Biosensors Based on Graphene

$30.00

Biosensors Based on Graphene

Shalini Muniandy, Chin Wei Lai, Thiruchelvi Pulingam, Bey Fen Leo

Today, development of rapid and sensitive methods for direct detection of foodborne pathogens appeared as crucial matter due to their impact on human health. In this manner, graphene-based nanomaterials have received much attention as reliable electrochemical biosensors due to their exceptional combination of intrinsic properties such as high conductivity, stability and biocompatibility. The scope of this chapter is to provide a brief history of the electrochemical biosensors used for the detection of microbial pathogens and recent progress of graphene used in electrochemical biosensors for foodborne pathogens detection.

Keywords
Graphene, Foodborne Pathogens, Electrochemical Biosensors, Foodborne Disease, Bacteria

Published online 11/20/2020, 34 pages

Citation: Shalini Muniandy, Chin Wei Lai, Thiruchelvi Pulingam, Bey Fen Leo, Biosensors Based on Graphene, Materials Research Foundations, Vol. 87, pp 69-102, 2021

DOI: https://doi.org/10.21741/9781644901076-3

Part of the book on Nanohybrids

References
[1] J. Vidic, P. Vizzini, M. Manzano, D. Kavanaugh, N. Ramarao, M. Zivkovic, V. Radonic, N. Knezevic, I. Giouroudi, I. Gadjanski, Point-of-need dna testing for detection of foodborne pathogenic bacteria, Sensors, 19 (2019) 1100. https://doi.org/10.3390/s19051100
[2] J.W.-F. Law, N.-S. Ab Mutalib, K.-G. Chan, L.-H. Lee, Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations, Frontiers in microbiology, 5 (2015) 770-770. https://doi.org/10.3389/fmicb.2014.00770
[3] S.K. Vashist, Point-of-Care Diagnostics: Recent Advances and Trends, Biosensors, 7 (2017) 62. https://doi.org/10.3390/bios7040062
[4] Y. Wang, T.V. Duncan, Nanoscale sensors for assuring the safety of food products, Current Opinion in Biotechnology, 44 (2017) 74-86. https://doi.org/10.1016/j.copbio.2016.10.005
[5] F. Jia, N. Duan, S. Wu, R. Dai, Z. Wang, X. Li, Impedimetric Salmonella aptasensor using a glassy carbon electrode modified with an electrodeposited composite consisting of reduced graphene oxide and carbon nanotubes, Microchimica Acta, 183 (2016) 337-344. https://doi.org/10.1007/s00604-015-1649-7
[6] T. Hianik, J. Wang, Electrochemical Aptasensors – Recent Achievements and Perspectives, 2009. https://doi.org/10.1002/elan.200904566
[7] K.M. Abu-Salah, M.M. Zourob, F. Mouffouk, S.A. Alrokayan, M.A. Alaamery, A.A. Ansari, DNA-Based Nanobiosensors as an Emerging Platform for Detection of Disease, Sensors (Basel, Switzerland), 15 (2015) 14539-14568. https://doi.org/10.3390/s150614539
[8] J. Peña-Bahamonde, H.N. Nguyen, S.K. Fanourakis, D.F. Rodrigues, Recent advances in graphene-based biosensor technology with applications in life sciences, Journal of nanobiotechnology, 16 (2018) 75-75. https://doi.org/10.1186/s12951-018-0400-z
[9] M. Pumera, Graphene in biosensing, Materials Today, 14 (2011) 308-315. https://doi.org/10.1016/S1369-7021(11)70160-2
[10] Y. Zhang, J. Li, Z. Wang, H. Ma, D. Wu, Q. Cheng, Q. Wei, Label-free electrochemical immunosensor based on enhanced signal amplification between Au@Pd and CoFe2O4/graphene nanohybrid, Scientific Reports, 6 (2016) 23391. https://doi.org/10.1038/srep23391
[11] E. bahadır, M. Kemal Sezgintürk, Applications of graphene in electrochemical sensing and biosensing, 2015. https://doi.org/10.1016/j.trac.2015.07.008
[12] R.A.S. Luz, R.M. Iost, F.N. Crespilho, Nanomaterials for Biosensors and Implantable Biodevices, in: F.N. Crespilho (Ed.) Nanobioelectrochemistry: From Implantable Biosensors to Green Power Generation, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 27-48. https://doi.org/10.1007/978-3-642-29250-7_2
