Pyrazine Derivatives as Green Corrosion Inhibitors
A.K. Dewangan, Y. Dewangan, D.K. Verma
Pyrazine is a six-member heterocyclic compound containing two nitrogen atoms, located at one-fourth position. A pyrazine and its derivatives are most commonly used as a pharmaceutical, food colouring agent and as a corrosion inhibitor. It has chemistry and chemical characteristics due to nitrogen atoms present which can be obtained from both naturally and synthetically. A pyrazine and its derivatives are used effectively in corrosion media to prevent metal and metal alloy from corrosion. Chemical and electrochemical methods are commonly used as corrosion monitoring techniques, in which weight loss EIS and PDP are prominent. Their mixed type of nature has been reported in previously published works. There have also been works on the use of computation calculation in recent works, which include DFT calculation and MD Simulation are the main ones. The future research related to the pyrazine has also been highlighted.
Keywords
Pyrazine, Metals, Solution, Computational, Electrochemical
Published online 11/3/2020, 22 pages
Citation: A.K. Dewangan, Y. Dewangan, D.K. Verma, Pyrazine Derivatives as Green Corrosion Inhibitors, Materials Research Foundations, Vol. 86, pp 161-182, 2021
DOI: https://doi.org/10.21741/9781644901052-6
Part of the book on Theory and Applications of Green Corrosion Inhibitors
References
[1] K. Saha, S. Dutta, A. Ghosh, P. Sukul, D. Banerjee, Adsorption and corrosion inhibition effect of schiff base molecules on the mild steel surface in 1 m hcl medium: A combined experimental and theoretical approach, Phys. Chem. Chem. Phys, 17 (2015) 5679–5690. https://doi.org/10.1039/C4CP05614K
[2] D.K. Verma, E.E. Ebenso, M.A. Quraishi, C. Verma, Gravimetric, electrochemical surface and density functional theory study of acetohydroxamic and benzohydroxamic acids as corrosion inhibitors for copper in 1M HCl, Results Phys. 13 (2019) 102194. https://doi.org/10.1016/j.rinp.2019.102194
[3] Y. Qiang, S. Zhang, S. Xu, W. Li, Experimental and theoretical studies on the corrosion inhibition of copper by two indazole derivatives in 3.0% NaCl solution, J. Colloid Interface Sci. 472 (2016) 52–59. https://doi.org/10.1016/j.jcis.2016.03.023
[4] C. Verma, L. Olasunkanmi, I. Obot, E.E. Ebenso, M.A. Quraishi, 5-Arylpyrimido-[4, 5-b]quinoline-diones as new and sustainable corrosion inhibitors for mild steel in 1 M HCl: a combined experimental and theoretical approach, RSC Adv. 6 (2016) 15639–15654. https://doi.org/10.1039/C5RA27417F
[5] S. Deng, X. Li, X. Xie, Hydroxymethyl urea and 1, 3-bis (hydroxymethyl) urea as corrosion inhibitors for steel in HCl solution, Corros. Sci. 80 (2014) 276–289. https://doi.org/10.1016/j.corsci.2013.11.041
[6] D.K. Verma, F. Khan, Corrosion inhibition of mild steel in hydrochloric acid using extract of glycine max leaves, Res. Chem. Intermediat. 42 (2016) 3489–3506. https://doi.org/10.1007/s11164-015-2227-7
[7] F. Bentiss, M. Traisnel, L. Gengembre, M. Lagrenée, Inhibition of acidic corrosion of mild steel by 3,5-diphenyl-4H-1,2,4-triazole, Appl. Surf. Sci. 161 (2000) 194– 202. https://doi.org/10.1016/S0169-4332(00)00287-7
[8] G. Moretti, 5-Amino- and 5-chloro-indole as mild steel corrosion inhibitors in 1 N sulphuric acid, Electrochim. Acta. 41 (1996) 1971–1980. https://doi.org/10.1016/0013-4686(95)00485-8
[9] M. Düdükcü, B. Yazici, M. Erbil, The effect of indole on the corrosion behaviour of stainless steel, Mater. Chem. Phys. 87 (2004) 138–141. https://doi.org/10.1016/j.matchemphys.2004.05.043
[10] W.W.K.R. Mederski, D. Kux, M. Knoth, J. Markus, Pyrido[3,4-b] pyrazines: A new application of 2-Chloro-3,4-diaminopyridine, Heterocycles. 60 (2003) 925 932. https://doi.org/10.3987/COM-02-9666
[11] M. Bouklaha, A. Attayibatb, B. Hammoutia, A. Ramdanib, S. Radib, M. Benkaddoura , Pyridine–pyrazole compound as inhibitor for steel in 1 M HCl, Appl. Surf. Sci. 240 (2005) 341–348. https://doi.org/10.1016/j.apsusc.2004.07.001
[12] S. Bourichi, Y. Kandri Rodi, M. El-Azzouzi, Y. Kharbach, F. Ouazzani Chahdi, A. Aouniti, nhibitive effect of new synthetized imidazopyridine derivatives for the mild steel corrosion in Hydrochloric acid medium, J. Mater. Environ. Sci. 8(5) (2017) 1696-1807.
