Green Corrosion Inhibitors for Technological Applications
P. Jain, S. Raghav, D. Kumar
Corrosion is an inevitable fact of day-to-day life, and however, because of its technological, economic, and aesthetic significance, it always receives much attention. Most of the corrosion inhibitors are environmentally harmful and toxic synthetic chemicals. In view of the toxicity of the inhibitors, the search for an eco-friendly and non-toxic corrosion inhibitor is of great interest. Green corrosion inhibitors are of concern because of increased awareness and improvements in regulations related to the environment because of their toxicity, restrict regular corrosion inhibitors. The extracts of natural products contain compounds having oxygen, carbon, nitrogen and sulfur. Such elements facilitate compounds to absorb on the surface of metal, forming a protective film to prevent corrosion. The main purpose of this chapter is to provide a comprehensive study of technological applications of green corrosion inhibitors in different industries, such as reinforced concrete, coating, aircraft, oil and gas, acid pickling, and water industry.
Keywords
Corrosion, Green Inhibitors, Eco-Friendly, Non-Toxic, Natural Products, Applications
Published online 11/3/2020, 34 pages
Citation: P. Jain, S. Raghav, D. Kumar, Green Corrosion Inhibitors for Technological Applications, Materials Research Foundations, Vol. 86, pp 127-160, 2021
DOI: https://doi.org/10.21741/9781644901052-5
Part of the book on Theory and Applications of Green Corrosion Inhibitors
References
[1] P. Singh, V. Srivastava, M.A. Quraishi, Novel quinoline derivatives as green corrosion inhibitors for mild steel in acidic medium: Electrochemical, SEM, AFM, and XPS studies, J. Mol. Liq. 216 (2016) 164-173. https://doi.org/10.1016/j.molliq.2015.12.086
[2] N. Kicir, G. Tansug, M. Erbil, T. Tuken, Investigation of ammonium (2, 4-dimethylphenyl)-dithiocarbamate as a new, effective corrosion inhibitor for mild steel, Corros. Sci. 105 (2016) 88-99. https://doi.org/10.1016/j.corsci.2016.01.006
[3] L.Li, X. Zhang, S. Gong, H. Zhao, Y. Bai, Q. Li, L. Ji, The discussion of descriptors for the QSAR model and molecular dynamics simulation of benzimidazole derivatives as corrosion inhibitors, Corros. Sci. 99 (2015) 76-88. https://doi.org/10.1016/j.corsci.2015.06.003
[4] H.Q. Yang, Q. Zhang, S.S. Tu, Y. Wang, Y.M. Li, Y. Huang, Effects of inhomogeneouselastic stress on corrosion behaviour of Q235 steel in 3.5% NaCl solution using a novel multichannel electrode technique, Corros. Sci. 110 (2016) 1-14. https://doi.org/10.1016/j.corsci.2016.04.017
[5] W. Mai, S. Soghrati, R.G. Buchheit, A phase field model for simulating the pitting corrosion, Corros. Sci. 110 (2016) 157-166. https://doi.org/10.1016/j.corsci.2016.04.001
[6] R. Hummel, Alternative futures for corrosion and degradation research, Potomac Institute Press, Arlington, 2014.
[7] R. Mohammadinejad, S. Karimi, S. Iravani, R.S. Varma, Plant-derived nanostructures: types and applications, Green Chem. 18 (2016) 20-52. https://doi.org/10.1039/C5GC01403D
[8] A. Singh, S. Mohapatra, B. Pani, Corrosion inhibition effect of Aloe Vera gel: Gravimetric and electrochemical study, J. Ind. Eng. Chem. 33 (2016) 288-297. https://doi.org/10.1016/j.jiec.2015.10.014
[9] M. Prabakaran, S.H. Kim, V. Hemapriya, M. Gopiraman, I.S. Kim, I.M. Chung, Rhus vernicifluaas a green corrosion inhibitor for mild steel in 1 M H2SO4, RSC Adv. 6 (2016) 57144-57153. https://doi.org/10.1039/C6RA09637A
[10] G. Bahlakeh, M. Ramezanzadeh, B. Ramezanzadeh, Experimental and theoretical studies of the synergistic inhibition effects between the plant leaves extract (PLE) and zinc salt (ZS) in corrosion control of carbon steel in chloride solution, J. Mol. Liq. 248 (2017) 854-870. https://doi.org/10.1016/j.molliq.2017.10.120
[11] J. Haque, V. Srivastava, C. Verma, M.A. Quraishi, Experimental and quantum chemicalanalysis of 2-amino-3-((4-((S)-2-amino-2-carboxyethyl)-1H-imidazol-2-yl)thio)propionicacidas new and green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution, J. Mol. Liq. 225 (2017) 848-855. https://doi.org/10.1016/j.molliq.2016.11.011
[12] S.R. Kumar, I. Danaee, M. RashvandAvei, M. Vijayan, Quantum chemical andexperimental investigations on equipotent effects of (+) R and (−) S enantiomers of racemic amisulpride as eco-friendly corrosion inhibitors for mild steel in acidic solution, J. Mol. Liq. 212 (2015) 168-180. https://doi.org/10.1016/j.molliq.2015.09.001
[13] M. Srivastava, P. Tiwari, S.K. Srivastava, R. Prakash, G. Ji, Electrochemical investigation of Irbesartan drug molecules as an inhibitor of mild steel corrosion in 1 M HCl and 0.5 M H2SO4 solutions, J. Mol. Liq. 236 (2017) 184-197. https://doi.org/10.1016/j.molliq.2017.04.017
[14] K. Anupama, K. Ramya, A. Joseph, Electrochemical and computational aspects of surface interaction and corrosion inhibition of mild steel in hydrochloric acid by Phyllanthus amarus leaf extract (PAE), J. Mol. Liq. 216 (2016) 146-155. https://doi.org/10.1016/j.molliq.2016.01.019
[15] M. ur Rahman, S. Gul, M. Umair, A. Anwar, A. Achakzai, Anticorrosive Activity of Rosemarinu officinalis L. Leaves Extract Against Mild Steel in Dilute Hydrochloric Acid, Inter. J. Innovative Res. Adv. Eng. 3 (2016) 385-43.
