Graphene Materials for Third Generation Solar Cell Technologies
Onoriode P. Avbenake
Photovoltaic technology is the most sustainable source of renewable energy because sunlight radiation is free and readily available. Therefore, the materials required accessing this energy source, cost and the efficiency of conversion from solar to electricity is the topic of interest in continued research. Graphene as a sp2-hybridized 2-dimensional carbon with unique crystal and electronic properties comprising high charge carrier mobility, optical transparency, inexpensive, excellent mechanical strength and flexibility with chemical stability and inertness among others is a suitable material for application in various units of the different architectures in third generation solar cells. It can be applied as a semiconductor layer, electrolyte and counter-electrode in dye-sensitized solar cells; electrode, perovskite, electron and hole transporting layers in perovskite solar cells; and electrode, hole transporting layer and electron acceptor and donor in organic solar cells; in addition to graphene/silicon Schottky junction. Following the application of graphene in various units of the third generation architecture, the power conversion efficiency has increased from 1.9% to over 22%, with ongoing research expected to develop a more stable design with longevity comparable to commercially available silicon-based p-n junction.
Keywords
Solar Cells, Graphene, Dye-Sensitized Solar Cells (DSSCs), Perovskite Solar Cells (PSCs), Organic Solar Cells (OPV), Schottky Junction
Published online 11/15/2020, 33 pages
Citation: Onoriode P. Avbenake, Graphene Materials for Third Generation Solar Cell Technologies, Materials Research Foundations, Vol. 88, pp 29-61, 2021
DOI: https://doi.org/10.21741/9781644901090-2
Part of the book on Materials for Solar Cell Technologies I
References
[1] D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, R. Gorini, The role of renewable energy in the global energy transformation, Energy Strateg Rev. 24 (2019) 38-50. https://doi.org/10.1016/j.esr.2019.01.006
[2] O.P. Avbenake, R.S. Al-Hajri, B.Y. Jibril, Catalytic upgrading of heavy oil using NiCo/γ-Al2O3 catalyst: Effect of initial atmosphere and water-gas shift reaction, Fuel 235 (2019) 736–743. https://doi.org/10.1016/j.fuel.2018.08.074
[3] BP Statistical Review of World Energy June 2016, https://www.bp.com/content/dam/ bp/pdf/energy-economics/statistical-review-2016/bp-statistical-review-of-world-energy-2016-full-report.pdf (accessed 12 January 2020)
[4] C.J. Cleveland, C. Morris, Photovoltaics, in: Handbook of energy, Volume II: chronologies, top ten lists, and word clouds draws, Elsevier Science (2014). https://doi.org/10.1016/B978-0-12-417013-1.00015-7
[5] D.M. Chapin, C.S. Fuller, G.L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power, J. Appl. Phys 25 (1954) 676–677. https://doi.org/10.1063/1.1721711
[6] D. A. Cusano, CdTe solar cells and photovoltaic heterojunctions in II–VI compounds, Solid State Electron. 6 (1963) 217–232. https://doi.org/10.1016/0038-1101(63)90078-9.
[7] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science 270 (1995) 1789-1791. https://doi.org/10.1126/science.270.5243.1789
[8] J.M. Yun, J.S. Yeo, J. Kim, H.G. Jeong, D.Y. Kim, Y.J. Noh, S.S. Kim, B.C. Ku, S.I. Na, Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells, Adv. Mater. 23 (2011) 4923–4928. https://doi.org/10.1002/adma.201102207
[9] Y. Areerob, K.Y. Cho, C.H. Jung, W.C. Oh, Synergetic effect of La2CdSnTiO4-WSe2 perovskite structured nanoparticles on graphene oxide for high efficiency of dye sensitized solar cells, J. Alloys Compd. 775 (2019) 690-697. https://doi.org/10.1016/j.jallcom.2018.10.189
[10] Z. Pour-mohammadi, M. Amirmazlaghani, Asymmetric finger-shape metallization in Graphene-on-Si solar cells for enhanced carrier trapping, Mat. Sci. Semicon. Proc. 91 (2019) 13–21. https://doi.org/10.1016/j.mssp.2018.11.002
[11] B. Mazumder, Production of high purity silicon for solar cell and electronic applications by trichlorosilane process, T. Indian Ceram. Soc. 40 (1981) 155-159. https://doi.org/10.1080/0371750X.1981.10822539
[12] A. Ramos-Ruiz, J.V. Wilkening, J.A. Field, R. Sierra-Alvarez, Leaching of cadmium and tellurium from cadmium telluride (CdTe) thin-film solar panels under simulated landfill conditions, J. Hazard Mater. 336 (2017) 57–64. https://doi.org/10.1016/j.jhazmat.2017.04.052
[13] X.M. Li, T.S. Zhao, H.W. Zhu, Quantum dot and heterojunction solar cells containing carbon nanomaterials, in: W. Lu, J.B. Baek, L. Dai (Eds.), Carbon nanomaterials for advanced energy systems: Recent advancements in materials syntheses and device applications, John Wiley & Sons, Inc., 2014, pp. 237-266. https://doi.org/10.1002/9781118980989.ch7
[14] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183–191. https://doi.org/10.1038/nmat1849
[15] J. Zhu, D. Yang, Z. Yin, Q. Yan, H. Zhang, Graphene and graphene-based materials for energy storage applications, Small 10 (2014) 3480–3498. https://doi.org/10.1002/smll.201303202
[16] K.P. Loh, S.W. Tong, J. Wu, Graphene and graphene-like molecules: Prospects in solar cells, J. Am. Chem. Soc. 138 (2016) 1095-1102. https://doi.org/10.1021/jacs.5b10917
[17] R. Garg, S. Elmas, T. Nann, M.R. Andersson, Deposition methods of graphene as electrode material for organic solar cells, Adv. Energy Mater. (2016) 1601393. https://doi.org/10.1002/aenm.201601393
[18] N.P.D. Ngidi, M.A. Ollengo, V.O. Nyamori, Heteroatom‐doped graphene and its application as a counter electrode in dye‐sensitized solar cells, Int J Energ Res. (2018) 1–33. https://doi.org/10.1002/er.4326
[19] D.H. Kweon, J.-B. Baek, Edge-functionalized graphene nanoplatelets as metal- free electrocatalysts for dye-sensitized solar cells, Adv. Mater. (2018) 1804440. https://doi.org/10.1002/adma.201804440
[20] C. Ge, Md.M Rahman, N.C.D. Nath, M.J. Ju, K.-M. Noh, J.-J Lee, Graphene-incorporated photoelectrodes for dye-sensitized solar cells, B. Korean Chem. Soc. 36 (2015) 762–771. https://doi.org/10.1002/bkcs.10140.