[13] A. Ehsani, M.G. Mahjani, R. Moshrefi, H. Mostaanzadeha, J.S. Shayeh, Electrochemical and DFT Study on the Inhibition of 316L Stainless Steel Corrosion in Acidic Medium by 1-(4-nitrophenyl)-5-amino-1H-tetrazole. RSC Adv. 4 (2014) 20031–20037. https://doi.org/10.1039/C4RA01029A
[14] F. El-Hajjaji, B. Zerga, M. Sfaira, M. Taleb, M. Ebn-Touhami, B. Hammouti, S. Al- Salem, H. Benzeid, El. M. Essassi,. Comparative Study of Novel N-Substituted Quinoxaline Derivatives towards Mild Steel Corrosion in Hydrochloric Acid, J. Mater. Environ. Sci. 5(1) (2014) 255–262.
[15] A. Zarrouk, B. Hammouti, A. Dafali, M. Bouachrine, H. Zarrok, S. Boukhris, S.S.A. Al- Deyab, Theoretical Study on the Inhibition Efficiencies of Some Quinoxalines as Corrosion Inhibitors of Copper in Nitric Acid. J. Saudi Chem. Soc. 18 (2014) 450–455. https://doi.org/10.1016/j.jscs.2011.09.011
[16] A.Y. Musa, R.T.T. Jalgham, A.B. Mohamad, Molecular dynamic and quantum chemical calculations for phthalazine derivatives as corrosion inhibitors of mild steel in 1 M HCl, Corros. Sci. 56 (2012) 176–183. https://doi.org/10.1016/j.corsci.2011.12.005
[17] A. Khadiria, R. Saddik , K. Bekkouche, A. Aouniti, B. Hammouti, N. Benchat, M. Bouachrine, R. Solmaz,, Gravimetric, electrochemical and quantum chemical studies of some pyridazine derivatives as corrosion inhibitors for mild steel in 1M HCl solution, J. Taiwan Ins. Chem. Eng. (2015) 1–13. https://doi.org/10.1016/j.jtice.2015.06.031
[18] A. Ghazoui, N. Bencaht, S.S. Al-Deyab, A. Zarrouk, B. Hammouti, M. Ramdani, M. Guenbour, An investigation of two novel pyridazine derivatives as corrosion inhibitor for C38 steel in 1.0 M HCl, Int. J. Electrochem. Sci. 8 (2013) 2272 – 2292.
[19] L. Herrag, A. Chetouani, S. Elkadiri, B. Hammouti, A. Aouniti, Pyrazole derivatives as corrosion inhibitors for steel in hydrochloric acid, Port. Electrochim. Acta. 26 (2008) 211-220. https://doi.org/10.4152/pea.200802211
[20] L. Madhavi, V. Sadasivam, B. Sivasankar, A highly selective synthesis of pyrazine from ethylenediamine on copper oxide/copper chromite catalysts, Catal. Comm. 8 (2007) 1070–1073. https://doi.org/10.1016/j.catcom.2006.06.007
[21] P. Ghosh, A. Mandal, Greener approach toward one pot route to pyrazine synthesis, Green Chem. Lett. Rev. 5 (2012) 127-134. https://doi.org/10.1080/17518253.2011.585182
[22] H. Masuda, S. Mihara, Olfactive properties of Alkylpyrazines and 3-substituted 2-Alkylpyrazines, J. Agr. Food. Chem. 36 (1988) 583-587. https://doi.org/10.1021/jf00081a044
[23] H. Masuda, M. Yoshida, T. Shibamoto, Synthesis of new pyrazines for flavor use, J. Agr. Food Chem. 29 (1981) 944-947. https://doi.org/10.1021/jf00107a014
[24] J. James. Kaminski, D.G. Perkins, J.D. Frantz, D.M. Solomon, A.J. Elliott, P.J.S. Chiu, J.F. Long, Antiulcer Agents. 3. Structure- Activity-Toxicit y Relations hips of Substituted Imidazo[ 1,243 ]pyridines and a Related Imidazo[ 1,2-a Ipyrazine, J. Med. Chem. 30 (1987) 2047-2051. https://doi.org/10.1021/jm00394a019