[13] N.S. Hobson, I. Tothill, A.P. Turner, Microbial detection, Biosensors & bioelectronics, 11 (1996) 455-477. https://doi.org/10.1016/0956-5663(96)86783-2
[14] A.L. Ghindilis, P. Atanasov, M. Wilkins, E. Wilkins, Immunosensors: electrochemical sensing and other engineering approaches, Biosensors & bioelectronics, 13 (1998) 113-131. https://doi.org/10.1016/S0956-5663(97)00031-6
[15] M. Berrettoni, D. Tonelli, P. Conti, R. Marassi, M. Trevisani, Electrochemical sensor for indirect detection of bacterial population, Sensors and Actuators B: Chemical, 102 (2004) 331-335. https://doi.org/10.1016/j.snb.2004.04.022
[16] I. Tothill, Biosensors and nanomaterials and their application for mycotoxin determination, World Mycotoxin Journal, 4 (2011) 361-374. https://doi.org/10.3920/WMJ2011.1318
[17] N.J. Ronkainen, H.B. Halsall, W.R. Heineman, Electrochemical biosensors, Chemical Society reviews, 39 (2010) 1747-1763. https://doi.org/10.1039/b714449k
[18] D.R. Thévenot, K. Toth, R.A. Durst, G.S. Wilson, Electrochemical biosensors: recommended definitions and classification1International Union of Pure and Applied Chemistry: Physical Chemistry Division, Commission I.7 (Biophysical Chemistry); Analytical Chemistry Division, Commission V.5 (Electroanalytical Chemistry).1, Biosensors and Bioelectronics, 16 (2001) 121-131. https://doi.org/10.1016/S0956-5663(01)00115-4
[19] R. Maalouf, C. Fournier-Wirth, J. Coste, H. Chebib, Y. Saikali, O. Vittori, A. Errachid, J.P. Cloarec, C. Martelet, N. Jaffrezic-Renault, Label-free detection of bacteria by electrochemical impedance spectroscopy: comparison to surface plasmon resonance, Analytical chemistry, 79 (2007) 4879-4886. https://doi.org/10.1021/ac070085n
[20] M.H. Abdalhai, A.M. Fernandes, X. Xia, A. Musa, J. Ji, X. Sun, Electrochemical Genosensor To Detect Pathogenic Bacteria (Escherichia coli O157:H7) As Applied in Real Food Samples (Fresh Beef) To Improve Food Safety and Quality Control, Journal of agricultural and food chemistry, 63 (2015) 5017-5025. https://doi.org/10.1021/acs.jafc.5b00675
[21] J. Wang, Electrochemical biosensors: Towards point-of-care cancer diagnostics, Biosensors and Bioelectronics, 21 (2006) 1887-1892. https://doi.org/10.1016/j.bios.2005.10.027
[22] S. Cinti, G. Volpe, S. Piermarini, E. Delibato, G. Palleschi, Electrochemical Biosensors for Rapid Detection of Foodborne Salmonella: A Critical Overview, Sensors (Basel, Switzerland), 17 (2017). https://doi.org/10.3390/s17081910
[23] A. Amine, H. Mohammadi, I. Bourais, G. Palleschi, Enzyme inhibition-based biosensors for food safety and environmental monitoring, Biosensors & bioelectronics, 21 (2006) 1405-1423. https://doi.org/10.1016/j.bios.2005.07.012
[24] Y. Wang, H. Xu, J. Zhang, G. Li, Electrochemical sensors for clinic analysis, sensors (Basel, Switzerland), 8 (2008) 2043-2081. https://doi.org/10.3390/s8042043
[25] F.-G. Bănică, Amperometric Enzyme Sensors, in: Chemical Sensors and Biosensors, John Wiley & Sons, Ltd, 2012, pp. 314-331. https://doi.org/10.1002/9781118354162.ch14
[26] A. Singh, S. Poshtiban, S. Evoy, Recent advances in bacteriophage based biosensors for food-borne pathogen detection, Sensors (Basel), 13 (2013) 1763-1786. https://doi.org/10.3390/s130201763
[27] L. Yang, C. Ruan, Y. Li, Rapid Detection Of Salmonella Typhimurium In Food Samples Using A Bienzyme Electrochemical Biosensor With Flow Injection, Journal of Rapid Methods & Automation in Microbiology, 9 (2001) 229-240. https://doi.org/10.1111/j.1745-4581.2001.tb00249.x