[21] Z. Yin, J. Zhu, Q. He, X. Cao, C. Tan, H. Chen, Q. Yan, H Zhang, Graphene-based materials for solar cell applications, Adv. Energy Mater. 4 (2014) 1300574. https://doi.org/10.1002/aenm.201300574
[22] T.H. Chowdhury, A. Islam, A.K.M. Hasan, M.A.M. Terdi, M. Arunakumari, S.P. Singh, M.K. Alam, I.M. Bedja, M.H. Ruslan, K. Sopian, N. Amin, M. Akhtaruzzaman, Prospects of graphene as a potential carrier-transport material in third-generation solar cells, Chem. Rec. 16 (2016) 614–632. https://doi.org/10.1002/tcr.201500206
[23] Y. Sun, W. Zhang, H. Chi, Y. Liu, C. Hou, D. Fang, Recent development of graphene materials applied in polymer solar cell, Renew. Sustain. Energ. Rev. 43 (2015) 973–980. https://doi.org/10.1016/j.rser.2014.11.040
[24] J. Ouyang, Applications of carbon nanotubes and graphene for third-generation solar cells and fuel cells, Nano. Materials Science 1 (2019) 77–90. https://doi.org/10.1016/j.nanoms.2019.03.004
[25] C.A. Ubani, M.A. Ibrahim, M.A.M. Teridi, K. Sopian, J. Ali, K.T. Chaudhary, Application of graphene in dye and quantum dots sensitized solar cell, Sol. Energy 137 (2016) 531–550. https://doi.org/10.1016/j.solener.2016.08.055
[26] F.W. Low, C.W. Lai, Recent developments of graphene-TiO2 composite nanomaterials as efficient photoelectrodes in dye-sensitized solar cells: A review, Renew. Sust. Energ. Rev. 82 (2018) 103–125. https://doi.org/10.1016/j.rser.2017.09.024
[27] Y. Zhang, H. Li, L. Kuo, P. Dong, F. Yan, Recent applications of graphene in dye-sensitized solar cells, Curr. Opin. Colloid Interface Sci. 20 (2015) 406–415. https://doi.org/10.1016/j.cocis.2015.11.002
[28] T. Mahmoudi, Wang, Y., Hahn, Y.B., Graphene and its derivatives for solar cells application, Nano Energy 47 (2018) 51–65. https://doi.org/10.1016/j.nanoen.2018.02.047
[29] M.Z. Iqbal, A.-U. Rehman, Recent progress in graphene incorporated solar cell devices, Sol. Energy 169 (2018) 634–647. https://doi.org/10.1016/j.solener.2018.04.041
[30] K. Parvez, R. Li, K. Müllen, Graphene as transparent electrodes for solar cells, in: Feng, X., (Ed.), Nanocarbons for advanced energy conversion, Wiley-VCH Verlag GmbH & Co. KGaA., 2015, pp. 249-280. https://doi.org/10.1002/9783527680016.ch10
[31] M.A. Mat-Teridi, M.A. Ibrahim, N. Ahmad-Ludin, S.N.F.M. Nasir, M.Y. Sulaiman, K. Sopian, Graphene as sensitizer, in: Yusoff, A.R.M., (Ed), Graphene-based energy devices, Wiley-VCH Verlag GmbH & Co. KGaA., 2015, pp. 407-430. https://doi.org/10.1002/9783527690312.ch16
[32] J.Z. Wu, Graphene, in: Levy, D., Castellón, E., (Eds), Transparent conductive materials: materials, synthesis, characterization, applications, Wiley-VCH Verlag GmbH & Co. KGaA., 2018, pp. 165-192. https://doi.org/10.1002/9783527804603.ch3_2
[33] A. Kalluri, D. Debnath, B. Dharmadhikari, P Patra, Graphene quantum dots: synthesis and applications, in: C. V. Kumar (Ed.), Enzyme nanoarchitectures: Enzymes armored with graphene, Elsevier Inc., 2018, pp. 335-354. https://doi.org/10.1016/bs.mie.2018.07.002
[34] S.F. Adil, M. Khan, D. Kalpana, Graphene-based nanomaterials for solar cells, in: Z. L. Meidan, Y. M. Wang, (Eds.), Multifunctional photocatalytic materials for energy, Woodhead Publishing, 2018, pp. 127-152. https://doi.org/10.1016/B978-0-08-101977-1.00008-9
[35] L. Givalou, D. Tsichlis, F. Zhang, C.-S. Karagianni, M. Terrones, K. Kordatos, P. Falaras, Transition metal – graphene oxide nanohybrid materials as counter electrodes for high efficiency quantum dot solar Cells, Catal. Today (2019) In press. https://doi.org/10.1016/j.cattod.2019.03.035
