/10.1002/smll.201303005
[103] R.R. Aaron, B.J. Wiley, The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates, Adv. Mater. 23 (2011) 4798-4803. https://doi.org/10.1002/adma.201102284
[104] G. Huizhang, N. Lin, Y. Chen, Z. Wang, Q. Xie, T. Zheng, N. Gao, Copper nanowires as fully transparent conductive electrodes, Sci. Rep. 3 (2013) 1-8. https://doi.org/10.1038/srep02323
[105] H. Ziyang, C.K. Tsung, W. Huang, X. Zhang, P. Yang, Sub-two nanometer single crystal Au nanowires, Nano Lett. 8 (2008): 2041-2044. https://doi.org/10.1021/nl8013549
[106] S.I. Ana, B.R. Murias, M. Grzelczak, J.P. Juste, L.M. Liz-Marzán, F. Rivadulla, M.A. Correa-Duarte, Highly transparent and conductive films of densely aligned ultrathin Au nanowire monolayers, Nano Lett. 12 (2012) 6066–6070. https://doi.org/10.1021/nl3021522
[107] L.J. Yong, S.T. Connor, Y. Cui, P. Peumans, Solution-processed metal nanowire mesh transparent electrodes, Nano Lett. 8 (2008) 689–692. https://doi.org/10.1021/nl073296g
[108] K.C. Lin, K.C. Hwang, Nitrate ion promoted formation of Ag nanowires in polyol processes: a new nanowire growth mechanism, Langmuir. 28 (2012) 3722-3729. https://doi.org/10.1021/la204002b
[109] B. Bushra, J. Lee, T. Jang, P. Won, S. H. Ko, K. Alamgir, M. Arshad, L.J. Guo, Simple hydrothermal synthesis of very-long and thin silver nanowires and their application in high quality transparent electrodes, J. Mater. Chem. A. 4 (2016) 11365-11371. https://doi.org/10.1039/C6TA03308C
[110] W. Hui, D. Kong, Z. Ruan, P.C. Hsu, S. Wang, Z. Yu, T.J. Carney, L. Hu, S. Fan, Y. Cui, A transparent electrode based on a metal nanotrough network, Nat. Nanotechnol. 8 (2013) 421. https://doi.org/10.1038/nnano.2013.84
[111] H. Bing, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, Uniform self-forming metallic network as a high-performance transparent conductive electrode, Adv. Mater. 26 (2014) 873-877. https://doi.org/10.1002/adma.201302950
[112] L.S. James, K.Y. Shin, O.J. Cheong, J.H. Kim, J. Jang, Highly sensitive and multifunctional tactile sensor using free-standing ZnO/PVDF thin film with graphene electrodes for pressure and temperature monitoring, Sci. Rep. 5 (2015) 7887. https://doi.org/10.1038/srep07887
[113] J.H. Young, S.K. Lee, S.H. Cho, J.H. Ahn, S. Park, Fabrication of metallic nanomesh: Pt nano-mesh as a proof of concept for stretchable and transparent electrodes, Chem. Mater. 25 (2013) 3535-3538. https://doi.org/10.1021/cm402085k
[114] L.Y. Hua, J.L. Xu, X. Gao, Y.L. Sun, J.J. Lv, S. Shen, L.S. Chen, S.D. Wang, Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors, Energy Environ. Sci. 10 (2017) 2534-2543. https://doi.org/10.1039/C7EE02390A
[115] G. Chengqun, X. Ding, S. Zhou, Y. Gao, X. Liu, S. Liu, Nanoscale Ni/Au wire grids as transparent conductive electrodes in ultraviolet light-emitting diodes by laser direct writing, Opt. Laser Technol. 104 (2018) 112-117. https://doi.org/10.1016/j.optlastec.2018.02.030
[116] Y.H. Liu, J.L. Xu, S. Shen, X.L. Cai, L.S. Chen, S.D. Wang, High-performance, ultra-flexible and transparent embedded metallic mesh electrodes by selective electrodeposition for all-solid-state supercapacitor applications, J. Mater. Chem. A. 5 (2017) 9032-9041. https://doi.org/10.1039/C7TA01947E.