[16] C. Verma, E.E. Ebenso, M.A. Quraishi, Corrosion inhibitors for ferrous and non-ferrous metals and alloys in ionic sodium chloride solutions: A review, J. Mol. Liq. 248 (2017) 927-942. https://doi.org/10.1016/j.molliq.2017.10.094
[17] P. Singh, M. Makowska-Janusik, P. Slovensky, M.A. Quraishi, Nicotinonitriles as green corrosion inhibitors for mild steel in hydrochloric acid: Electrochemical, computational andsurface morphological studies, J. Mol. Liq. 220 (2016) 71-81. https://doi.org/10.1016/j.molliq.2016.04.042
[18] Y. Li, D. Wang,L. Zhang, Experimental and theoretical research on a new corrosion inhibitor for effective oil and gas acidification, RSC Adv. 9 (2019) 26464-26475. https://doi.org/10.1039/C9RA04638K
[19] M. Basik, M. Mobin, M. Shoeb, Cysteine-silver-gold Nanocomposite as potential stable green corrosion inhibitor for mild steel under acidic condition, Sci. Rep. 10 (2020) 279. https://doi.org/10.1038/s41598-019-57181-5
[20] P. Dauthal, M. Mukhopadhyay, Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications, Ind. Eng. Chem. Res. 55 (2016) 9557-9577. https://doi.org/10.1021/acs.iecr.6b00861
[21] B. Sanyal, Organic compounds as corrosion inhibitors in different environments-A review, Prog. Org. Coat. 9 (1981) 165-236. https://doi.org/10.1016/0033-0655(81)80009-X
[22] K. Hu, J. Zhuang, C. Zheng, Z. Ma, L. Yan, H. Gu, X. Zeng, J. Ding, Effect of novelcytosine-l-alanine derivative based corrosion inhibitor on steel surface in acidic solution, J. Mol. Liq. 222 (2016) 109-117. https://doi.org/10.1016/j.molliq.2016.07.008
[23] B. Ramezanzadeh, H. Vakili, R. Amini, The effects of addition of poly (vinyl) alcohol(PVA) as a green corrosion inhibitor to the phosphate conversion coating on the anticorrosion and adhesion properties of the epoxy coating on the steel substrate, Appl. Surf. Sci. 327(2015) 174-181. https://doi.org/10.1016/j.apsusc.2014.11.167
[24] P. Parthipan, J. Narenkumar, P. Elumalai, P.S. Preethi, A.U.R. Nanthini, A. Agrawal, A. Rajasekar, Neem extract as a green inhibitor for microbiologically influenced corrosion of carbon steel API 5LX in a hypersaline environments, J. Mol. Liq. 240 (2017) 121-127. https://doi.org/10.1016/j.molliq.2017.05.059
[25] E. Alibakhshi, M. Ramezanzadeh, G. Bahlakeh, B. Ramezanzadeh, M. Mahdavian, M. Motamedi, Glycyrrhiza glabra leaves extract as a green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution: Experimental, molecular dynamics, Monte Carlo and quantum mechanics study, J. Mol. Liq. 255 (2018) 185-198. https://doi.org/10.1016/j.molliq.2018.01.144
[26] S. Mo, L.J. Li, H.Q. Luo, N.B. Li, An example of green copper corrosion inhibitors derivedfrom flavor and medicine: Vanillin and isoniazid, J. Mol. Liq. 242 (2017) 822-830. https://doi.org/10.1016/j.molliq.2017.07.081
[27] M.V. Diamanti, U.V. Velardi, A. Brenna, A. Mele, M. Pedeferri, M. Ormellese, Compatibility of imidazolium-based ionic liquids for CO2 capture with steel alloys: a corrosion perspective, Electrochim. Acta 192 (2016) 414-421. https://doi.org/10.1016/j.electacta.2016.02.003
[28] S. Yesudass, L.O. Olasunkanmi, I. Bahadur, M.M. Kabanda, I. Obot, E.E. Ebenso, Experimental and theoretical studies on some selected ionic liquids with different cations/anions as corrosion inhibitors for mild steel in acidic medium, J. Taiwan Inst. Chem. E 64 (2016) 252-268. https://doi.org/10.1016/j.jtice.2016.04.006
[29] V. Srivastava, J. Haque, C. Verma, P. Singh, H. Lgaz, R. Salghi, M.A. Quraishi, Amino acid based imidazolium zwitterions as novel and green corrosion inhibitors for mild steel: Experimental, DFT and MD studies, J. Mol. Liq. 244 (2017) 340-352. https://doi.org/10.1016/j.molliq.2017.08.049
[30] F. El-Hajjaji, M. Messali, A. Aljuhani, M. Aouad, B. Hammouti, M. Belghiti, D. Chauhan, M.A. Quraishi, Pyridazinium-based ionic liquids as novel and green corrosion inhibitors of carbonsteel in acid medium: Electrochemical and molecular dynamics simulation studies, J. Mol. Liq. 249 (2018) 997-1008. https://doi.org/10.1016/j.molliq.2017.11.111
[31] S.K. Shetty, A.N. Shetty, Eco-friendly benzimidazolium based ionic liquid as a corrosion inhibitor for aluminum alloy composite in acidic media, J. Mol. Liq. 225 (2017) 426-438. https://doi.org/10.1016/j.molliq.2016.11.037
[32] R.A. Sheldon, Green chemistry and resource efficiency: towards a green economy, Green Chem. 18 (2016) 3180-3183. https://doi.org/10.1039/C6GC90040B
[33] M. Chellouli, D. Chebabe, A. Dermaj, H. Erramli, N. Bettach, N. Hajjaji, M. Casaletto, C. Cirrincione, A. Privitera, A. Srhiri, Corrosion inhibition of iron in acidic solution by a green formulation derived from Nigella sativa L, Electrochim. Acta 204 (2016) 50-59. https://doi.org/10.1016/j.electacta.2016.04.015