[36] N. Balis, E. Stratakis, E. Kymakis, Graphene and transition metal dichalcogenide nanosheets as charge transport layers for solution processed solar cells, Mater. Today 19 (2016) 580-594. https://doi.org/10.1016/j.mattod.2016.03.018
[37] C. Ciceroni, A. Agresti, A. Di Carlo, F. Brunetti, Graphene oxide for DSSC, OPV and perovskite stability, in: M. Lira-Cantu (Ed.), The future of semiconductor oxides in next-generation solar cells. Elsevier Inc., 2018, pp. 503-531. https://doi.org/10.1016/B978-0-12-811165-9.00013-2
[38] E. Kymakis, D. Konios, Graphene oxide-like materials in organic and perovskite solar cells, in: M. Lira-Cantu (Ed.), The future of semiconductor oxides in next- generation solar cells. Elsevier Inc., 2018, pp. 357-394. https://doi.org/10.1016/B978-0-12-811165-9.00009-0
[39] R. Szostak, A. Morais, S.A. Carminati, S.V. Costa, P.E. Marchezi, A.F. Nogueira, Application of graphene and graphene derivatives/oxide nanomaterials for solar cells, in: M. Lira-Cantu (Ed.), The Future of semiconductor oxides in next- generation solar cells. Elsevier Inc., 2018, pp. 395-437. https://doi.org/10.1016/B978-0-12-811165-9.00010-7
[40] P.V. Kamat, Graphene-based nanoassemblies for energy conversion, J. Phys. Chem. Lett. 2 (2011) 242–251. https://doi.org/10.1021/jz101639v
[41] J.V. Milic´, N. Arora, M.I. Dar, S.M. Zakeeruddin, M. Grätzel, Reduced graphene oxide as a stabilizing agent in perovskite solar cells, Adv. Mater. Interfaces (2018) 1800416. https://doi.org/10.1002/admi.201800416
[42] S.K. Balasingam, Y. Jun, Recent progress on reduced graphene oxide-based counter electrodes for cost-effective dye-sensitized solar cells, Isr. J. Chem. 55 (2015) 955– 965. https://doi.org/10.1002/ijch.201400213
[43] W.-R. Liu, Graphene-based energy devices, in: Yusoff, A.R.M., (Ed.), Graphene-based energy devices, Wiley-VCH Verlag GmbH & Co. KGaA., 2015, pp. 85-121. https://doi.org/10.1002/9783527690312.ch3
[44] L.C. Cotet, C.I. Fort, L.C. Pop, M. Baia, L. Baia, Insights into graphene-based materials as counter electrodes for dye-sensitized solar cells, in: M. Soroush, K. K.S. Lau (Eds.), Dye-sensitized solar cells: mathematical modelling and materials design and optimization, Academic Press, 2019, pp. 341-396. https://doi.org/10.1016/B978-0-12-814541-8.00010-0
[45] B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye- sensitized colloidal TiO2 films, Nature 353 (1991) 737–740. https://doi.org/10.1038/353737a0
[46] M. Grätzel, Solar energy conversion by dye-sensitized photovoltaic cells, Inorg. Chem. 44 (2005) 6841-6851. https://doi.org/10.1021/ic0508371
[47] T.N. Murakami, M. Grätzel, Counter electrodes for DSC: application of functional materials as catalysts, Inorg. Chim. Acta 361 (2008) 572–580. https://doi.org/10.1016/j.ica.2007.09.025
[48] W. Cho, Y. R. Kim, D. Song, H. W. Choi, Y. S. Kang, High-efficiency solid-state polymer electrolyte dye-sensitized solar cells with a bi-functional porous layer, J. Mater. Chem. A 2 (2014) 17746–17750. https://doi.org/10.1039/c4ta04064c
[49] S. Kment, F. Riboni, S. Pausova, L. Wang, L. Wang, H. Han, Z. Hubicka, J. Krysa, P. Schmuki, R. Zboril, Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting–superior role of 1D nanoarchitectures and of combined heterostructures, Chem. Soc. Rev. 46 (2017) 3716-3769. https://doi.org/10.1039/c6cs00015k