[25] I.B. Obot, S.A. Umoren, N.K. Ankah, Pyrazine derivatives as green oil field corrosion inhibitors for steel. J. Mol. Liq. 277 (2019) 749-761. https://doi.org/10.1016/j.molliq.2018.12.108
[26] H. Behzadi, S. Manzetti, M. Dargahid, P. Roonasia, Z. khalilniaa, Application of calculated NMR parameters, aromaticity indices and wavefunction properties for evaluation of corrosion inhibition efficiency of pyrazine inhibitors, J. Mol. Struct. 115 (2018) 34-40. https://doi.org/10.1016/j.molstruc.2017.09.029
[27] H. Behzadi, P. Roonasi, M.J. Momeni, S. Manzetti, M.D. Esrafili, I.B. Obot, M. Yousefvand, S. Morteza, M. Khoshdel, A DFT study of pyrazine derivatives and their Fe complexes in corrosion inhibition process, J. Mol. Struct. 1086 (2015) 64–72. https://doi.org/10.1016/j.molstruc.2015.01.008
[28] L.O. Olasunkanmi, Mabine F.S., E.E. Eno, Influence of 6-phenyl-3(2H)-pyridazinone and 3-chloro-6-phenylpyrazine on mild steel corrosion in 0.5 M HCl medium: Experimental and theoretical studies, J. Mol. Struct.1149 (2017) 549-559. https://doi.org/10.1016/j.molstruc.2017.08.018
[29] D. Huang, Y. Tu, G. Song, X. Guo, Inhibition effects of pyrazine and piperazine on the corrosion of Mg-10Gd-3Y-0.5Zr alloy in an ethylene glycol solution, Am. J. Anal. Chem. 3 (2013) 36-38. https://doi.org/10.4236/ajac.2013.46A005
[30] J. Saranya, P. Sounthari, K. Parameswari, S. Chitra, Acenaphtho[1,2-b]quinoxaline and acenaphtho[1,2-b]pyrazine as corrosion inhibitors for mild steel in acid medium, J. Meas. 77 (2016) 175–186. https://doi.org/10.1016/j.measurement.2015.09.008
[31] M. Bouklaha, A. Attayibat, S. Kertit, A. Ramdani, B. Hammouti, A pyrazine derivative as corrosion inhibitor for steel in sulphuric acid solution, Appl. Surf. Sci. 242 (2005) 399–406. https://doi.org/10.1016/j.apsusc.2004.09.005
[32] X. Li, S. Deng, H. Fu, Three pyrazine derivatives as corrosion inhibitors for steel in 1.0 M H2SO4 solution, Corro. Sci. 53 (2011) 3241–3247. https://doi.org/10.1016/j.corsci.2011.05.068
[33] I.B. Obot, Z.M. Gasem, Theoretical evaluation of corrosion inhibition performance of some pyrazine derivatives, Corros. Sci. 83 (2014) 359–366. https://doi.org/10.1016/j.corsci.2014.03.008
[34] S. Deng, X. Li, H. Fu, Two pyrazine derivatives as inhibitors of the cold rolled steel corrosion in hydrochloric acid solution, Corros. Sci. 53 (2011) 822–828. https://doi.org/10.1016/j.corsci.2010.11.019
[35] M. Kissi, M. Bouklah, B. Hammouti, M. Benkaddour, Establishment of equivalent circuits from electrochemical impedance spectroscopy study of corrosion inhibition of steel by pyrazine in sulphuric acidic solution, Appl. Surf. Sci. 252 (2006) 4190–4197. https://doi.org/10.1016/j.apsusc.2005.06.035
[36] R. Chopra, K. Kansal, R. Kumar, G. Singh, Electrochemical, morphological and anti-corrosive characteristics of pyrazine derivatives for mild steel corrosion in aggressive medium: A comparative study, J. Fail. Anal. Prev.
[37] S. Zhang, H. Li, L. Wang, D. Liu, E. Ping, P. Zou, T. Ma, N. Li, New pyrazine derivatives as efficient inhibitors on mild steel corrosion in hydrochloric medium, Chem. Eng. Trans. 55 (2016) 289-29.