[34] N. M’hiri, D. Veys-Renaux, E. Rocca, I. Ioannou, N.M. Boudhrioua, M. Ghoul, Corrosion inhibition of carbon steel in acidic medium by orange peel extract and its main antioxidant compounds, Corros. Sci. 102 (2016) 55-62. https://doi.org/10.1016/j.corsci.2015.09.017
[35] S.A. Umoren, M.M. Solomon, Synergistic corrosion inhibition effect of metal cations and mixtures of organic compounds: A review, J. Environ. Chem. Eng. 5 (2017) 246-273. https://doi.org/10.1016/j.jece.2016.12.001
[36] C. Verma, E.E. Ebenso, M.A. Quraishi, Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: An overview, J. Mol. Liq. 233 (2017) 403-414. https://doi.org/10.1016/j.molliq.2017.02.111
[37] K. Rose, B.S. Kim, K. Rajagopal, S. Arumugam, K. Devarayan, Surface protection of steel in acid medium by Tabernaemontana divaricata extract: Physicochemical evidence for adsorption of inhibitor, J. Mol. Liq. 214 (2016) 111-116. https://doi.org/10.1016/j.molliq.2015.12.008
[38] B. Sanyal, Organic compounds as corrosion inhibitors in different environments-A review, Prog. Org. Coat. 9 (1981) 165-236. https://doi.org/10.1016/0033-0655(81)80009-X
[39] R.S. Varma, Greener and sustainable trends in synthesis of organics and nanomaterials, ACS Publications, ACS Sustainable Chem. Eng. 4 (2016) 5866-5878. https://doi.org/10.1021/acssuschemeng.6b01623
[40] M. Jokar, T.S. Farahani, B. Ramezanzadeh, Electrochemical and surface characterizations of Morus Alba Pendula leaves extract (MAPLE) as a green corrosion inhibitor for steel in 1 M HCl, J. Taiwan Inst. Chem. Eng. 63 (2016) 436-452. https://doi.org/10.1016/j.jtice.2016.02.027
[41] S. Kuppusamy, T. Palanisami, M. Megharaj, K. Venkateswarlu, R. Naidu, In-situ remediation approaches for the management of contaminated sites: a comprehensive overview, Rev. Environ.Contam.T236 (2016) 1-115. https://doi.org/10.1007/978-3-319-20013-2_1
[42] K. Anupama, K. Shainy, A. Joseph, Excellent anticorrosion behavior of Ruta Graveolens extract (RGE) for mild steel in hydrochloric acid: electro analytical studies on the effect of time, temperature, and inhibitor concentration, J. Bio-and Tribo-Corros. 2 (2016) 1-10. https://doi.org/10.1007/s40735-016-0032-5
[43] P. Deivanayagam, I. Malarvizhi, S. Selvaraj, Alcoholic extract of “Gymnema Sylvestre” leaves on mild steel in acid medium Quinquefasciatus say, Int. J. Adv. Sci. Res. 1 (2016) 21-27.
[44] Y. Chen, Y. Zhou, Q. Yao, Y. Bu, H. Wang, W. Wu, W. Sun, Evaluation of a low phosphorus terpolymer as calcium scales inhibitor in cooling water, Desalin. Water Treat. 55 (2015) 945-955. https://doi.org/10.1080/19443994.2014.922500
[45] S. Firdausi, F. Kurniawan, Corrosion inhibition by Tithonia diversifolia (Hemsl) A. Gray leaves extract for 304 SS in hydrochloric acid solution, J. Phys.: Conf. Ser., IOP Publishing, 710 (2016) 012042. https://doi.org/10.1088/1742-6596/710/1/012042
[46] K. Ramya, N. Muralimohan, Study on corrosion inhibitor in mild steel by various habitual plant extract-review, Int. J. Chemical Concepts 2 (2016) 70-75.
[47] K.H. Hassan, A.A. Khadom, N.H. Kurshed, Citrus aurantium leaves extracts as a sustainable corrosion inhibitor of mild steel in sulfuric acid, S. Afr. J. Chem. Eng. 22 (2016) 1-5. https://doi.org/10.1016/j.sajce.2016.07.002
[48] A. Singh, Cassia tora leaves extract as mild steel corrosion inhibitor in sulphuric acid solution, Imperial J. Interdisciplinary Res. 2 (2016) 698-701.
[49] S. Umoren, U. Eduok, M. Solomon, A. Udoh, Corrosion inhibition by leaves and stem extracts of Sidaacuta for mild steel in 1 M H2SO4 solutions investigated by chemical and spectroscopic techniques, Arab. J. Chem. 9 (2016) S209-S224. https://doi.org/10.1016/j.arabjc.2011.03.008
[50] O.O. Dominic, O. Monday, Optimization of the inhibition efficiency of Mango extract as corrosion inhibitor of mild steel in 1.0M H2SO4 using response surface methodology, J. Chem. Technol. Metall. 51 (2016) 302-314.
[51] H. Wang, M. Gao, Y. Guo, Y. Yang, R. Hu, A natural extract of tobacco rob as scale and corrosion inhibitor in artificial seawater, Desalination 398 (2016) 198-207. https://doi.org/10.1016/j.desal.2016.07.035
[52] M.J. Meften, N.Z. Rajab, M.T. Finjan, Synthesis of new heterocyclic compound used as corrosion inhibitor for crude oil pipelines, Am. Sci. Res. J. Eng. Technol. Sci. 27 (2017) 419-437.
[53] O.U. Abakedi, V.F. Ekpo, E.E. John, Corrosion inhibition of mild steel by Stachytarpheta indica leaf extract in acid medium, Pharma. Chem. J. 3 (2016) 165-171.