[50] U. Mehmood, S.H.A. Ahmad, A.U.H. Khan, A.A. Qaiser, Co-sensitization of graphene/TiO2 nanocomposite thin films with ruthenizer and metal free organic photosensitizers for improving the power conversion efficiency of dye-sensitized solar cells (DSSCs), Sol. Energy 170 (2018) 47–55. https://doi.org/10.1016/j.solener.2018.05.051
[51] S. Muduli, W. Lee, V. Dhas, S. Mujawar, M. Dubey, K. Vijayamohanan, S.-H. Han, S. Ogale, Enhanced conversion efficiency in dye-sensitized solar cells based on hydrothermally synthesized TiO2 −MWCNT nanocomposites, ACS Appl. Mater. Interfaces 1 (2009) 2030–2035. https://doi.org/10.1021/am900396m
[52] S. Sun, L. Gao, Y. Liu, Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation, Appl. Phys. Lett. 96 (2010) 083113. https://doi.org/10.1063/1.3318466
[53] C.S.N.O.A. Sreekala, J. Indiramma, K.B.S.P. Kumar, K. Sreelatha, M. Roy, Functionalized multi-walled carbon nanotubes for enhanced photocurrent in dyesensitized solar cells, J. Nanostructure Chem. 3 (2013) 19. https://doi.org/10.1186/2193-8865-3-19
[54] S.A. Kazmi, S. Hameed, A.S. Ahmed, M. Arshad, A. Azam, Electrical and optical properties of graphene-TiO2 nanocomposite and its applications in dye sensitized solar cells (DSSC), J. Alloys Compd. 691 (2017) 659–665. https://doi.org/10.1016/j.jallcom.2016.08.319.
[55] K. Nemade, P. Dudhe, P. Tekade, Enhancement of photovoltaic performance of polyaniline/graphene composite-based dye-sensitized solar cells by adding TiO2 nanoparticles, Solid State Sci. 83 (2018) 99–106. https://doi.org/10.1016/j.solidstatesciences.2018.07.009
[56] S.-Q. Fan, C. Kim, B. Fang, K.-X. Liao, G.-J. Yang, C.-J. Li, J.-J. Kim, J. Ko, Improved efficiency of over 10% in dye-sensitized solar cells with a ruthenium complex and an organic dye heterogeneously positioning on a single TiO2 electrode, J. Phys. Chem. C 115 (2011) 7747–7754. https://doi.org/10.1021/jp200700e
[57] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat. Chem. 6 (2014) 242–247. https://doi.org/10.1038/nchem.1861
[58] K.S.K. Lo, W.W.F. Leung, Dye-sensitized solar cells with shear-exfoliated graphene, Sol. Energy 180 (2019) 16–24. https://doi.org/10.1016/j.solener.2018.12.077
[59] L. Chen, Y. Zhou, W. Tu, Z. Li, C. Bao, H. Dai, T. Yu, J. Liu, Z. Zou, Enhanced photovoltaic performance of a dye-sensitized solar cell using graphene–TiO2 photoanode prepared by a novel in situ simultaneous reduction-hydrolysis technique, Nanoscale 5 (2013) 3481–3485. https://doi.org/10.1039/c3nr34059g
[60] Z. He, G. Guai, J. Liu, C. Guo, J.S.C. Loo, C.M. Li, T.T. Yang Tan, Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells, Nanoscale 3 (2011) 4613–4616. https://doi.org/10.1039/c1nr11300c
[61] A.A. Madhavan, S. Kalluri, D.K. Chacko, T.A. Arun, S. Nagarajan, K.R.V. Subramanian, A.S. Nair, S.V. Nair, A. Balakrishnan, Electrical and optical properties of electrospun TiO2-graphene composite nanofibers and its application as DSSC photo-anodes, RSC Adv. 2 (2012) 13032–13037. https://doi.org/10.1039/c2ra22091a
[62] S.N. Sadikin, M.Y.A. Rahman, A.A. Umar, T.H.T. Aziz, Improvement of dye sensitized solar cell performance by utilizing graphene-coated TiO2 films photoanode, Superlattice Microst. 128 (2019) 92–98. https://doi.org/10.1016/j.spmi.2019.01.014
[63] D.K. Kumar, D. Suazo-Davila, D. García-Torres, N.P. Cook, A. Ivaturi, M.-H. Hsu, A.A. Martí, C.R. Cabrera, B. Chen, N. Bennett, H.M. Upadhyaya, Low-temperature titania-graphene quantum dots paste for flexible dye-sensitised solar cell applications, Electrochim. Acta 305 (2019) 278-284. https://doi.org/10.1016/j.electacta.2019.03.040.