[28] S. Chemburu, E. Wilkins, I. Abdel-Hamid, Detection of pathogenic bacteria in food samples using highly-dispersed carbon particles, Biosensors & bioelectronics, 21 (2005) 491-499. https://doi.org/10.1016/j.bios.2004.11.025
[29] X. Yang, J. Kirsch, A. Simonian, Campylobacter spp. detection in the 21st century: A review of the recent achievements in biosensor development, Journal of microbiological methods, 95 (2013) 48-56. https://doi.org/10.1016/j.mimet.2013.06.023
[30] T. Neufeld, A. Schwartz-Mittelmann, D. Biran, E.Z. Ron, J. Rishpon, Combined phage typing and amperometric detection of released enzymatic activity for the specific identification and quantification of bacteria, Analytical chemistry, 75 (2003) 580-585. https://doi.org/10.1021/ac026083e
[31] I. Benhar, I. Eshkenazi, T. Neufeld, J. Opatowsky, S. Shaky, J. Rishpon, Recombinant single chain antibodies in bioelectrochemical sensors, Talanta, 55 (2001) 899-907. https://doi.org/10.1016/S0039-9140(01)00497-0
[32] J.L. Brooks, B. Mirhabibollahi, R.G. Kroll, Experimental enzyme-linked amperometric immunosensors for the detection of salmonellas in foods, Journal of Applied Bacteriology, 73 (1992) 189-196. https://doi.org/10.1111/j.1365-2672.1992.tb02977.x
[33] L. Croci, E. Delibato, G. Volpe, G. Palleschi, A RAPID ELECTROCHEMICAL ELISA FOR THE DETECTION OF SALMONELLA IN MEAT SAMPLES, Analytical Letters, 34 (2001) 2597-2607. https://doi.org/10.1081/AL-100108407
[34] Z.J. Zhao, X.M. Liu, Preparation of monoclonal antibody and development of enzyme-linked immunosorbent assay specific for Escherichia coli O157 in foods, Biomedical and environmental sciences : BES, 18 (2005) 254-259.
[35] M. Varshney, L. Yang, X.L. Su, Y. Li, Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli O157:H7 in ground beef, Journal of food protection, 68 (2005) 1804-1811. https://doi.org/10.4315/0362-028X-68.9.1804
[36] M.D. Gouda, M.A. Kumar, M.S. Thakur, N.G. Karanth, Enhancement of operational stability of an enzyme biosensor for glucose and sucrose using protein based stabilizing agents, Biosensors & bioelectronics, 17 (2002) 503-507. https://doi.org/10.1016/S0956-5663(02)00021-0
[37] F. Farabullini, F. Lucarelli, I. Palchetti, G. Marrazza, M. Mascini, Disposable electrochemical genosensor for the simultaneous analysis of different bacterial food contaminants, Biosensors and Bioelectronics, 22 (2007) 1544-1549. https://doi.org/10.1016/j.bios.2006.06.001
[38] M. Tichoniuk, D. Gwiazdowska, M. Ligaj, M. Filipiak, Electrochemical detection of foodborne pathogen Aeromonas hydrophila by DNA hybridization biosensor, Biosensors and Bioelectronics, 26 (2010) 1618-1623. https://doi.org/10.1016/j.bios.2010.08.030
[39] K.-F. Low, K. Chuenrangsikul, P. Rijiravanich, W. Surareungchai, Y.-Y. Chan, Electrochemical genosensor for specific detection of the food-borne pathogen, Vibrio cholerae, World Journal of Microbiology and Biotechnology, 28 (2012) 1699-1706. https://doi.org/10.1007/s11274-011-0978-x
[40] F. Lucarelli, G. Marrazza, A.P.F. Turner, M. Mascini, Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors, Biosensors and Bioelectronics, 19 (2004) 515-530. https://doi.org/10.1016/S0956-5663(03)00256-2
[41] M.I. Pividori, A. Merkoçi, S. Alegret, Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods, Biosensors and Bioelectronics, 15 (2000) 291-303. https://doi.org/10.1016/S0956-5663(00)00071-3
[42] D. Ivnitski, I. Abdel-Hamid, P. Atanasov, E. Wilkins, S. Stricker, Application of electrochemical biosensors for detection of food pathogenic bacteria, Electroanalysis, 12 (2000) 317-325. https://doi.org/10.1002/(SICI)1521-4109(20000301)12:5<317::AID-ELAN317>3.0.CO;2-A
