Hybrid Materials based on Silica Nanostructures for Biomedical Scaffolds (Bone Regeneration) and Drug Delivery

$30.00

Hybrid Materials based on Silica Nanostructures for Biomedical Scaffolds (Bone Regeneration) and Drug Delivery

Mojdeh Rahnama Ghahfarokhi, Jhaleh Amirian

Silica nanoparticles with nanoporous nature are introduced as thermally and chemically stable nanomaterials with controllable porosity and morphology. The nanoparticles can be divided into three groups: microporous, mesoporous, and macroporous based on the porous size. The use of these materials for different applications is associated with their unique properties as disinfectants. This chapter discusses different synthesis methodologies to prepare well-dispersed mesoporous silica nanoparticles (MSNs) and hollow silica nanoparticles (HSNs) with tunable dimensions ranging from a few to hundreds of nanometers of different mesostructures. Several good characteristics of the MSNs, best biocompatibility and low toxicity, are proposed as the basis of the carrier for the controlled release of drugs, genes into living cells and bone regeneration.

Keywords
Silica, Sol-gel, Mesoporous, Biomedical Applications, Drug Delivery

Published online 11/20/2020, 18 pages

Citation: Mojdeh Rahnama Ghahfarokhi, Jhaleh Amirian, Hybrid Materials based on Silica Nanostructures for Biomedical Scaffolds (Bone Regeneration) and Drug Delivery, Materials Research Foundations, Vol. 87, pp 103-120, 2021