[38] S.K. Saha, A. Hens, A.R. Chowdhury, A.K. Lohar, N.C. Murmu, P. Banerjee, Molecular Dynamics and Density Functional Theory Study on Corrosion Inhibitory Action of Three Substituted Pyrazine Derivatives on Steel Surface, 2 (2014) 489-503. https://doi.org/10.13179/canchemtrans.2014.02.04.0137
[39] L.O. Olasunkanmi, Mabine F.S., E.E. Eno, Influence of 6-phenyl-3(2H)-pyridazinone and 3-chloro-6-phenylpyrazine on mild steel corrosion in 0.5 M HCl medium: Experimental and theoretical studies, J. Mol. Struct.1149 (2017) 549-559. https://doi.org/10.1016/j.molstruc.2017.08.018
[40] A.A. Massoud, A. Hefnawy, V. Langer, M.A. Khatab, L. Öhrstrom, M.A.M. Abu-Youssef, Synthesis, X-ray structure and anti-corrosion activity of two silver(I) pyrazino complexes, Polyhedron 28 (2009) 2794–2802. https://doi.org/10.1016/j.poly.2009.05.064
[41] M. Kissi, M. Bouklah, B. Hammouti, M. Benkaddour, Establishment of equivalent circuits from electrochemical impedance spectroscopy study of corrosion inhibition of steel by pyrazine in sulphuric acidic solution, Appl. Surf. Sci. 252 (2006) 4190–4197. https://doi.org/10.1016/j.apsusc.2005.06.035
[42] A.A. Farag T.A. Ali, The enhancing of 2-pyrazinecarboxamide inhibition effect on the acid corrosion of carbon steel in presence of iodide ions, J. Ind. Eng. Chem. 21 (2015) 627-634. https://doi.org/10.1016/j.jiec.2014.03.030
[43] M.Y. Hjouji, M. Djedid, H. Elmsellem, Y.K. Rodi, Y. Ouzidan, F. Ouazzani Chahdi, N.K. Sebbar, E.M. Essassi, I. Abdel-Rahman, B. Hammouti, Corrosion inhibition of mild steel in hydrochloric acid solution by pyrido[2,3-b]pyrazine derivative: Electrochemical and theoretical evaluation, J. Mater. Environ. Sci. 7 (4) (2016) 1425-1435
[44] J.A.M. Abdulwahed, A. Attia, M.R. Elsayad, A.M. Eldesoky, Inhibitive effect of azine and diazine derivatives on the corrosion of cyclic stressed 316l SS in acidic media, Int. J. Sci. Eng. Res. 5 (2014) 342-356.
[45] L. Olasunkanmi, I.B. Obot, M.M. Kabanda, E.E. Ebenso, Some quinoxalin-6-yl derivatives as corrosion inhibitors for mild steel in hydrochloric acid: Experimental and theoretical studies, J. Phys. Chem. C 2015 (1-36). https://doi.org/10.1021/acs.jpcc.5b03285
[46] L. Lei, F. Pan, J. Li, Environmentally friendly corrosion inhibitors for magnesium alloys, in: F. Czerwinski (Ed.), Magnesium Alloys – Corrosion and Surface Treatments, Intech Publishers, 2011, pp. 47-64
[47] H. Lgaz, R. Salghi, S. Jodeh, Y. Ramli, M. Larouj, K. Toumiat, M.A. Quraishi, H. Oudda, W. Jodeh, Understanding the adsorption of quinoxaline derivatives as corrosion inhibitors for mild steel in acidic medium: Experimental, theoretical and molecular dynamic simulation studies, J. Steel. Struct. Constr. 2 (2016) 1-17. https://doi.org/10.4172/2472-0437.1000111
[48] M.Y. Hjouji, M. Djedid, H. Elmsellem, Y..K Rodi, M. Benalia, H. Steli, Y. Ouzidan, F.O. Chahdi, E.M. Essassi, B. Hammouti, Synthesis of novel pyrido[2,3-b]pyrazine derivative evaluated theoretically and electrochemically as a corrosion inhibitor for mild steel in 1M HCl solutions, Der. Pharma. Chemica. 8 (2016) 85-95.