[54] M. Omotioma, O. Onukwuli, Evaluation of pawpaw leaves extract as anti-corrosion agent for aluminium in hydrochloric acid medium, Niger. J. Tech. 36 (2017) 496-504. https://doi.org/10.4314/njt.v36i2.24
[55] M.S. Singh, S. Chowdhury, Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis, RSC Adv. 2 (2012) 4547-4592. https://doi.org/10.1039/c2ra01056a
[56] Q. Deng, H.W. Shi, N.N. Ding, B.Q. Chen, X.P. He, G. Liu, Y. Tang, Y.T. Long, G.R. Chen, Novel triazolyl bis-amino acid derivatives readily synthesized via click chemistry as potential corrosion inhibitors for mild steel in HCl, Corros. Sci. 57 (2012) 220-227. https://doi.org/10.1016/j.corsci.2011.12.014
[57] A. Aljuhani, W.S. El-Sayed, P.K. Sahu, N. Rezki, M.R. Aouad, R. Salghi, M. Messali, Microwave-assisted synthesis of novel imidazolium, pyridinium and pyridazinium-based ionic liquids and/or salts and prediction of physico-chemical properties for their toxicity and antibacterial activity, J. Mol. Liq.249 (2018) 747-753. https://doi.org/10.1016/j.molliq.2017.11.108
[58] R.C. Cioc, E. Ruijter, R.V. Orru, Multicomponent reactions: advanced tools for sustainable organic synthesis, Green Chem. 16 (2014) 2958-2975. https://doi.org/10.1039/C4GC00013G
[59] D.I. Njoku, I. Ukaga, O.B. Ikenna, E.E. Oguzie, K.L. Oguzie, N. Ibisi, Natural products for materials protection: Corrosion protection of aluminium in hydrochloric acid by Kola nitida extract, J. Mol. Liq. 219 (2016) 417-424. https://doi.org/10.1016/j.molliq.2016.03.049
[60] M. Deyab, Inhibition activity of seaweed extract for mild carbon steel corrosion in saline formation water, Desalination 384 (2016) 60-67. https://doi.org/10.1016/j.desal.2016.02.001
[61] R. Pathak, P. Mishra, Drugs as corrosion inhibitors: A review, Int. J. Sci. Res. 5 (2016) 671-677. https://doi.org/10.21275/v5i4.NOV162623
[62] C. Verma, D. Chauhan, M.A. Quraishi, Drugs as environmentally benign corrosion inhibitors for ferrous and nonferrous materials in acid environment: An overview, J. Mater. Environ. Sci. 8 (2017) 4040-4051.
[63] S.H. Zaferani, M. Sharifi, D. Zaarei, M.R. Shishesaz, Application of eco-friendly products as corrosion inhibitors for metals in acid pickling processes-A review, J. Environ. Chem. Eng. 1 (2013) 652-657. https://doi.org/10.1016/j.jece.2013.09.019
[64] M. Finsgar, J. Jackson, Application of corrosion inhibitors for steels in acidic media for theoil and gas industry: A review, Corros. Sci. 86 (2014) 17-41. https://doi.org/10.1016/j.corsci.2014.04.044
[65] D. Winkler, M. Breedon, A. Hughes, F. Burden, A. Barnard, T. Harvey, I. Cole, Towards chromate-free corrosion inhibitors: structure-property models for organic alternatives, Green Chem. 16 (2014) 3349-3357. https://doi.org/10.1039/C3GC42540A
[66] D. Kesavan, M. Gopiraman, N. Sulochana, Green inhibitors for corrosion of metals: A review, Chem. Sci. Rev. Lett. 1 (2012) 1-8.
[67] S.A. Umoren, U.M. Eduok, Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: A review, Carbohyd. Polym. 140 (2016) 314-341. https://doi.org/10.1016/j.carbpol.2015.12.038
[68] C. Verma, L. Olasunkanmi, E.E. Ebenso, M.A. Quraishi, Substituents effect on corrosion inhibition performance of organic compounds in aggressive ionic solutions: A review, J. Mol. Liq. 251 (2017) 100-118. https://doi.org/10.1016/j.molliq.2017.12.055
[69] M. Antonijevic, M. Petrovic, Copper corrosion inhibitors. A review, Int. J. Electrochem. Sci. 3 (2008) 1-28.
[70] T.L. Metroke, R.L. Parkhill, E.T. Knobbe, Passivation of metal alloys using sol-gel derived materials-A review, Prog. Org. Coat. 41 (2001) 233-238. https://doi.org/10.1016/S0300-9440(01)00134-5
[71] M. Prabakaran, S.-H. Kim, K. Kalaiselvi, V. Hemapriya, I.-M. Chung, Highly efficient Ligularia fischeri green extract for the protection against corrosion of mild steel in acidic medium: Electrochemical and spectroscopic investigations, J. Taiwan Inst. Chem. Eng. 59 (2016) 553-562. https://doi.org/10.1016/j.jtice.2015.08.023
[72] C. Achebe, A. Ilogebe, J. Chukwuneke, O. Azaka, D. Ugwuegbu, Mild steel corrosion inhibition in h2so4 using ethanol extract of vernonia amygdalina, Inter. J. Eng. Sci., 2 (2016) 50-55.
[73] O.K. Abiola, N.C. Oforka, E.E. Ebenso, N.M. Nwinuka, Eco-friendly corrosion inhibitors: The inhibitive action of Delonix Regia extract for the corrosion of aluminium in acidic media, Anti-Corros. Method M54 (2007) 219-224. https://doi.org/10.1108/00035590710762357
[74] M.H. Hussain, A.A. Rahim, M.N.M. Ibrahim, N. Brosse, The capability of ultra filtrated alkaline and organosolv oil palm (Elaeis guineensis) fronds lignin as green corrosion inhibitor for mild steel in 0.5 M HCl solution, Measurement 78 (2016) 90-103. https://doi.org/10.1016/j.measurement.2015.10.007
[75] M.A. Quraishi, D.K. Yadav, I. Ahamad, Green approach to corrosion inhibition by black pepper extract in hydrochloric acid solution, Open Corros. J. 2 (2009) 56-60. https://doi.org/10.2174/1876503300902010056
[76] E.E. Ebenso, U.J. Ibok, U.J. Ekpe, S. Umoren, E. Jackson, O.K. Abiola, N.C. Oforka, S. Maritinez, Corrosion inhibition studies of some plant extracts on aluminium in acidic medium, Trans. SAEST 39 (2004) 117-123.