[43] L. Yang, R. Bashir, Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria, Biotechnology advances, 26 (2008) 135-150. https://doi.org/10.1016/j.biotechadv.2007.10.003
[44] E. Katz, I. Willner, Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors, Electroanalysis, 15 (2003) 913-947. https://doi.org/10.1002/elan.200390114
[45] P. D’Orazio, Biosensors in clinical chemistry, Clinica chimica acta; international journal of clinical chemistry, 334 (2003) 41-69. https://doi.org/10.1016/S0009-8981(03)00241-9
[46] D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult, Electrochemical Biosensors – Sensor Principles and Architectures, Sensors (Basel, Switzerland), 8 (2008) 1400-1458. https://doi.org/10.3390/s8031400
[47] R. Rogers K, M. Mascini, Biosensors for field analytical monitoring, Field analytical chemistry and technology, 2 (1998) 317-331. https://doi.org/10.1002/(SICI)1520-6521(1998)2:6<317::AID-FACT2>3.0.CO;2-5
[48] S.R. Mikkelsen, G.A. Rechnitz, Conductometric tranducers for enzyme-based biosensors, Analytical chemistry, 61 (1989) 1737-1742. https://doi.org/10.1021/ac00190a029
[49] Z. Muhammad-Tahir, E.C. Alocilja, A conductometric biosensor for biosecurity, Biosensors and Bioelectronics, 18 (2003) 813-819. https://doi.org/10.1016/S0956-5663(03)00020-4
[50] Z. Muhammad-Tahir, E.C. Alocilja, A Disposable Biosensor for Pathogen Detection in Fresh Produce Samples, Biosystems Engineering, 88 (2004) 145-151. https://doi.org/10.1016/j.biosystemseng.2004.03.005
[51] S. Pal, W. Ying, E.C. Alocilja, F.P. Downes, Sensitivity and specificity performance of a direct-charge transfer biosensor for detecting Bacillus cereus in selected food matrices, Biosystems Engineering, 99 (2008) 461-468. https://doi.org/10.1016/j.biosystemseng.2007.11.015
[52] Z.-G. Chen, Conductometric immunosensors for the detection of staphylococcal enterotoxin B based bio-electrocalytic reaction on micro-comb electrodes, Bioprocess and Biosystems Engineering, 31 (2008) 345-350. https://doi.org/10.1007/s00449-007-0168-2
[53] J.S. Daniels, N. Pourmand, Label-Free Impedance Biosensors: Opportunities and Challenges, Electroanalysis, 19 (2007) 1239-1257. https://doi.org/10.1002/elan.200603855
[54] V.F. Lvovich, Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena, Wiley, 2015.
[55] M. Varshney, Y. Li, Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle–antibody conjugates for detection of Escherichia coli O157:H7 in food samples, Biosensors and Bioelectronics, 22 (2007) 2408-2414. https://doi.org/10.1016/j.bios.2006.08.030
[56] L. Yang, Y. Li, G.F. Erf, Interdigitated Array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7, Analytical chemistry, 76 (2004) 1107-1113. https://doi.org/10.1021/ac0352575
[57] A. Shabani, M. Zourob, B. Allain, C.A. Marquette, M.F. Lawrence, R. Mandeville, Bacteriophage-Modified Microarrays for the Direct Impedimetric Detection of Bacteria, Analytical chemistry, 80 (2008) 9475-9482. https://doi.org/10.1021/ac801607w
[58] A. Shabani, C.A. Marquette, R. Mandeville, M.F. Lawrence, Magnetically-assisted impedimetric detection of bacteria using phage-modified carbon microarrays, Talanta, 116 (2013) 1047-1053. https://doi.org/10.1016/j.talanta.2013.07.078
[59] C. Ruan, L. Yang, Y. Li, Immunobiosensor Chips for Detection of Escherichia coli O157:H7 Using Electrochemical Impedance Spectroscopy, Analytical chemistry, 74 (2002) 4814-4820. https://doi.org/10.1021/ac025647b
[60] A.G. Mantzila, V. Maipa, M.I. Prodromidis, Development of a faradic impedimetric immunosensor for the detection of Salmonella typhimurium in milk, Analytical chemistry, 80 (2008) 1169-1175. https://doi.org/10.1021/ac071570l