[64] C.-H. Tsai, P.Y Chuang, H.L. Hsu, Adding graphene nanosheets in liquid electrolytes to improve the efficiency of dye-sensitized solar cells, Mater. Chem. Phys. 207 (2018) 154-160. https://doi.org/10.1016/j.matchemphys.2017.12.059
[65] S. Rehman, M. Noman, A.D. Khan, A. Saboor, M.S. Ahmad, H.U. Khan, Synthesis of polyvinyl acetate/graphene nanocomposite and its application as an electrolyte in dye sensitized solar cells, Optik 202 (2020) 163591. https://doi.org/10.1016/j.ijleo.2019.163591
[66] L. Liu, Y. Wu, F. Chi, Z. Yi, H. Wang, W. Li, Y. Zhang, X. Zhang, An efficient quasi-solid-state dye-sensitized solar cell with gradient polyaniline-graphene/PtNi tailored gel electrolyte, Electrochim. Acta 316 (2019) 125-132. https://doi.org/10.1016/j.electacta.2019.05.115
[67] K.C. Sun, A.A. Arbab, I.A. Sahito, M.B. Qadir, B.J. Choi, S.C. Kwon, S.Y. Yeo, S.C. Yi, S.H. Jeong, A PVdF-based electrolyte membrane for a carbon counter electrode in dyesensitized solar cells, RSC Adv. 7 (2017) 20908-20918. https://doi.org/10.1039/C7RA00005G
[68] B. Siwach, D. Mohan, K.K. Singh, A. Kumar, M. Barala, Effect of carbonaceous counter electrodes on the performance of ZnO-graphene nanocomposites based dye sensitized solar cells, Ceram. Int. 44 (2018) 21120-21126. https://doi.org/10.1016/j.ceramint.2018.08.151
[69] K. Robinson, G.R.A. Kumara, R.J.G.L.R. Kumara, E.N. Jayaweera, R.M.G. Rajapakse, SnO2/ZnO composite dye-sensitized solar cells with graphene-based counter electrodes, Org. Electron. 56 (2018) 159-162. https://doi.org/10.1016/j.orgel.2018.01.040
[70] D.H. Seo, M. Batmunkh, J. Fang, A.T. Murdock, S. Yick, Z. Han, C.J. Shearer, T.J. Macdonald, M. Lawn, A. Bendavid, J.G. Shapter, K.K. Ostrikov, Ambient air synthesis of multi-layer CVD graphene films for low-cost, efficient counter electrode material in dye-sensitized solar cells, Flat. Chem. 8 (2018) 1–8. https://doi.org/10.1016/j.flatc.2018.02.002
[71] C.A. Tseng, C.P. Lee, Y.J. Huang, H.W. Pang, K.C. Ho, Y.T Chen, One-step synthesis of graphene hollow nanoballs with various nitrogen-doped states for electrocatalysis in dye-sensitized solar cells, Mater. Today Energy 8 (2018) 15-21. https://doi.org/10.1016/j.mtener.2018.02.006
[72] X. Meng, C. Yu, X. Song, J. Iocozzia, J. Hong, M. Rager, H. Jing, S. Wang, L. Huang, J. Qiu, Z. Lin, Scrutinizing defects and defect density of selenium- doped graphene for high-efficiency triiodide reduction in dye-sensitized solar cells, Angew. Chem. Int. Ed. 57 (2018) 4682-4686. https://doi.org/10.1002/anie.201801337
[73] R.S. Ganesh, K. Silambarasan, E. Durgadevi, M. Navaneethan, S. Ponnusamy, C.Y. Kong, C. Muthamizhchelvan, Y. Shimura, Y. Hayakawa, Metal sulfide nanosheet–nitrogen-doped graphene hybrids as low-cost counter electrodes for dye- sensitized solar cells, Appl. Surf. Sci. 480 (2019) 177–185. https://doi.org/10.1016/j.apsusc.2019.02.251
[74] C.K. Kim, H.M. Kim, M. Aftabuzzaman, I.-Y. Jeon, S.H. Kang, Y.K. Eom, J.B. Baek, H.K. Kim, Comparative study of edge-functionalized graphene nanoplatelets as metal free counter electrodes for highly efficient dye-sensitized solar cells, Mater. Today Energy 9 (2018) 67-73. https://doi.org/10.1016/j.mtener.2018.05.003
[75] V. Murugadoss, P. Panneerselvam, C. Yan, Z. Guo, S. Angaiah, A simple one-step hydrothermal synthesis of cobalt-nickel selenide/graphene nanohybrid as an advanced platinum free counter electrode for dye sensitized solar cell, Electrochim. Acta 312 (2019) 157-167. https://doi.org/10.1016/j.electacta.2019.04.142
[76] A.H. Alami, K. Aokal, D. Zhang, A. Taieb, M. Faraj, A. Alhammadi, J.M. Ashraf, B. Soudan, J. El Hajjar, M. Irimia‐Vladu, Low‐cost dye‐sensitized solar cells with ball‐milled tellurium‐doped graphene as counter electrodes and a natural sensitizer dye, Int. J. Energy Res. (2019) 1–10. https://doi.org/10.1002/er.4684
[77] B. Zhou, X. Zhang, P. Jin, X. Li, X. Yuan, J. Wang, L. Liu, Synthesis of In2.77S4 nanoflakes/graphene composites and their application as counter electrode in dye-sensitized solar cells, Electrochim. Acta 281 (2018) 746-752. https://doi.org/10.1016/j.electacta.2018.06.031