[117] L. Li, B. Zhang, B. Zou, R. Xie, T. Zhang, S. Li, B. Zheng, J. Wu, J. Weng, W. Zhang, W. Huang, F. Huo, Fabrication of flexible transparent electrode with enhanced conductivity from hierarchical metal grids, ACS Appl. Mater. Interfaces. 9 (2017) 39110–39115. https://doi.org/10.1021/acsami.7b12298
[118] T. Iwahashi, R. Yang, N. Okabe, J. Sakurai, J. Lin, D. Matsunaga, Nanoimprint-assisted fabrication of high haze metal mesh electrode for solar cells, Appl. Phys. Lett. 105 (2014) 223901. https://doi.org/10.1063/1.4903061.
[119] T. Gao, B. Wang, B. Ding, J. Lee, P.W. Leu, Uniform and ordered copper nanomeshes by microsphere lithography for transparent electrodes, Nano Lett. 14 (2014) 2105-2110. https://doi.org/10.1021/nl5003075
[120] M. Layani, P. Darmawan, W. L. Foo, L. Liu, A. Kamyshny, D. Mandler, S.Magdassi, P. S. Lee, Nanostructured electrochromic films by inkjet printing on large area and flexible transparent silver electrodes, Nanoscale. 6 (2014): 4572-4576. https://doi.org/10.1039/C3NR06890K
[121] X. Meng, X. Hu, X. Yang, J. Yin, Q. Wang, L. Huang, Z. Yu, T. Hu, L. Tan, W. Zhou, Y. Chen, Roll-to-roll printing of meter-scale composite transparent electrodes with optimized mechanical and optical properties for photoelectronics, ACS Appl. Mater. Interfaces. 10 (2018): 8917-8925. https://doi.org/10.1021/acsami.8b00093
[122] J. M. Cho, D. H. Kim, M. S. Yoo, S. Bae, D. S. Kim, The fabrication of flexible Ag grid mesh electrode by a new thermal roll imprinting process and its application, J. Nanosci. Nanotechnol. 17 (2017) 3304-3309. https://doi.org/doi.org/10.1166/jnn.2017.14072
[123] N. Kwon, K. Kim, S. Sung, I. Yi, I. Chung, Highly conductive and transparent Ag honeycomb mesh fabricated using a monolayer of polystyrene spheres, Nanotechnology. 24 (2013) 235205. https://doi.org/10.1088/0957-4484/24/23/235205
[124] S. Han, Y. Chae, J. Y. Kim, Y. Jo, S. S. Lee, S.-H. Kim, K. Woo, S. Jeong, Y. Choi, S. Y. Lee, High-performance solution-processable flexible and transparent conducting electrodes with embedded Cu mesh, J. Mater. Chem. C. 6 (2018) 4389-4395. https://doi.org/10.1039/C8TC00307F
[125] L. Chen, X. Wei, X. Zhou, Z. Xie, K. Li, Q. Ruan, C. Chen, J. Wang, C.A. Mirkin, Z. Zheng, Large area patterning of metal nanostructures by dip-pen nanodisplacement lithography for optical applications, Small. 13 (2017) 1–6. https://doi.org/10.1002/smll.201702003
[126] S. Jang, W.-B. Jung, C. Kim, P. Won, S.-G. Lee, K. M. Cho, M. L. Jin, C. J. An, H.J. Jeon, S. H. Ko, T.-S. Kim, H.T. Jung, A three-dimensional metal grid mesh as a practical alternative to ITO, Nanoscale. 8 (2016) 14257-14263. https://doi.org/10.1039/C6NR03060B
[127] D. Bryant, P. Greenwood, J. Troughton, M. Wijdekop, M. Carnie, M. Davies, K. Wojciechowski, H. J. Snaith, T. Watson, D.Worsley, A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells, Adv. Mater. 26 (2014) 7499-7504. https://doi.org/10.1002/adma.201403939
[128] N. Gupta, K.D. M. Rao, R. Gupta, F.C. Krebs, G.U. Kulkarni, Highly conformal Ni micromesh as a current collecting front electrode for reduced cost Si solar cell, ACS Appl. Mater. Interfaces. 9 (2017) 8634-8640. https://doi.org/10.1021/acsami.6b12588