DOI: https://doi.org/10.21741/9781644901076-4

Part of the book on Nanohybrids

References
[1] S.H. Wu, C.Y. Mou, H.P. Lin, Synthesis of mesoporous silica nanoparticles, Chem Soc Rev, 42 (2013) 3862-3875. https://doi.org/10.1039/c3cs35405a
[2] W. Zhu, Y. zhou, W. Ma, M. Li, J. Yu, K. Xie, Using silica fume as silica source for synthesizing spherical ordered mesoporous silica, Materials Letters, 92 (2013) 129-131. https://doi.org/10.1016/j.matlet.2012.10.044
[3] P.F. Fulvio, S. Pikus, M. Jaroniec, Short-time synthesis of SBA-15 using various silica sources, J Colloid Interface Sci, 287 (2005) 717-720. https://doi.org/10.1016/j.jcis.2005.02.045
[4] F. Lu, S.H. Wu, Y. Hung, C.Y. Mou, Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles, Small, 5 (2009) 1408-1413. https://doi.org/10.1002/smll.200900005
[5] X. Dong, Y. Wang, H. Dan, Z. Hong, K. Song, Q. Xian, Y. Ding, A facile route to synthesize mesoporous SBA-15 silica spheres from powder quartz, Materials Letters, 204 (2017) 97-100. https://doi.org/10.1016/j.matlet.2017.05.115
[6] T. Witoon, M. Chareonpanich, J. Limtrakul, Synthesis of bimodal porous silica from rice husk ash via sol–gel process using chitosan as template, Materials Letters, 62 (2008) 1476-1479. https://doi.org/10.1016/j.matlet.2007.09.004
[7] N.A. Rahman, I. Widhiana, S.R. Juliastuti, H. Setyawan, Synthesis of mesoporous silica with controlled pore structure from bagasse ash as a silica source, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 476 (2015) 1-7. https://doi.org/10.1016/j.colsurfa.2015.03.018
[8] D. Liu, M. Sasidharan, K. Nakashima, Micelles of poly(styrene-b-2-vinylpyridine-b-ethylene oxide) with blended polystyrene core and their application to the synthesis of hollow silica nanospheres, J Colloid Interface Sci, 358 (2011) 354-359. https://doi.org/10.1016/j.jcis.2011.03.004
[9] K.J. Klabunde, J. Stark, O. Koper, C. Mohs, D.G. Park, S. Decker, Y. Jiang, I. Lagadic, D. Zhang, Nanocrystals as stoichiometric reagents with unique surface chemistry, The Journal of Physical Chemistry, 100 (1996) 12142-12153. https://doi.org/10.1021/jp960224x
[10] R. Li, A. Clark, L. Hench, An investigation of bioactive glass powders by sol‐gel processing, Journal of Applied Biomaterials, 2 (1991) 231-239. https://doi.org/10.1002/jab.770020403
[11] S.-A. Wallington, T. Labayen, A. Poppe, N.A. Sommerdijk, J.D. Wright, Sol-gel entrapped materials for optical sensing of solvents and metal ions, Sensors and Actuators B: Chemical, 38 (1997) 48-52. https://doi.org/10.1016/S0925-4005(97)80170-0
[12] W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, Journal of colloid and interface science, 26 (1968) 62-69. https://doi.org/10.1016/0021-9797(68)90272-5
[13] J. Liu, S.Z. Qiao, H. Liu, J. Chen, A. Orpe, D. Zhao, G.Q. Lu, Extension of the Stöber method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres, Angewandte Chemie International Edition, 50 (2011) 5947-5951. https://doi.org/10.1002/anie.201102011
[14] J. Choma, D. Jamioła, K. Augustynek, M. Marszewski, M. Gao, M. Jaroniec, New opportunities in Stöber synthesis: preparation of microporous and mesoporous carbon spheres, Journal of Materials Chemistry, 22 (2012) 12636-12642. https://doi.org/10.1039/c2jm31678a
[15] M. Grün, I. Lauer, K.K. Unger, The synthesis of micrometer‐and submicrometer‐size spheres of ordered mesoporous oxide MCM‐41, Advanced Materials, 9 (1997) 254-257. https://doi.org/10.1002/adma.19970090317
[16] K. Yano, Y. Fukushima, Synthesis of mono-dispersed mesoporous silica spheres with highly ordered hexagonal regularity using conventional alkyltrimethylammonium halide as a surfactant, Journal of Materials Chemistry, 14 (2004) 1579-1584. https://doi.org/10.1039/b313712k
[17] F. Lu, S.H. Wu, Y. Hung, C.Y. Mou, Size effect on cell uptake in well‐suspended, uniform mesoporous silica nanoparticles, Small, 5 (2009) 1408-1413. https://doi.org/10.1002/smll.200900005