[49] P.M. Nouri, M.M. Attar, Experimental and quantum chemical studies on corrosion inhibition performance of fluconazole in hydrochloric acid solution, Bull. Mater. Sci. 38 (2015) 499–509. https://doi.org/10.1007/s12034-015-0865-4
[50] P. Premkumar, K. Kannan, M. Natesan. Effect of menthol coated craft paper on corrosion of copper in HCl environment, Bull. Mater. Sci. 33 (2010) 307–311. https://doi.org/10.1007/s12034-010-0047-3
[51] M.A. Migahed, M. ABD-EL-Raouf, A.M. AL-Sabagh, H.M. ABD-El-Bary. Corrosion inhibition of carbon steel in acid chloride solution using ethoxylated fatty alkyl amine surfactants. J. Appl. Electrochem. 36 (2006) 395–402. https://doi.org/10.1007/s10800-005-9094-7
[52] R. Mahmoud, N. El-Dn. E.A. Khamis, Corrosion inhibition efficiency, electrochemical and quantum chemical studies of some new nonionic surfactants for carbon steel in acidic media, J. Surfact. Deterg. 17 (2014) 795–805. https://doi.org/10.1007/s11743-014-1565-6
[53] M. Sobhi, R. El-Sayed, M. Abdallah. The effect of non ionic surfactants containing triazole, thiadiazole and oxadiazole as inhibitors of the corrosion of carbon steel in 1M hydrochloric acid, J. Surfact. Deterg. 16 (2013) 937–946. https://doi.org/10.1007/s11743-013-1468-y
[54] U.F. Ekanem, S.A. Umoren, I. Udousoro, A.P. Udoh, Inhibition of mild steel corrosion in HCl using pineapple leaves (ananas comosus l.) extract, J. Mater. Sci. 45 (2010) 5558–5566. https://doi.org/10.1007/s10853-010-4617-y
[55] A. Ousslim, K. Bekkouch, B. Hammouti, A. Elidrissi, A. Aouniti, Piperazine derivatives as inhibitors of the corrosion of mild steel in 3.9 M HCl, J. Appl. Electrochem.39 (2009) 1075–1079. https://doi.org/10.1007/s10800-008-9759-0
[56] I.A. Mohamed, Eco friendly corrosion inhibitors: inhibitive action of quinine for corrosion of low carbon steel in 1 M HCl, J. Appl. Electrochem. 36 (2006) 1163–1168. https://doi.org/10.1007/s10800-006-9204-1
[57] S.A. Umoren, I.B. Obot, N.O. Obi-egbedi, Raphia hookeri gum as a potential eco-friendly inhibitor for mild steel in sulfuric acid. J. Mater. Sci. 44 (2009) 274–279. https://doi.org/10.1007/s10853-008-3045-8
[58] A.A Nazeer, K. Shalabi, A.S. Fouda, Corrosion inhibition of carbon steel by roselle extract in hydrochloric acid solution: Electrochemical and surface study, Res. Chem. Intermed. 41 (2015) 4833–4850. https://doi.org/10.1007/s11164-014-1570-4
[59] Verajeswari. K. Devarayan, G. Mayakrishnan, V. Periasamy, Inhibition of cast iron corrosion in acid, base, and neutral media using schiff base derivatives. J. Surfact. Deterg. 16 (2013) 571–580. https://doi.org/10.1007/s11743-013-1439-3
[60] D.K. Verma, F. Khan, C.B. Verma, R. Susai, M.A. Quraishi, Experimental and theoretical studies on mild steel corrosion inhibition by the grieseofulvin in 1M HCl, Eur. Chem. Bull. 6 (2017) 21-30. https://doi.org/10.17628/ecb.2017.6.21-30
[61] G. Mohamed, B. Ahmad, Z. Basem, Inhibition of mild steel corrosion in sulfuric acid solution using collagen. Res. Chem Intermed. 41 (2015) 7245-7261. https://doi.org/10.1007/s11164-014-1809-0
[62] P. Premkumar, K. Kannan, M. Natesan, Effect of menthol coated craft paper on corrosion of copper in HCl environment. Bull. Mater. Sci. 33 (2010) 307–311. https://doi.org/10.1007/s12034-010-0047-3
[63] V. Kumar, K.P.S.N. Pillai, M.R. Thusnavis G., Green corrosion inhibitor from seed extract of areca catechu for mild steel in hydrochloric acid medium, J. Mater. Sci. 46 (2011) 5208–5215. https://doi.org/10.1007/s10853-011-5457-0
[64] W.H. Li, H. Qiao, T.Z. Sheng, L.P. Chang, R.H. Bao, Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium, J. Appl. Electro. Chem. 38 (2008) 289–295. https://doi.org/10.1007/s10800-007-9437-7