[129] F. M. Wisser, K. Eckhardt, W. Nickel, W. Bo¨hlmann, S. Kaskel, J. Grothe, Highly transparent metal electrodes via direct printing processes, Mater. Res. Bull. 98 (2018) 231-234. https://doi.org/10.1016/j.materresbull.2017.10.021
[130] H. Y. Jang, S.-K. Lee, S. H. Cho, J.H. Ahn, S. Park, Fabrication of metallic nanomesh: Pt nano-mesh as a proof of concept for stretchable and transparent electrodes, Chem. Mater. 25 (2013) 3535-3538. https://doi.org/10.1021/cm402085k
[131] B.J. Kim, J.-S. Park, Y.-J. Hwang, J.S. Park, Characteristics of silver meshes coated with carbon nanotubes via spray-coating and electrophoretic deposition for touch screen panels, Thin Solid Films. 596 (2015) 68-71. https://doi.org/10.1016/j.tsf.2015.07.084
[132] Y. Han, Y. Liu, L. Han, J. Lin, P. Jin, High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding, Carbon. 115 (2017) 34-42. https://doi.org/10.1016/j.carbon.2016.12.092
[133] Ho, H. Lu, W. Liu, J. N. Tey, C. K. Cheng, E. Kok, J. Wei, Electrical and optical properties of hybrid transparent electrodes that use metal grids and graphene films, J. Mater. Res. Technol. 28 (2013): 620-626. https://doi.org/10.1016/j.carbon.2016.12.092
[134] I. Burgue´s-ceballos, N. Kehagias, C. M. Sotomayor-torres, M. Campoy-quiles, P. D. Lacharmoise, Embedded inkjet printed silver grids for ITO-free organic solar cells with high fill factor, Sol. Energy Mater. Sol. Cells. 127 (2014) 50-57. https://doi.org/10.1016/j.solmat.2014.03.024
[135] J. W. Lim, Y. T. Lee, R. Pandey, T. Yoo, B. Sang, B. Ju, D. K. Hwang, W. K. Choi, Effect of geometric lattice design on optical/electrical properties of transparent silver grid for organic solar cells, Opt. Express. 22 (2014): 26891-26899. https://doi.org/10.1364/OE.22.026891.
[136] W. Kim, S. Kim, I. Kang, M. S. Jung, S. J. Kim, J. K. Kim, S. M. Cho, J.H. Kim, J. H. Park, Hybrid silver mesh electrode for ITO-free flexible polymer solar cells with good mechanical stability. Chem. Sus. Chem. 9 (2016) 1042-1049. https://doi.org/10.1002/cssc.201600070
[137] I. Mondal, A. Kumar, K.D.M. Rao, G.U. Kulkarni, Parallel cracks from a desiccating colloidal layer under gravity flow and their use in fabricating metal micro-patterns, J. Phys. Chem. Solids. 118 (2018) 232-237. https://doi.org/10.1016/j.jpcs.2018.03.020
[138] Y. Liu, S. Shen, J. Hu, L. Chen, Embedded Ag mesh electrodes for polymer dispersed liquid crystal devices on flexible substrate, Opt. Express. 24 (2016) 25774-25784. 10.1364/OE.24.025774
[139] A. J. Morfa, E. M. Akinoglu, J. Subbiah, M. Giersig, P. Mulvaney, Transparent metal electrodes from ordered nanosphere arrays, J. Appl. Phys. 114 (2013): 054502. https://doi.org/10.1063/1.4816790
[140] S.-H. Kwak, M.-G. Kwak, B.K. Ju, S.J. Hong, Enhancement of characteristics of a touch sensor by controlling the multi-layer architecture of a low-cost metal mesh pattern, J. Nanosci. Nanotechnol. 15 (2015) 7645-7651. https://doi.org/10.1166/jnn.2015.11213
[141] J. Park, K. Lee, H. Um, K. Kim, K. Seo, Flexible and transparent metallic grid electrodes prepared by evaporative assembly, ACS Appl. Mater. Interfaces. 6 (2014) 12380-12387. https://doi.org/10.1021/am502233y