[18] Z.-A. Qiao, L. Zhang, M. Guo, Y. Liu, Q. Huo, Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide, Chemistry of Materials, 21 (2009) 3823-3829. https://doi.org/10.1021/cm901335k
[19] D. Niu, Z. Ma, Y. Li, J. Shi, Synthesis of core− shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness, Journal of the American Chemical Society, 132 (2010) 15144-15147. https://doi.org/10.1021/ja1070653
[20] T. Suteewong, H. Sai, R. Cohen, S. Wang, M. Bradbury, B. Baird, S.M. Gruner, U. Wiesner, Highly aminated mesoporous silica nanoparticles with cubic pore structure, Journal of the American Chemical Society, 133 (2010) 172-175. https://doi.org/10.1021/ja1061664
[21] J. Hu, M. Chen, X. Fang, L. Wu, Fabrication and application of inorganic hollow spheres, Chemical Society Reviews, 40 (2011) 5472-5491. https://doi.org/10.1039/c1cs15103g
[22] J. Liu, Q. Yang, L. Zhang, H. Yang, J. Gao, C. Li, Organic− inorganic hybrid hollow nanospheres with microwindows on the shell, Chemistry of Materials, (2008). https://doi.org/10.1021/cm800192f
[23] J. Liu, S.Z. Qiao, J.S. Chen, X.W.D. Lou, X. Xing, G.Q.M. Lu, Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries, Chemical Communications, 47 (2011) 12578-12591. https://doi.org/10.1039/c1cc13658e
[24] Y.-Q. Yeh, B.-C. Chen, H.-P. Lin, C.-Y. Tang, Synthesis of hollow silica spheres with mesostructured shell using cationic− anionic-neutral block copolymer ternary surfactants, Langmuir, 22 (2006) 6-9. https://doi.org/10.1021/la052129y
[25] C. Kresge, M. Leonowicz, W.J. Roth, J. Vartuli, J. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, nature, 359 (1992) 710. https://doi.org/10.1038/359710a0
[26] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, science, 279 (1998) 548-552.
[27] S.A. Bagshaw, E. Prouzet, T.J. Pinnavaia, Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants, Science, 269 (1995) 1242-1244. https://doi.org/10.1126/science.269.5228.1242
[28] S. Inagaki, Y. Fukushima, K. Kuroda, Synthesis of highly ordered mesoporous materials from a layered polysilicate, Journal of the Chemical Society, Chemical Communications, (1993) 680-682. https://doi.org/10.1039/c39930000680
[29] K. Ishizaki, S. Komarneni, M. Nanko, Porous Materials: Process technology and applications, Springer science & business media, 2013.
[30] J.L. Vivero-Escoto, Y.-D. Chiang, K.C. Wu, Y. Yamauchi, Recent progress in mesoporous titania materials: adjusting morphology for innovative applications, Science and technology of advanced materials, 13 (2012) 013003. https://doi.org/10.1088/1468-6996/13/1/013003
[31] D.D. Borawake, A. Gupta, S.S. Thorat, Recent Trends for the Formulation of Theranostic Mesoporous Silica Nanoparticles: A Review.
[32] S. Williams, A. Neumann, I. Bremer, Y. Su, G. Dräger, C. Kasper, P. Behrens, Nanoporous silica nanoparticles as biomaterials: evaluation of different strategies for the functionalization with polysialic acid by step-by-step cytocompatibility testing, Journal of Materials Science: Materials in Medicine, 26 (2015) 125. https://doi.org/10.1007/s10856-015-5409-3
[33] N. Khimich, A study of the possibility of transforming monolithic silica gel into silica glass upon low-temperature sintering, Glass physics and chemistry, 29 (2003) 513-515.
[34] F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Silica‐based mesoporous organic–inorganic hybrid materials, Angewandte Chemie International Edition, 45 (2006) 3216-3251. https://doi.org/10.1002/anie.200503075
[35] L. Qi, J. Ma, H. Cheng, Z. Zhao, Micrometer-sized mesoporous silica spheres grown under static conditions, Chemistry of materials, 10 (1998) 1623-1626. https://doi.org/10.1021/cm970811a
[36] K. Kosuge, P.S. Singh, Rapid Synthesis of Al-Containing Mesoporous Silica Hard Spheres of 30− 50 μm Diameter, Chemistry of Materials, 13 (2001) 2476-2482. https://doi.org/10.1021/cm000623b
[37] M. Grün, K.K. Unger, A. Matsumoto, K. Tsutsumi, Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology, Microporous and mesoporous materials, 27 (1999) 207-216. https://doi.org/10.1016/S1387-1811(98)00255-8