[61] Y. Wang, J. Ping, Z. Ye, J. Wu, Y. Ying, Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of Escherichia coli O157:H7, Biosensors & bioelectronics, 49 (2013) 492-498. https://doi.org/10.1016/j.bios.2013.05.061
[62] M. Labib, A.S. Zamay, O.S. Kolovskaya, I.T. Reshetneva, G.S. Zamay, R.J. Kibbee, S.A. Sattar, T.N. Zamay, M.V. Berezovski, Aptamer-based viability impedimetric sensor for bacteria, Analytical chemistry, 84 (2012) 8966-8969. https://doi.org/10.1021/ac302902s
[63] I. Palchetti, M. Mascini, Electroanalytical biosensors and their potential for food pathogen and toxin detection, Analytical and Bioanalytical Chemistry, 391 (2008) 455-471. https://doi.org/10.1007/s00216-008-1876-4
[64] G.A. Zelada-Guillén, S.V. Bhosale, J. Riu, F.X. Rius, Real-Time Potentiometric Detection of Bacteria in Complex Samples, Analytical chemistry, 82 (2010) 9254-9260. https://doi.org/10.1021/ac101739b
[65] K. Dill, L.H. Stanker, C.R. Young, Detection of salmonella in poultry using a silicon chip-based biosensor, Journal of biochemical and biophysical methods, 41 (1999) 61-67. https://doi.org/10.1016/S0165-022X(99)00027-5
[66] C. Ercole, M. Del Gallo, L. Mosiello, S. Baccella, A. Lepidi, Escherichia coli detection in vegetable food by a potentiometric biosensor, Sensors and Actuators B: Chemical, 91 (2003) 163-168. https://doi.org/10.1016/S0925-4005(03)00083-2
[67] Y. Lu, Y. Liu, Y. Zhao, W. Li, L. Qiu, L. Li, A Novel and Disposable Enzyme-Labeled Amperometric Immunosensor Based on MWCNT Fibers for Listeria monocytogenes Detection, Journal of Nanomaterials, 2016 (2016) 8. https://doi.org/10.1155/2016/3895920
[68] Y. Li, P. Cheng, J. Gong, L. Fang, J. Deng, W. Liang, J. Zheng, Amperometric immunosensor for the detection of Escherichia coli O157:H7 in food specimens, Analytical Biochemistry, 421 (2012) 227-233. https://doi.org/10.1016/j.ab.2011.10.049
[69] M.I. Pividori, A. Merkoçi, J. Barbé, S. Alegret, PCR-Genosensor Rapid Test for Detecting Salmonella, Electroanalysis, 15 (2003) 1815-1823. https://doi.org/10.1002/elan.200302764
[70] L. Yao, P. Lamarche, N. Tawil, R. Khan, A.M. Aliakbar, M.H. Hassan, V.P. Chodavarapu, R. Mandeville, CMOS Conductometric System for Growth Monitoring and Sensing of Bacteria, IEEE Transactions on Biomedical Circuits and Systems, 5 (2011) 223-230. https://doi.org/10.1109/TBCAS.2010.2089794
[71] M. Yang, S. Sun, H.A. Bruck, Y. Kostov, A. Rasooly, Electrical percolation-based biosensor for real-time direct detection of staphylococcal enterotoxin B (SEB), Biosensors and Bioelectronics, 25 (2010) 2573-2578. https://doi.org/10.1016/j.bios.2010.04.019
[72] Y. Huang, X. Dong, Y. Liu, L.-J. Li, P. Chen, Graphene-based biosensors for detection of bacteria and their metabolic activities, Journal of Materials Chemistry, 21 (2011) 12358-12362. https://doi.org/10.1039/c1jm11436k
[73] R. Radhakrishnan, M. Jahne, S. Rogers, I.I. Suni, Detection of Listeria Monocytogenes by Electrochemical Impedance Spectroscopy, Electroanalysis, 25 (2013) 2231-2237. https://doi.org/10.1002/elan.201300140
[74] D. Li, Y. Feng, L. Zhou, Z. Ye, J. Wang, Y. Ying, C. Ruan, R. Wang, Y. Li, Label-free capacitive immunosensor based on quartz crystal Au electrode for rapid and sensitive detection of Escherichia coli O157:H7, Analytica Chimica Acta, 687 (2011) 89-96. https://doi.org/10.1016/j.aca.2010.12.018
[75] M. Tolba, M.U. Ahmed, C. Tlili, F. Eichenseher, M.J. Loessner, M. Zourob, A bacteriophage endolysin-based electrochemical impedance biosensor for the rapid detection of Listeria cells, Analyst, 137 (2012) 5749-5756. https://doi.org/10.1039/c2an35988j