[77] H. Liu, Pipeline Engineering, Lewis Publishers, Boca Raton London, New York, Washington, D.C. 2003.
[78] L.T. Popoola, A.S. Grema, G.K. Latinwo, B. Gutti, A.S.Balogun, Corrosion Problems during Oil and Gas Production and its Mitigation, Intern. J. Indus. Chem. 35 (2013) 1-15. https://doi.org/10.1186/2228-5547-4-35
[79] C.J. Houghton, R.V. Westermark, North sea down hole corrosion: identifying the problem; implementing the solutions, J. Pet. Technol. 35 (1983) 239-246. https://doi.org/10.2118/11669-PA
[80] M. Bonis, J.-L. Crolet, Practical aspects of the influence of in situ pH on H2S-induced cracking, Corros. Sci. 27 (1987) 1059-1070. https://doi.org/10.1016/0010-938X(87)90098-9
[81] O. Fatoba, R. Akid, Low cycle fatigue behaviour of API 5l x65 pipeline steel at room temperature, Proc. Eng.74 (2014) 279-286. https://doi.org/10.1016/j.proeng.2014.06.263
[82] F.O. Kolawole, S.K. Kolawole, J.O. Agunsoye, J.A. Adebisi, S.A. Bello, S.B. Hassan, Mitigation of corrosion problems in API 5l steel pipeline-A review, J. Mater. Environ. Sci. 9 (2018) 2397-2410.
[83] N.O. Eddy, S.A. Odoemelam, Inhibition of the corrosion of mild steel in H2SO4 by ethanol extract of Aloe vera, Pigm. Res. Techn. 38 (2009) 111-115. https://doi.org/10.1108/03699420910940617
[84] A. Bouyanzer, B. Hammouti, L. Majidi, Pennyroyal oil from Mentha pulegium as corrosion inhibitor for steel in 1 M HCl, Mater. Lett. 60 (2006) 2840-2843. https://doi.org/10.1016/j.matlet.2006.01.103
[85] F.S. Souza, A. Spinelli, Caffeic acid as a green corrosion inhibitor for mild steel, Corros. Sci. 5 (2009) 642-649. https://doi.org/10.1016/j.corsci.2008.12.013
[86] P. Rajeev, A.O. Surendranathan, C.S.N. Murthy, Corrosion mitigation of the oil well steels using organic inhibitors-A review, J. Mater. Environ. Sci. 3 (2012) 856-869.
[87] A.K. Satapathy, G. Gunasekaran, S.C. Sahoo, K. Amit, P.V. Rodrigues, Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution, Corros. Sci. 51 (2009) 2848-2856. https://doi.org/10.1016/j.corsci.2009.08.016
[88] D.M.A. Njokua, K.I.O. Chidiebere, Corrosion inhibition of mild steel in hydrochloric acid solution by the leaf extract of Nicotiana tabacum, Adv. Mater. Corros. 1 (2013) 54-61.
[89] J.J. Bhawsar, Experimental and computational studies of Nicotiana tabacum leaves extract as green corrosion inhibitor for mild steel in acidic medium, Eng. J. 54 (2015) 769-775. https://doi.org/10.1016/j.aej.2015.03.022
[90] M.F. Azmi, J.W. Soedarsono, Study of corrosion resistance of pipeline API 5L X42 using green inhibitor bawang dayak (Eleutherine Americanna Merr.) in 1M HCl, IOP Conf. Series: Earth and Environ. Sci. 105 (2018) 012061. https://doi.org/10.1088/1755-1315/105/1/012061
[91] N.C. Ngobiri, E.E. Oguzie, Y. Li, L. Liu, N.C. Oforka, O. Akaranta, Eco-friendly corrosion inhibition of pipeline steel using brassica oleracea, Int. J. Corr. 2015 (2015) 1-9. https://doi.org/10.1155/2015/404139
[92] N. Muthukumar, S. Maruthamuthu, N. Palaniswamy, Green inhibitors for petroleum product pipelines, Electrochemistry 75 (2007) 50-53. https://doi.org/10.5796/electrochemistry.75.50
[93] H. Shan, J. Xu, Z. Wanga, L. Jiang, N. Xu, Electrochemical chloride removal in reinforced concrete structures: Improvement of effectiveness by simultaneous migration of silicate ion, Constr. Build. Mater. 127 (2016) 344-352. https://doi.org/10.1016/j.conbuildmat.2016.09.137
[94] Y.P. Asmara, T. Kurniawan, A.G.E. Sutjipto, J. Jafar, Application of plants extracts as green corrosion inhibitors for steel in concrete – A review, IJST3 (2018) 158-170. https://doi.org/10.17509/ijost.v3i2.12760
[95] V. Elfmarkova, P. Spiesz, H.J.H. Brouwers, Determination of the chloride diffusion coefficient in blended cement mortars, Cem. Concr. Res. 78 (2015) 190-199. https://doi.org/10.1016/j.cemconres.2015.06.014
[96] D. Zhang, Z. Ghouleh, Y. Shao, Review on carbonation curing of cement-based materials, Journal of CO2 Utilization 21 (2017) 119-131. https://doi.org/10.1016/j.jcou.2017.07.003
[97] F.L. Fei, J. Hu, J.X. Wei, Q.J. Yu, Z.S. Chen, Corrosion performance of steel reinforcement in simulated concrete pore solutions in the presence of imidazoline quaternary ammonium salt corrosion inhibitor, Constr. Build. Mater.70 (2014) 43-53. https://doi.org/10.1016/j.conbuildmat.2014.07.082
[98] H.S. Lee, H.S. Ryu, W.J. Park, M.A. Ismail, Comparative study on corrosion protection of reinforcing steel by using amino alcohol and lithium nitrite inhibitors, Materials (Basel) 8 (2015) 251-269. https://doi.org/10.3390/ma8010251
[99] E. Redaelli, L. Bertolini, Electrochemical repair techniques in carbonated concrete. Part I: Electrochemical realkalisation, J. Appl. Electrochem. 41 (2011) 817-827. https://doi.org/10.1007/s10800-011-0301-4
[100] A.S. Abdulrahman, M. Ismail, M.S. Hussain, Corrosion inhibitors for steel reinforcement in concrete: A review, Sci. Res. Essays 6 (2011) 4152-4162. https://doi.org/10.5897/SRE11.1051
[101] J. Xu, L. Jiang, W. Wang, L. Tang, L. Cui, Effectiveness of inhibitors in increasing chloride threshold value for steel corrosion. Water Science and Engineering 6 (2013) 354-363.