[78] Y. Areerob, J.Y. Cho, W.K. Jang, K.Y. Cho, W.-C. Oh, An alternative of NiCoSe doped graphene hybrid La6W2O15 for renewable energy conversion used in dye-sensitized solar cells, Solid State Ionics 327 (2018) 99–109. https://doi.org/10.1016/j.ssi.2018.10.026
[79] M.U. Rahman, F. Xie, Y. Li, X. Sun, M. Wei, Grafting cobalt sulfide on graphene nanosheets as a counterelectrode for dye-sensitized solar cells, J. Alloys Compd. 808 (2019) 151701. https://doi.org/10.1016/j.jallcom.2019.151701
[80] B. Pang, S. Lin, Y. Shi, Y. Wang, Y. Chen, S. Ma, J. Feng, C. Zhang, L. Yu, L. Dong, Synthesis of CoFe2O4/graphene composite as a novel counter electrode for high performance dye-sensitized solar cells, Electrochim. Acta 297 (2019) 70-76. https://doi.org/10.1016/j.electacta.2018.11.170
[81] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 6050–6051. https://doi.org/10.1021/ja809598r
[82] J. M. Kim, C. W. Jang, J. H. Kim, S. Kim, S.-H. Choi, Use of AuCl3-doped graphene as a protecting layer for enhancing the stabilities of inverted perovskite solar cells, Appl. Surf. Sci. 455 (2018) 1131–1136. https://doi.org/10.1016/j.apsusc.2018.06.068
[83] H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells, Science 345 (2014) 542–546. https://doi.org/10.1126/science.1254050
[84] Best Research-Cell Efficiency https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-190416.pdf. (Accessed 12 January 2020)
[85] C.W. Jang, J.M. Kim, S.-H. Choi, Lamination-produced semi-transparent/flexible perovskite solar cells with doped-graphene anode and cathode, J. Alloys Compd. 775 (2019) 905-911. https://doi.org/10.1016/j.jallcom.2018.10.190
[86] S. Kim, H.S. Lee, J.M. Kim, S.W. Seo, J.H. Kim, C.W. Jang, S.-H. Choi, Effect of layer number on flexible perovskite solar cells employing multiple layers of graphene as transparent conductive electrodes, J. Alloys Compd. 744 (2018) 404-411. https://doi.org/10.1016/j.jallcom.2018.02.136
[87] S. Kim, S.H. Shin, S.-H. Choi, N-i-p-type perovskite solar cells employing n-type graphene transparent conductive electrodes, J. Alloys Compd. 786 (2019) 614-620. https://doi.org/10.1016/j.jallcom.2019.01.372
[88] D.H. Shin, J.M. Kim, S.H. Shin, S.-H. Choi, Highly-flexible graphene transparent conductive electrode/perovskite solar cells with graphene quantum dots-doped PCBM electron transport layer, Dyes Pigments 170 (2019) 107630. https://doi.org/10.1016/j.dyepig.2019.107630
[89] X. Gan, S. Yang, J. Zhang, G. Wang, P. He, H. Sun, H. Yuan, L. Yu, G. Ding, Y. Zhu, Graphite‑N doped graphene quantum dots as semiconductor additive in perovskite solar cells, ACS Appl. Mater. Interfaces 11 (2019) 37796−37803. https://doi.org/10.1021/acsami.9b13375
[90] Y. Li, W.W.-F. Leung, Introduction of graphene nanofibers into the perovskite layer of perovskite solar cells, Chem.Sus.Chem. 11 (2018) 2921-2929. https://doi.org/10.1002/cssc.201800758
[91] F. Giordano, A. Abate, J.P.C. Baena, M. Saliba, T. Matsui, S.H. Im, S.M. Zakeeruddin, M.K. Nazeeruddin, A. Hagfeldt, M. Graetzel, Enhanced electronic properties in mesoporous TiO2 via lithium doping for high‐efficiency perovskite solar cells, Nat. Commun. 7 (2016) 10379. https://doi.org/10.1038/ncomms10379
[92] S. Sidhik, A. Cerdan‐Pasaran, D. Esparza, T. Lopez‐Luke, R. Carriles, E. De La Rosa, Improving the optoelectronic properties of mesoporous TiO2 by cobalt doping for high‐performance hysteresis free perovskite solar cells, ACS Appl. Mater. Interfaces 10 (2018) 3571‐3580. https://doi.org/10.1021/acsami.7b16312
[93] E. Edri, S. Kirmayer, A. Henning, S. Mukhopadhyay, K. Gartsman, Y. Rosenwaks, G. Hodes, D. Cahen, Why lead methylammonium tri‐iodide perovskite‐based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor), Nano Lett. 14 (2014) 1000‐1004. https://doi.org/10.1021/nl404454h
[94] H. Xia, Z. Ma, Z. Xiao, W. Zhou, H. Zhang, C. Du, J. Zhuang, X. Cheng, X. Liu, Y. Huang, Interfacial modification using ultrasonic atomized graphene quantum dots for efficient perovskite solar cells, Org. Electron. 75 (2019) 105415. https://doi.org/10.1016/j.orgel.2019.105415
[95] M. Zhang, L. Bai, W. Shang, W. Xie, H. Ma, Y. Fu, D. Fang, H. Sun, L. Fan, M. Han, Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells, J. Mater. Chem. 22 (2012) 7461–7467. https://doi.org/10.1039/C2JM16835A