[142] X. Chen, W. Guo, L. Xie, C. Wei, J. Zhuang, W. Su, Z. Cui, Embedded Ag/Ni metal-mesh with low surface roughness as transparent conductive electrode for optoelectronic applications, ACS Appl. Mater. Interfaces. 9 (2017) 37048-37054. https://doi.org/10.1021/acsami.7b11779
[143] H.-G. Im, B. W. An, J. Jin, J. Jang, Y.G. Park, J.-U. Park, B.S. Bae, A high-performance, flexible and robust metal nanotrough-embedded transparent conducting film for wearable touch screen panels, Nanoscale. 8 (2016) 3916-3922. https://doi.org/10.1039/C5NR07657A
[144] H.B. Lee, W.Y. Jin, M.M. Ovhal, N. Kumar, J.W. Kang, Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review, J. Mater. Chem. C. 7 (2019) 1087-1110. https://doi.org/10.1039/C8TC04423F
[145] M.G. Kang, M.S. Kim, J. Kim, L.J. Guo, Organic solar cells using nano imprinted transparent metal electrodes, Adv. Mater. 20 (2008) 4408–4413. https://doi.org/10.1002/adma.200800750
[146] D.S. Ghosh, T.L. Chen, V. Pruneri, High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid, Appl. Phys. Lett. 96 (2010) 2008–2011. https://doi.org/10.1063/1.3299259.
[147] K. Tvingstedt, O. Ingana¨s, Electrode grids for ITO free organic photovoltaic devices, Adv. Mater. 19 (2007) 2893-2897. https://doi.org/10.1002/adma.200602561
[148] Y. Galagan, J.E.J. M. Rubingh, R. Andriessen, C.C. Fan, P.W. M. Blom, S.C. Veenstra, J.M. Kroon, ITO-free flexible organic solar cells with printed current collecting grids, Sol. Energy Mater. Sol. Cells. 95 (2011) 1339-1343. https://doi.org/10.1016/j.solmat.2010.08.011
[149] L. Mao, Q. Chen, Y. Li, Y. Li, J. Cai, W. Su, S. Bai, Y. Jin, C.-Q. Ma, Z. Cui, L. Chen, Flexible silver grid/PEDOT: PSS hybrid electrodes for large area inverted polymer solar cells, Nano Energy. 10 (2014) 259-267. https://doi.org/10.1016/j.nanoen.2014.09.007
[150] Y. H. Kim, L. Mu¨ller-Meskamp, K. Leo, Ultratransparent polymer/semitransparent silver grid hybrid electrodes for small-molecule organic solar cells, Adv. Energy Mater. 5 (2015) 1401822. https://doi.org/10.1002/aenm.201401822
[151] Y. H. Kahng, M.-K. Kim, J.-H. Lee, Y. J. Kim, N. Kim, D.W. Park, K. Lee, Highly conductive flexible transparent electrodes fabricated by combining graphene films and inkjet-printed silver grids, Sol. Energy Mater. Sol. Cells. 124 (2014) 86-91. https://doi.org/10.1016/j.solmat.2014.01.040
[152] D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom,J. A. Lee, C. H. Fox, Z. Bao, Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes, Nat. Nanotechnol. 6 (2011) 788. https://doi.org/10.1038/nnano.2011.184
[153] L. Caizhi, M. Zhang, L. Niu, Z. Zheng, F. Yan, Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene-modified gate electrodes, J. Mater. Chem. B. 1 (2013) 3820-3829. https://doi.org/10.1039/C3TB20451K
[154] C. Z. Liao, C. H. Mak, M. Zhang, H. L. W. Chan, F. Yan, Flexible organic electrochemical transistors for highly selective enzyme biosensors and used for saliva testing, Adv. Mater. 27 (2015) 676-681. https://doi.org/10.1002/adma.201404378
[155] S. Kim, J. Yim, X. Wang, D.D.C. Bradley, S. Lee, J.C. deMello, Spin-and spray-deposited single-walled carbon-nanotube electrodes for organic solar cells, Adv. Funct. Mater. 20 (2010): 2310-2316. https://doi.org/10.1002/adfm.200902369