[102] P.B. Raja, S. Ghoreishiamiri, M. Ismail, Natural corrosion inhibitors for steel reinforcement in concrete-A review, World Scientific Publishing Company WSPC 22 (2015) 68-75. https://doi.org/10.1142/S0218625X15500407
[103] A.S. Abdulrahman, M. Ismail, Green plant extract as a passivation-promoting inhibitor forreinforced concrete, Int. J. Eng. Sci. Technol. 3(2011) 6484-6490.
[104] D.V. Ribeiro, M.P.T. Cunha Deterioracao das estruturas de concretoarmado. in: D.V. Ribeiro (Ed.), Corrosaoemestruturas de concretoarmado: Teoria, Controle e Metodos de Analise, Rio de Janeiro, Elsevier, 2014, pp. 87-118.
[105] Y. Liu, Z. Song, W. Wang, L. Jiang, Y. Zhang, M. Guo, F. Song, N. Xu, Effect of ginger extract as green inhibitor on chloride-induced corrosion of carbon steel in simulated concrete pore solutions, J. Clean. Prod. 214 (2019) 298-307. https://doi.org/10.1016/j.jclepro.2018.12.299
[106] A.S.E.F. Abbas, T.I. Torok, Corrosion studies of steel rebar samples in neutral sodium chloride solution also in the presence of a bio-based (green) inhibitor, Int. J. Corros. Scale Inhib. 7 (2018) 38-47.
[107] C. Lisha, M. Rajalingam, G. Sunilaa, Corrosion resistance of reinforced concrete with green corrosion, Int. J. Eng. Sci. Invent. Res. Develop. 3 (2017) 687-691.
[108] G.M. Akshatha, B.G.J. Kumar, H. Pushpa, Effect of corrosion inhibitors in reinforced concrete, Int. J. Innov. Res. Sci. Eng. Technol. 4 (2015) 6794-6801. https://doi.org/10.15680/IJIRSET.2015.0408013
[109] D.G. Eyu, H. Esah, C. Chukwuekezie, J. Idris, I. Mohammad, Effect of green inhibitor on the corrosion behaviour of reinforced carbon steel in concrete, ARPN J. Eng. Appl. Sci. 8 (2013) 326-332.
[110] S. Palanisamy, G. Maheswaran, C. Kamal, G. Venkatesh, Prosopisjuliflora-A green corrosion inhibitor for reinforced steel in concrete. Res. Chem. Intermediate. 42 (2016) 7823-7840. https://doi.org/10.1007/s11164-016-2564-1
[111] I.S. Pradipta, D.L.Y. Kong, J.T.B. Lee, Corrosion inhibition of green tea extract on steel reinforcing bar embedded in mortar, 14th International Conference on Concrete Engineering and Technology, IOP Conf. Series: Mater. Sci. Eng. 431 (2018) 042013. https://doi.org/10.1088/1757-899X/431/4/042013
[112] J.H. Sinduja, G.G. Kumar, Effect of green corrosion inhibitors on the corrosion behaviour of reinforced concrete, Int. Res. J. Eng. Tech. 6 (2019) 1656-1661.
[113] F. Wu, J. Xia, X. Liu, W. Zhai, X. Yuan, J. Yao, X. Xiao, Corrosion inhibition of gatifloxacin on mild steel in 3% HCl solution, Corros. Sci. Prot. Technol. 28 (2016) 560-564.
[114] E.E Oguzie, Evaluation of the inhibitive effect of some plant extracts on the acid corrosion of mild steel, Corros. Sci. 50 (2008) 2993-2998. https://doi.org/10.1016/j.corsci.2008.08.004
[115] X.D. Zhang, G. Yv, F. Xv, Research on inhibition effect of multi-function pickling corrosion inhibitor, Contemp. Chem. Ind. 2 (2016) 279-281.
[116] E.R. Clemente, J.G. Gonzalez-Rodriguez, G Valladarez, G.F. Dominguez-Patino, Corrosion inhibition of carbon steel in H2SO4 by Chenopodiumambrosioides, Int. J. Electrochem. Sci. 6 (2011) 6360-6372.
[117] X. Wang, F.Y. Wang, Y.X. Chen, X.X. Ji, S.C. Shi, Research progress of plant extract as green corrosion inhibitor, Corros. Sci. Prot. Technol. 29 (2017) 85-90.
[118] J. Zheng, Y.N. Wang, B.L. Zhang, T. Yang, X.M. Jiao, Y. He, Research progress on natural products as corrosion inhibitor in acid, neutral and alkaline mediums, Corros. Sci. Prot. Technol. 23 (2011) 103-106.