[38] Q. Huo, D.I. Margolese, G.D. Stucky, Surfactant control of phases in the synthesis of mesoporous silica-based materials, Chemistry of Materials, 8 (1996) 1147-1160. https://doi.org/10.1021/cm960137h
[39] S. Schacht, Q. Huo, I. Voigt-Martin, G. Stucky, F. Schüth, Oil-water interface templating of mesoporous macroscale structures, Science, 273 (1996) 768-771. https://doi.org/10.1126/science.273.5276.768
[40] J. Vartuli, K. Schmitt, C. Kresge, W. Roth, M. Leonowicz, S. McCullen, S. Hellring, J. Beck, J. Schlenker, Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves: inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications, Chemistry of Materials, 6 (1994) 2317-2326. https://doi.org/10.1021/cm00048a018
[41] T. Azaïs, C. Tourné-Péteilh, F. Aussenac, N. Baccile, C. Coelho, J.-M. Devoisselle, F. Babonneau, Solid-state NMR study of ibuprofen confined in MCM-41 material, Chemistry of Materials, 18 (2006) 6382-6390. https://doi.org/10.1021/cm061551c
[42] D.J. Mihalcik, W. Lin, Mesoporous silica nanosphere‐supported chiral ruthenium catalysts: synthesis, characterization, and asymmetric hydrogenation studies, ChemCatChem, 1 (2009) 406-413. https://doi.org/10.1002/cctc.200900188
[43] Y. Huang, W. Deng, E. Guo, P.W. Chung, S. Chen, B.G. Trewyn, R.C. Brown, V.S.Y. Lin, Mesoporous Silica Nanoparticle‐Stabilized and Manganese‐Modified Rhodium Nanoparticles as Catalysts for Highly Selective Synthesis of Ethanol and Acetaldehyde from Syngas, ChemCatChem, 4 (2012) 674-680. https://doi.org/10.1002/cctc.201100460
[44] Y. Hoshikawa, H. Yabe, A. Nomura, T. Yamaki, A. Shimojima, T. Okubo, Mesoporous silica nanoparticles with remarkable stability and dispersibility for antireflective coatings, Chemistry of Materials, 22 (2009) 12-14. https://doi.org/10.1021/cm902239a
[45] M. Vallet-Regi, A. Ramila, R. Del Real, J. Pérez-Pariente, A new property of MCM-41: drug delivery system, Chemistry of Materials, 13 (2001) 308-311. https://doi.org/10.1021/cm0011559
[46] K. Unger, H. Rupprecht, B. Valentin, W. Kircher, The use of porous and surface modified silicas as drug delivery and stabilizing agents, Drug Development and Industrial Pharmacy, 9 (1983) 69-91. https://doi.org/10.3109/03639048309048546
[47] B. Qian, Y. Deng, J.H. Im, R.J. Muschel, Y. Zou, J. Li, R.A. Lang, J.W. Pollard, A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth, PloS one, 4 (2009) e6562. https://doi.org/10.1371/journal.pone.0006562
[48] T. López, M. Alvarez, S. Arroyo, A. Sánchez, D. Rembao, R. López, Obtaining of SiO2 nanostructured materials for local drug delivery of methotrexate, J Biotechnol Biomaterial S, 4 (2011) 2. https://doi.org/10.4172/2155-952X.S4-001
[49] E. Tasciotti, X. Liu, R. Bhavane, K. Plant, A.D. Leonard, B.K. Price, M.M.-C. Cheng, P. Decuzzi, J.M. Tour, F. Robertson, Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications, Nature nanotechnology, 3 (2008) 151. https://doi.org/10.1038/nnano.2008.34
[50] D. Böcking, O. Wiltschka, J. Niinimäki, H. Shokry, R. Brenner, M. Lindén, C. Sahlgren, Mesoporous silica nanoparticle-based substrates for cell directed delivery of Notch signalling modulators to control myoblast differentiation, Nanoscale, 6 (2014) 1490-1498. https://doi.org/10.1039/C3NR04022D
[51] I.I. Slowing, J.L. Vivero-Escoto, C.-W. Wu, V.S.-Y. Lin, Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers, Advanced drug delivery reviews, 60 (2008) 1278-1288. https://doi.org/10.1016/j.addr.2008.03.012
[52] D. Luo, W.M. Saltzman, Enhancement of transfection by physical concentration of DNA at the cell surface, Nature biotechnology, 18 (2000) 893. https://doi.org/10.1038/78523
[53] D. Luo, E. Han, N. Belcheva, W.M. Saltzman, A self-assembled, modular DNA delivery system mediated by silica nanoparticles, Journal of Controlled Release, 95 (2004) 333-341. https://doi.org/10.1016/j.jconrel.2003.11.019