[96] X. Meng, X. Cui, M. Rager, S. Zhang, Z. Wang, J. Yu, Y.W. Harn, Z. Kang, B.K. Wagner, Y. Liu, C. Yu, J. Qiu, Z. Lin, Cascade charge transfer enabled by incorporating edge-enriched graphene nanoribbons for mesostructured perovskite solar cells with enhanced performance, Nano Energy 52 (2018) 123–133. https://doi.org/10.1016/j.nanoen.2018.07.028
[97] S. Sidhik, S.S. Panikar, C.R. Perez, T.L. Luke, R. Carriles, S.C. Carrera, E.D.L. Rosa, Interfacial engineering of TiO2 by graphene nanoplatelets for high efficiency hysteresis-free perovskite solar cells, ACS Sustain. Chem. Eng. 6 (2018) 15391-15401. https://doi.org/10.1021/acssuschemeng.8b03826
[98] D. Shen, W. Zhang, F. Xie, Y. Lia, A. Abate, M. Wei, Graphene quantum dots decorated TiO2 mesoporous film as an efficient electron transport layer for high-performance perovskite solar cells, J. Power Sources 402 (2018) 320–326. https://doi.org/10.1016/j.jpowsour.2018.09.056
[99] Y.H. Cao, Z.Y. Deng, M.Z. Wang, J. Bai, S.H. Wei, H.J. Feng, Interface engineering of graphene/CH3NH3PbI3 heterostructure for novel P-I-N structural perovskites solar cells, J. Phys. Chem. C 122 (2018) 17228-17237. https://doi.org/10.1021/acs.jpcc.8b04042
[100] N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Photoinduced electron transfer from a conducting polymer to Buckminsterfullerene, Science 258 (1992) 1471-1476. https://doi.org/10.1126/science.258.5087.1474.
[101] L.J. Meng, F. Placido, Annealing effect on ITO thin films prepared by microwave enhanced dc reactive magnetron sputtering for telecommunication applications, Surf. Coat. Tech. 166 (2003) 44-50. https://doi.org/10.1016/S0257-8972(02)00767-3
[102] J.W. Suk, A. Kitt, C.W. Magnuson, Y. Hao, S. Ahmed, J. An, A.K. Swan, B.B. Goldberg, R.S. Ruoff, Transfer of CVD-grown monolayer graphene onto arbitrary substrates, ACS nano 5 (2011) 6916-6924. https://doi.org/10.1021/nn201207c
[103] S. Jung, H. Kim, J. Lee, G. Jeong, H. Kim, J. Park, H. Park, Bio-inspired catecholamine-derived surface modifier for graphene-based organic solar cells, ACS Appl. Energy Mater. 1 (2018) 6463-6468. https://doi.org/10.1021/acsaem.8b01396
[104] S. Jung, J. Lee, J. Seo, U. Kim, Y. Choi, H. Park, Development of annealing free, solution-processable inverted organic solar cells with N-doped graphene electrodes using zinc oxide nanoparticles, Nano Lett. 18 (2018) 1337-1343. https://doi.org/10.1021/acs.nanolett.7b05026
[105] Y. Chen, Y.Y. Yue, S.R. Wang, N. Zhang, J. Feng, H.-B. Sun, Thermally-induced wrinkles on PH1000/graphene composite electrode for enhanced efficiency of organic solar cells, Sol. Energy Mater. Sol. Cells 201 (2019) 110075. https://doi.org/10.1016/j.solmat.2019.110075
[106] D.H. Shin, S.W. Seo, J.M. Kim, H.S. Lee, S.H. Choi, Graphene transparent conductive electrodes doped with graphene quantum dots-mixed silver nanowires for highly flexible organic solar cells, J. Alloys Compd. 744 (2018) 1-6. https://doi.org/10.1016/j.jallcom.2018.02.069
[107] Y.H. Kim, C. Sachse, M.L. Machala, C. May, L. Mueller-Meskamp, K. Leo, Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells, Adv. Funct. Mater. 21 (2011) 1076–1081. https://doi.org/10.1002/adfm.201002290
[108] E. Voroshazi, B. Verreet, T. Aernouts, P. Heremans, Long-term operational lifetime and degradation analysis of P3HT: PCBM photovoltaic cells, Sol. Energy Mater. Sol. Cells 95 (2011) 1303–1307. https://doi.org/10.1016/j.solmat.2010.09.007
[109] X. Zheng, H. Zhang, Q. Yang, C. Xiong, W. Li, Y. Yan, R.S. Gurney, T. Wang, Solution-processed Graphene-MoS2 heterostructure for efficient hole extraction in organic solar cells, Carbon 142 (2019) 156-163. https://doi.org/10.1016/j.carbon.2018.10.038
[110] Y. Dang, Y. Wang, S. Shen, S. Huang, X. Qu, Y. Pang, S.R.P. Silva, B. Kanga, G. Lu, Solution processed hybrid Graphene-MoO3 hole transport layers for improved performance of organic solar cells, Org. Electron. 67 (2019) 95–100. https://doi.org/10.1016/j.orgel.2019.01.013
[111] M. M. Li, W. Ni, B. Kan, X. J. Wan, L. Zhang, Q. Zhang, G. K. Long, Y. Zuo, Y. S. Chen, Graphene quantum dots as the hole transport layer material for high-performance organic solar cells, Phys. Chem. Chem. Phys. 15 (2013) 18973-18978. https://doi.org/10.1039/C3CP53283F