[119] E. Salehi, R. Naderi, B. Ramezanzadeh, Synthesis and characterization of an effective organic/inorganic hybrid green corrosion inhibitive complex based on zinc acetate/Urtica Dioica, Appl. Surf. Sci. 396 (2017)1499-1514. https://doi.org/10.1016/j.apsusc.2016.11.198
[120] L.R. Chauhan, G. Gunasekaran, Corrosion inhibition of mild steel by plant extract in dilute HCl medium, Corros. Sci. 49 (2007) 1143-1161. https://doi.org/10.1016/j.corsci.2006.08.012
[121] P.C. Okafor, M.E. Ikpi, I.E. Uwah, E.E. Ebenso, U.J. Ekpe, S.A. Umoren, Inhibitory action of Phyllanthus amarus extracts on the corrosion of mild steel in acidic media, Corros. Sci. 50 (2008) 2310-2317. https://doi.org/10.1016/j.corsci.2008.05.009
[122] A. Krishnan, S.M.A. Shibli, Optimization of an efficient, economic and eco-friendly inhibitor based on Sesbania grandiflora leaf extract for the mild steel corrosion in aggressive HCl environment, Anti-Corros. Methods Mater. 65 (2018) 210-216. https://doi.org/10.1108/ACMM-06-2017-1810
[123] H. Gerengi, H.I. Sahin, Schinopsis lorentzii extract as a green corrosion inhibitor for low carbon steel in 1 M HCl solution, Ind. Eng. Chem. Res. 51 (2012) 780-787. https://doi.org/10.1021/ie201776q
[124] M. Soudani, M.H. Meliani, K. El-Miloudi, O. Bouledroua, C. Fares, M.A. Benghalia, Z. Azari, J. Capelle, Ahmad A. Sorour, G. Pluvinage, Efficiency of green inhibitors against hydrogen embrittlement on mechanical properties of pipe steel API 5L X52 in hydrochloric acid medium, J. Bio. Tribo. Corros. 4 (2018) 36. https://doi.org/10.1007/s40735-018-0153-0
[125] X.H. Li, S.R. Deng, X.G. Xie, G.B. Du, Inhibition effect of bamboo leaf extract on the corrosion of aluminum in HCl solution, Acta Phys. Chim. Sin. 30(2014)1883-1894.
[126] W. Syu, M. Don, G. Lee, C. Sun, Cytotoxic and novel compounds from solanum indicum, J. Nat. Prod. 64 (2001) 1232-1233. https://doi.org/10.1021/np010186v
[127] M. El-Aasr, H. Miyashita, T. Ikeda, J. Lee, H. Yoshimitsu , T. Nohara, K. Murakami, A new spirostanol glycoside from fruits of solanum indicum L, Chem. Pharm. Bull. 57 (2009) 747-748. https://doi.org/10.1248/cpb.57.747
[128] X. Wang, H. Jiang, D. Zhang, L. Hou, W. Zhou, Solanum lasiocarpum L. Extract as green corrosion inhibitor for A3 steel in 1 M HCl solution, Int. J. Electrochem. Sci. 14 (2019)1178-1196. https://doi.org/10.20964/2019.02.06
[129] R. Idouhli, Y. Koumya, M. Khadiri, A. Aityoub, A. Abouelfida, A. Benyaich, Inhibitory effect of Senecio anteuphorbiumas green corrosion inhibitor for S300 steel, Int. J. Ind. Chem. 10 (2019) 133-143. https://doi.org/10.1007/s40090-019-0179-2
[130] N. Hassan, S.M. Ali, A. Ebrahim, H. El-Adwy, Performance evaluation and optimization of Camellia sinensis extract as green corrosion inhibitor for mild steel in acidic medium, Mater. Res. Express 6 (2019) 0865c7. https://doi.org/10.1088/2053-1591/ab2376
[131] J.R. Davis, Surface Engineering for Corrosion and Wear Resistance, ASM International, Cleveland, OH, USA, 2001.
[132] Y. Li, L. Li, J. Yu, Applications of zeolites in sustainable chemistry, Chem. 3 (2017) 928-949. https://doi.org/10.1016/j.chempr.2017.10.009
[133] M.F. Montemor, Functional and smart coatings for corrosion protection: A review of recent advances, Surf. Coat. Technol. 258 (2014) 17-37. https://doi.org/10.1016/j.surfcoat.2014.06.031
[134] H. Zheng, Y. Shao, Y. Wang, G. Meng, B. Liu, Reinforcing the corrosion protection property of epoxy coating by using graphene oxide-poly (urea-formaldehyde) composites, Corros. Sci. 123 (2017) 267-277. https://doi.org/10.1016/j.corsci.2017.04.019
[135] N.P. Tavandashti, M. Ghorbani, A. Shojaei, J.M.C. Mol, H. Terryn, K. Baert, Y. Gonzalez-Garcia, Inhibitor-loaded conducting polymer capsules for active corrosion protection of coating defects, Corros. Sci. 112 (2016), 138-149. https://doi.org/10.1016/j.corsci.2016.07.003
[136] V.S. Sastri, Green Corrosion Inhibitors: Theory and Practice, Wiley, Singapore, 2011. https://doi.org/10.1002/9781118015438
[137] M. Forsyth, B. Hinton, Rare Earth-Based Corrosion Inhibitors, Woodhead Publishing, Cambridge, OK, USA, 2014.