[76] S.A. Vetrone, M.C. Huarng, E.C. Alocilja, Detection of Non-PCR Amplified S. enteritidis Genomic DNA from Food Matrices Using a Gold-Nanoparticle DNA Biosensor: A Proof-of-Concept Study, Sensors (Basel, Switzerland), 12 (2012) 10487-10499. https://doi.org/10.3390/s120810487
[77] S.M. Radke, E.C. Alocilja, A high density microelectrode array biosensor for detection of E. coli O157:H7, Biosensors & bioelectronics, 20 (2005) 1662-1667. https://doi.org/10.1016/j.bios.2004.07.021
[78] Z. Qiao, C. Lei, Y. Fu, Y. Li, Rapid and sensitive detection of E. coli O157:H7 based on antimicrobial peptide functionalized magnetic nanoparticles and urease-catalyzed signal amplification, Analytical Methods, 9 (2017) 5204-5210. https://doi.org/10.1039/C7AY01643C
[79] A.G. Gehring, D.L. Patterson, S.-I. Tu, Use of a Light-Addressable Potentiometric Sensor for the Detection ofEscherichia coliO157:H7, Analytical Biochemistry, 258 (1998) 293-298. https://doi.org/10.1006/abio.1998.2597
[80] C. Ercole, M.D. Gallo, M. Pantalone, S. Santucci, L. Mosiello, C. Laconi, A. Lepidi, A biosensor for Escherichia coli based on a potentiometric alternating biosensing (PAB) transducer, Sensors and Actuators B: Chemical, 83 (2002) 48-52. https://doi.org/10.1016/S0925-4005(01)01027-9
[81] A. D Ghuge, A. R Shirode, V. J Kadam, Graphene: a comprehensive review, Current drug targets, 18 (2017) 724-733. https://doi.org/10.2174/1389450117666160709023425
[82] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, science, 306 (2004) 666-669. https://doi.org/10.1126/science.1102896
[83] M. Pumera, Graphene-based nanomaterials and their electrochemistry, Chemical Society Reviews, 39 (2010) 4146-4157. https://doi.org/10.1039/c002690p
[84] N. Gorjizadeh, Y. Kawazoe, Chemical functionalization of graphene nanoribbons, J. Nanomaterials, 2010 (2010) 1-4. https://doi.org/10.1155/2010/513501
[85] A. Nag, A. Mitra, S.C. Mukhopadhyay, Graphene and its sensor-based applications: A review, Sensors and Actuators A: Physical, 270 (2018) 177-194. https://doi.org/10.1016/j.sna.2017.12.028
[86] J. Hass, W. De Heer, E. Conrad, The growth and morphology of epitaxial multilayer graphene, Journal of Physics: Condensed Matter, 20 (2008) 323202. https://doi.org/10.1088/0953-8984/20/32/323202
[87] S. Bharech, R. Kumar, A review on the properties and applications of graphene, J Mater Sci Mechan Eng, 2 (2015) 70.
[88] W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Synthesis of graphene and its applications: a review, Critical Reviews in Solid State and Materials Sciences, 35 (2010) 52-71. https://doi.org/10.1080/10408430903505036
[89] S.S. Datta, D.R. Strachan, S.M. Khamis, A.C. Johnson, Crystallographic etching of few-layer graphene, Nano letters, 8 (2008) 1912-1915. https://doi.org/10.1021/nl080583r
[90] J.C. Meyer, C. Girit, M. Crommie, A. Zettl, Hydrocarbon lithography on graphene membranes, Applied Physics Letters, 92 (2008) 123110. https://doi.org/10.1063/1.2901147
[91] Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, High-yield production of graphene by liquid-phase exfoliation of graphite, Nature nanotechnology, 3 (2008) 563. https://doi.org/10.1038/nnano.2008.215
[92] S.S. Shams, R. Zhang, J. Zhu, Graphene synthesis: a Review, Materials Science-Poland, 33 (2015) 566-578. https://doi.org/10.1515/msp-2015-0079
[93] M. Zhou, T. Tian, X. Li, X. Sun, J. Zhang, P. Cui, J. Tang, L.-C. Qin, Production of graphene by liquid-phase exfoliation of intercalated graphite, Int. J. Electrochem. Sci, 9 (2014) 810-820.