[112] Z. M. Luo, G. Q. Qi, K. Y. Chen, M. Zou, L. H. Yuwen, X. W. Zhang, W. Huang, L. H. Wang, Microwave‐assisted preparation of white fluorescent graphene quantum dots as a novel phosphor for enhanced white‐light‐emitting diodes, Adv. Funct. Mater. 26 (2016) 2739-2744. https://doi.org/10.1002/adfm.201505044
[113] J. Liu, G. H. Kim, Y. H. Xue, J. Y. Kim, J. B. Baek, M. Durstock, L. M. Dai, Graphene oxide nanoribbon as hole extraction layer to enhance efficiency and stability of polymer solar cells, Adv. Mater. 26 (2014) 786-790. https://doi.org/10.1002/adma.201302987
[114] W. Wu, J. Zhang, W. Shen, M. Zhong, S. Guo, Graphene quantum dots band structure tuned by size for efficient organic solar cells, Phys. Status Solidi 216 (2019) 1900657. https://doi.org/10.1002/pssa.201900657
[115] S. Wang, Z. Li, X. Xu, G. Zhang, Y. Li, Q. Peng, Amino-Functionalized graphene quantum dots as cathode interlayer for efficient organic solar cells: quantum dot size on interfacial modification ability and photovoltaic performance, Adv. Mater. Interfaces 6 (2019), 1801480. https://doi.org/10.1002/admi.201801480
[116] J.S. Park, J.K. Kim, J. Cho, T.T. Seong, Review-group III-nitride-based ultraviolet light-emitting diodes: ways of increasing external quantum efficiency, ECS J. Solid State SC 6 (2017) 42-52. https://doi.org/10.1149/2.0111704jss
[117] A. Suhail, G. Pan, D. Jenkins, K. Islam, Improved efficiency of graphene/Si Schottky junction solar cell based on back contact structure and DUV treatment, Carbon 129 (2018) 520-526. https://doi.org/10.1016/j.carbon.2017.12.053
[118] X. Li, S. Lin, X. Lin, Z. Xu, P. Wang, S. Zhang, H. Zhong, W. Xu, Z. Wu, W. Fang, Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector, Opt. Express 24 (2016) 134-145. https://doi.org/10.1364/OE.24.000134
[119] P. Wang, X. Li, Z. Xu, Z. Wu, S. Zhang, W. Xu, H. Zhong, H. Chen, E. Li, J. Luo, Q. Yu, S. Lin, Tunable graphene/indium phosphide heterostructure solar cells, Nano Energy 13 (2015) 509-517. https://doi.org/10.1016/j.nanoen.2015.03.023
[120] S. Lin, X. Li, S. Zhang, P. Wang, Z. Xu, H. Zhong, Z. Wu, H. Chen, Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping, Appl. Phys. Lett. 107 (2015) 191106. https://doi.org/10.1063/1.4935426
[121] X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y., Jia, Z., Li, X., Li, D., Wu, Graphene-on-silicon Schottky junction solar cells, Adv. Mater. 22 (2010) 2743–2748. https://doi.org/10.1002/adma.200904383
[122] D.H. Shin, J.H. Kim, D.H. Jung, S.-H. Choi, Graphene-nanomesh transparent conductive electrode/porous-Si Schottky-junction solar cells, J. Alloys Compd. 803 (2019) 958-963. https://doi.org/10.1016/j.jallcom.2019.06.264
[123] M.A. Rehman, S.B. Roy, I. Akhtar, M.F. Bhopal, W. Choi, G. Nazir, M.F. Khan, S. Kumar, J. Eom, S.-H. Chun, Y. Seo, Thickness-dependent efficiency of directly grown graphene based solar cells, Carbon 148 (2019) 187-195. https://doi.org/10.1016/j.carbon.2019.03.079
[124] J. Ma, H. Bai, W. Zhao, Y. Yuan, K. Zhang, High efficiency graphene/MoS2/Si Schottky barrier solar cells using layer controlled MoS2 films, Sol. Energy 160 (2018) 76–84. https://doi.org/10.1016/j.solener.2017.11.066
[125] A. Gnisci, G. Faggio, L. Lancellotti, G. Messina, R. Carotenuto, E. Bobeico, P.D. Veneri, A. Capasso, T. Dikonimos, N. Lisi, The role of graphene-based derivative as interfacial layer in graphene/n-Si Schottky barrier solar cells, Phys. Status Solidi A 216 (2018) 1800555. https://doi.org/10.1002/pssa.201800555
[126] M.A. Rehman, I. Akhtar, W. Choi, K. Akbar, A. Farooq, S. Hussain, M.A. Shehzad, S.H. Chun, J. Jung, Y. Seo, Influence of an Al2O3 interlayer in a directly grown graphene-silicon Schottky junction solar cell, Carbon 132 (2018) 157-164. https://doi.org/10.1016/j.carbon.2018.02.042
[127] A. Alnuaimi, I. Almansouri, I. Saadat, A. Nayfeh, High performance graphene silicon Schottky junction solar cells with HfO2 interfacial layer grown by atomic layer deposition, Sol. Energy 164 (2018) 174–179. https://doi.org/10.1016/j.solener.2018.02.020