[156] A. W. Diah, J. P. Quirino, W. Belcher, C. I. Holdsworth, Investigation of the doping efficiency of poly (styrene sulfonic acid) in poly (3, 4-ethylenedioxythiophene)/poly (styrene sulfonic acid) dispersions by capillary electrophoresis, Electrophoresis. 35 (2014) 1976-1983. https://doi.org/10.1002/elps.201400056
[157] F. Zhang, M. Johansson, M. R. Andersson, J. C. Hummelen, O. Inganas, Polymer photovoltaic cells with conducting polymer anodes, Adv. Mater. 14 (2002) 662-665. https://doi.org/10.1002/1521-4095(20020503)14:9<662::AID-ADMA662>3.0.CO;2-N
[158] J. Ouyang, C.-W. Chu, F.-C. Chen, Q. Xu, Y. Yang, High-conductivity poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film and its application in polymer optoelectronic devices, Adv. Funct. Mater. 15 (2005) 203-208. https://doi.org/10.1002/adfm.200400016
[159] S.I. Na, S.S. Kim, J.Jo, D.Y. Kim, Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes, Adv. Mater. 20 (2008) 4061-4067. https://doi.org/10.1002/adma.200800338
[160] M. Vosgueritchian, D. J. Lipomi, Z. N. Bao, Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes, Adv. Funct. Mater. 22 (2012) 421-428. https://doi.org/10.1002/adfm.201101775
[161] M. Kaltenbrunner, M.S. White, E.D. Glowacki, T. Sekitani, T. Someya, N.S. Sariciftci, S. Bauer, Ultrathin and lightweight organic solar cells with high flexibility, Nat. Commun. 3 (2012) 1-7. https://doi.org/10.1038/ncomms1772
[162] Y. Xia, K. Sun, J. Ouyang, Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices, Adv. Mater. 24 (2012) 2436-2440. https://doi.org/10.1002/adma.201104795
[163] N. Kim, S. Kee, S. H. Lee, B. H. Lee, Y. H. Kahng, Y.R. Jo, B.J. Kim, K. Lee, Highly conductive PEDOT: PSS nanofibrils induced by solution-processed crystallization, Adv. Mater. 26 (2014) 2268-2272. https://doi.org/10.1002/adma.201304611
[164] X. Fan, B. Xu, S. Liu, C. Cui, J. Wang, F. Yan, Transfer-printed PEDOT: PSS electrodes using mild acids for high conductivity and improved stability with application to flexible organic solar cells, ACS Appl. Mater. Interfaces. 8 (2016) 14029-14036. https://doi.org/10.1021/acsami.6b01389
[165] W. Song, X. Fan, B. Xu, F. Yan, H. Cui, Q. Wei, R. Peng, L. Hong, J. Huang, Z. Ge, All-solution-processed metal-oxide-free flexible organic solar cells with over 10% efficiency, Adv. Mater. 30 (2018) 1800075. https://doi.org/10.1002/adma.201800075
[166] N. Kim, H. Kang, J.-H. Lee, S. Kee, S. H. Lee, K. Lee, Highly conductive all-plastic electrodes fabricated using a novel chemically controlled transfer-printing method, Adv. Mater. 27 (2015) 2317-2323. https://doi.org/10.1002/adma.201500078
[167] K. Schulze, C. Uhrich, R. Schueppel, K. Leo, M. Pfeiffer, E. Brier, E. Reinhold, P. Baeuerle, Organic solar cells on indium tin oxide and aluminium doped zinc oxide anodes, Appl. Phys. Lett. 91 (2007) S073521-073523. https://doi.org/10.1063/1.2771050.
[168] L. Shi , Y. Cui, Y. Gao , W. Wang , Y. Zhang , F. Zhu, Y. Hao; High performance ultrathin MoO3/Ag transparent electrode and its application in semitransparent organic solar cells; Nanomaterials, 8 (2018) 473. https://doi.org/10.3390/nano8070473
[169] J.Meiss, C.L. Uhrich, K. Fehse, S. Pfuetzner, M.K. Riede, K. Leo, Transparent electrode materials for solar cells, Proc. SPIE 7002, Photonics for solar energy systems II, 700210, (2008). https://doi.org/10.1117/12.781275