[94] D. Nuvoli, L. Valentini, V. Alzari, S. Scognamillo, S.B. Bon, M. Piccinini, J. Illescas, A. Mariani, High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid, Journal of Materials Chemistry, 21 (2011) 3428-3431. https://doi.org/10.1039/C0JM02461A
[95] B. Jayasena, S. Subbiah, A novel mechanical cleavage method for synthesizing few-layer graphenes, Nanoscale research letters, 6 (2011) 95. https://doi.org/10.1186/1556-276X-6-95
[96] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chemical society reviews, 39 (2010) 228-240. https://doi.org/10.1039/B917103G
[97] D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper, Nature, 448 (2007) 457. https://doi.org/10.1038/nature06016
[98] P.R. Somani, S.P. Somani, M. Umeno, Planer nano-graphenes from camphor by CVD, Chemical Physics Letters, 430 (2006) 56-59. https://doi.org/10.1016/j.cplett.2006.06.081
[99] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, S.-S. Pei, Graphene segregated on Ni surfaces and transferred to insulators, Applied Physics Letters, 93 (2008) 113103. https://doi.org/10.1063/1.2982585
[100] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, Large-area synthesis of high-quality and uniform graphene films on copper foils, science, 324 (2009) 1312-1314. https://doi.org/10.1126/science.1171245
[101] Z.-S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang, H.-M. Cheng, Synthesis of high-quality graphene with a pre-determined number of layers, Carbon, 47 (2009) 493-499. https://doi.org/10.1016/j.carbon.2008.10.031
[102] E. Rollings, G.-H. Gweon, S. Zhou, B. Mun, J. McChesney, B. Hussain, A. Fedorov, P. First, W. De Heer, A. Lanzara, Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate, Journal of Physics and Chemistry of Solids, 67 (2006) 2172-2177. https://doi.org/10.1016/j.jpcs.2006.05.010
[103] S.V. Morozov, K.S. Novoselov, M. Katsnelson, F. Schedin, L. Ponomarenko, D. Jiang, A.K. Geim, Strong suppression of weak localization in graphene, Physical review letters, 97 (2006) 016801. https://doi.org/10.1103/PhysRevLett.97.016801
[104] S. Amini, J. Garay, G. Liu, A.A. Balandin, R. Abbaschian, Growth of large-area graphene films from metal-carbon melts, Journal of Applied Physics, 108 (2010) 094321. https://doi.org/10.1063/1.3498815
[105] I. Pletikosić, M. Kralj, P. Pervan, R. Brako, J. Coraux, A. N’diaye, C. Busse, T. Michely, Dirac cones and minigaps for graphene on Ir (111), Physical Review Letters, 102 (2009) 056808. https://doi.org/10.1103/PhysRevLett.102.056808
[106] K. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh Electron Mobility in Suspended Graphene, 2008. https://doi.org/10.1016/j.ssc.2008.02.024
[107] P. Suvarnaphaet, S. Pechprasarn, Graphene-Based Materials for Biosensors: A Review, 2017.
[108] V. Georgakilas, J.N. Tiwari, K.C. Kemp, J.A. Perman, A.B. Bourlinos, K.S. Kim, R. Zboril, Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications, Chemical reviews, 116 (2016) 5464-5519. https://doi.org/10.1021/acs.chemrev.5b00620
[109] P. Suvarnaphaet, S. Pechprasarn, Graphene-Based Materials for Biosensors: A Review, Sensors, 17 (2017). https://doi.org/10.3390/s17102161
[110] A. Ambrosi, C.K. Chua, A. Bonanni, M. Pumera, Electrochemistry of Graphene and Related Materials, Chemical reviews, 114 (2014) 7150-7188. https://doi.org/10.1021/cr500023c
[111] Z. Zhu, An Overview of Carbon Nanotubes and Graphene for Biosensing Applications, Nano-Micro Letters, 9 (2017) 25. https://doi.org/10.1007/s40820-017-0128-6
[112] D.A.C. Brownson, P.J. Kelly, C.E. Banks, In situ electrochemical characterisation of graphene and various carbon-based electrode materials: an internal standard approach, RSC Advances, 5 (2015) 37281-37286. https://doi.org/10.1039/C5RA03049H
[113] T. Kuila, S. Bose, P. Khanra, A.K. Mishra, N.H. Kim, J.H. Lee, Recent advances in graphene-based biosensors, Biosensors & bioelectronics, 26 (2011) 4637-4648. https://doi.org/10.1016/j.bios.2011.05.039
[114] J. Peña-Bahamonde, H.N. Nguyen, S.K. Fanourakis, D.F. Rodrigues, Recent advances in graphene-based biosensor technology with applications in life sciences, Journal of Nanobiotechnology, 16 (2018) 75. https://doi.org/10.1186/s12951-018-0400-z
[115] M. Pan, Y. Gu, Y. Yun, M. Li, X. Jin, S. Wang, Nanomaterials for Electrochemical Immunosensing, 2017.
[116] C.M. Pandey, I. Tiwari, V.N. Singh, K.N. Sood, G. Sumana, B.D. Malhotra, Highly sensitive electrochemical immunosensor based on graphene-wrapped copper oxide-cysteine hierarchical structure for detection of pathogenic bacteria, Sensors and Actuators B: Chemical, 238 (2017) 1060-1069. https://doi.org/10.1016/j.snb.2016.07.121
[117] A. Pandey, Y. Gurbuz, V. Ozguz, J.H. Niazi, A. Qureshi, Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7, Biosensors & bioelectronics, 91 (2017) 225-231. https://doi.org/10.1016/j.bios.2016.12.041
[118] S. Xu, Electrochemical DNA Biosensor Based on Graphene Oxide- Chitosan Hybrid Nanocomposites for Detection of Escherichia Coli O157:H7, 2017. https://doi.org/10.20964/2017.04.16
[119] A. Ahmed, J.V. Rushworth, N.A. Hirst, P.A. Millner, Biosensors for Whole-Cell Bacterial Detection, Clinical Microbiology Reviews, 27 (2014) 631-646. https://doi.org/10.1128/CMR.00120-13
[120] Y.-X. Wang, Z.-Z. Ye, C.-Y. Si, Y.-B. Ying, Application of Aptamer Based Biosensors for Detection of Pathogenic Microorganisms, 2012. https://doi.org/10.1016/S1872-2040(11)60542-2
[121] S. Muniandy, S.J. Teh, J.N. Appaturi, K.L. Thong, C.W. Lai, F. Ibrahim, B.F. Leo, A reduced graphene oxide-titanium dioxide nanocomposite based electrochemical aptasensor for rapid and sensitive detection of Salmonella enterica, Bioelectrochemistry (Amsterdam, Netherlands), 127 (2019) 136-144. https://doi.org/10.1016/j.bioelechem.2019.02.005
[122] I.J. Dinshaw, S. Muniandy, S.J. Teh, F. Ibrahim, B.F. Leo, K.L. Thong, Development of an aptasensor using reduced graphene oxide chitosan complex to detect Salmonella, Journal of Electroanalytical Chemistry, 806 (2017) 88-96. https://doi.org/10.1016/j.jelechem.2017.10.054
[123] X. Ma, Y. Jiang, F. Jia, Y. Yu, J. Chen, Z. Wang, An aptamer-based electrochemical biosensor for the detection of Salmonella, Journal of Microbiological Methods, 98 (2014) 94-98. https://doi.org/10.1016/j.mimet.2014.01.003
[124] X. Hu, W. Dou, G. Zhao, Electrochemical immunosensor for Enterobacter sakazakii detection based on electrochemically reduced graphene oxide–gold nanoparticle/ionic liquid modified electrode, Journal of Electroanalytical Chemistry, 756 (2015) 43-48. https://doi.org/10.1016/j.jelechem.2015.08.009
[125] C. Sign, G. Sumana, Antibody conjugated graphene nanocomposites for pathogen detection, 704 (2016) 012014. https://doi.org/10.1088/1742-6596/704/1/012014
[126] R. Mutreja, M. Jariyal, P. Pathania, A. Sharma, D.K. Sahoo, C.R. Suri, Novel surface antigen based impedimetric immunosensor for detection of Salmonella typhimurium in water and juice samples, Biosensors and Bioelectronics, 85 (2016) 707-713. https://doi.org/10.1016/j.bios.2016.05.079
[127] Y. Chen, Z. P Michael, G. Kotchey, Y. Zhao, A. Star, Electronic Detection Of Bacteria Using Holey Reduced Graphene Oxide, 2014. https://doi.org/10.1021/am500364f
[128] R. Hernández, C. Vallés, A.M. Benito, W.K. Maser, F. Xavier Rius, J. Riu, Graphene-based potentiometric biosensor for the immediate detection of living bacteria, Biosensors and Bioelectronics, 54 (2014) 553-557. https://doi.org/10.1016/j.bios.2013.11.053
[129] Y. Wu, H. Chai, Development of an Electrochemical Biosensor for Rapid Detection of Foodborne Pathogenic Bacteria, 2017. https://doi.org/10.20964/2017.05.09
[130] Y. Wan, Y. Wang, J. Wu, D. Zhang, Graphene Oxide Sheet-Mediated Silver Enhancement for Application to Electrochemical Biosensors, Analytical Chemistry, 83 (2011) 648-653. https://doi.org/10.1021/ac103047c