[138] K.A. Yasakau, M.L. Zheludkevich, S.V. Lamaka, M.G. Ferreira, Mechanism of corrosion inhibition of AA2024 by rare-earth compounds, J. Phys. Chem. B 110 (2006) 5515-5528. https://doi.org/10.1021/jp0560664
[139] M. Garcia-Heras, A. Jimenez-Morales, B. Casal, J.C. Galvan, S. Radzki, M.A. Villegas, Preparation and electrochemical study of cerium-silica sol-gel thin films. J. Alloys Compd. 380 (2004) 219-224. https://doi.org/10.1016/j.jallcom.2004.03.047
[140] A.N. Khramov, N.N. Voevodin, V.N. Balbyshev, R.A. Mantz, Sol-gel-derived corrosion-protective coatings with controllable release of incorporated organic corrosion inhibitors, Thin Solid Films 483 (2005)191-196. https://doi.org/10.1016/j.tsf.2004.12.021
[141] D.G. Shchukin, M. Zheludkevich, K. Yasakau, S. Lamaka, M.G.S. Ferreira, H. Mohwald, Layer-by-layer assembled nanocontainers for self-healing corrosion protection, Adv. Mater. 18 (2006)1672-1678. https://doi.org/10.1002/adma.200502053
[142] D. Grigoriev, E.Shchukina, D.G. Shchukin, Nanocontainers for self-healing coatings, Adv. Mater. Interfaces 4 (2017) 1-11. https://doi.org/10.1002/admi.201600318
[143] W. Yan, W.K. Ong, L.Y. Wu, S.L. Wijesinghe, Investigation of using sol-gel technology for corrosion protection coating systems incorporating colours and inhibitors, Coatings 9 (2019)1-15. https://doi.org/10.3390/coatings9010052
[144] T. Wang, J. Du, S. Ye, L. Tan, J. Fu, Triple-stimuli-responsive smart nanocontainers enhanced self-healing anticorrosion coatings for protection of aluminum alloy, ACS Appl. Mater. Interfaces 11 (2019) 4425-4438. https://doi.org/10.1021/acsami.8b19950
[145] N.J. Kanu, E. Gupta, U.K. Vates, G.K. Singh, Self-healing composites: A state-of-the-art review, Compos. A Appl. Sci. Manuf. 121 (2019) 474-486. https://doi.org/10.1016/j.compositesa.2019.04.012
[146] M.D. Brabander, H.R. Fischer, S.J. Garcia, Self-healing polymeric systems: Concepts and applications, in: M.R. Aguilar, J.S. Roman (Eds.), Smart Polymers and their Applications, Woodhead Publishing, Sawston, UK, 2019, pp. 379-409. https://doi.org/10.1016/B978-0-08-102416-4.00011-9
[147] R. Samiee, B. Ramezanzadeh, M. Mahdavian, E. Alibakhshi, Assessment of the smart self-healing corrosion protection properties of a water-base hybrid organo-silane film combined with non-toxic organic/inorganic environmentally friendly corrosion inhibitors on mild steel, J. Clean. Prod. 220 (2019) 340-356. https://doi.org/10.1016/j.jclepro.2019.02.149
[148] X. Zhao, Y. Li, B. Li, T. Hu, Y. Yang, L. Li, J. Zhang, Environmentally benign and durable superhydrophobic coatings based on SiO2 nanoparticles and silanes, J. Colloid. Interface Sci. 542 (2019) 8-14. https://doi.org/10.1016/j.jcis.2019.01.115
[149] Y. Liu, H. Gu, Y. Jia, J. Liu, H. Zhang, R. Wang, B. Zhang, H. Zhang, Q. Zhang, Design and preparation of biomimetic polydimethylsiloxane (PDMS) films with superhydrophobic, self-healing and drag reduction properties via replication of shark skin and SI-ATRP, Chem. Eng. J. 356 (2019) 318-328. https://doi.org/10.1016/j.cej.2018.09.022
[150] S.L. de Armentia, M. Pantoja, J.Abenojar, M. Martinez, S.L. de Armentia, M. Pantoja, J.Abenojar, M.A. Martinez, Development of silane-based coatings with zirconia nanoparticles combining wetting, tribological, and aesthetical properties, Coatings 8 (2018) 368. https://doi.org/10.3390/coatings8100368
[151] L. Ma, F. Svec, T. Tan, Y. Lv, In-situ growth of highly permeable zeolite imidazolate framework membranes on porous polymer substrate using metal chelated polyaniline as interface layer, J. Membrane Sci. 576 (2019) 1-8. https://doi.org/10.1016/j.memsci.2019.01.011
[152] Y. Tan, F. Wang, J. Zhang, Design and synthesis of multifunctional metal-organic zeolites, Chem. Soc. Rev. 47 (2018) 2130-2144. https://doi.org/10.1039/C7CS00782E
[153] J. Wang, X. Song, J. Wang, X. Cui, Q. Zhou, T. Qi, G.L. Li, Smart-sensing polymer coatings with autonomously reporting corrosion dynamics of self-healing systems, Adv. Mater. Interfaces 6 (2019) 1900055. https://doi.org/10.1002/admi.201900055
[154] Z. Karami, S. Maleki, A. Moghaddam, A. Jahandideh, Self-healing bio-composites: Concepts, developments and perspective, in: Inamuddin, S, Thomas, R.K. Mishra, A.M. Asiri (Eds.), Sustainable Polymer Composites and Nanocomposites, Springer, Cham, Switzerland, 2019, pp. 1323-1343. https://doi.org/10.1007/978-3-030-05399-4_44
[155] M. Catauro, S.V. Ciprioti, Sol-gel synthesis and characterization of hybrid materials for biomedical applications, in: C. Demetzos, N. Pippa (Eds.), Thermodynamics and Biophysics of Biomedical Nanosystems, Springer: Singapore, 2019, pp. 445–475. https://doi.org/10.1007/978-981-13-0989-2_13
[156] D. Prasai, J.C. Tuberquia, R.R. Harl, G.K. Jennings, K.I. Bolotin, Graphene: Corrosion-inhibiting coating, ACS Nano 6 (2012) 1102–1108. https://doi.org/10.1021/nn203507y
[157] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: Synthesis, properties, and applications, Adv. Mater. 22 (2010) 3906-3924. https://doi.org/10.1002/adma.201001068
[158] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 385-388. https://doi.org/10.1126/science.1157996
[159] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8 (2008) 902-907. https://doi.org/10.1021/nl0731872
[160] H. Song, L. Zhang, C. He, Y. Qu, Y. Tian, Y. Lv, Graphene sheets decorated with SnO2 nanoparticles: In situ synthesis and highly efficient materials for cataluminescence gas sensors, J. Mater. Chem. 21 (2011) 5972-5977. https://doi.org/10.1039/c0jm04331a
[161] M. Liang, L. Zhi, Graphene-based electrode materials for rechargeable lithium batteries, J. Mater. Chem. 19 (2009) 5871-5878. https://doi.org/10.1039/b901551e
[162] A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, Synthesis of nitrogen-doped graphene films for lithium battery application, ACS Nano 4 (2010) 6337-6342. https://doi.org/10.1021/nn101926g
[163] J. Cheng, G. Zhang, J. Du, L. Tang, J. Xu, J. Li, New role of graphene oxide as active hydrogen donor in the recyclable palladium nanoparticles catalyzed ullmann reaction in environmental friendly ionic liquid/supercritical carbon dioxide system, J. Mater. Chem. 21 (2011) 3485-3494. https://doi.org/10.1039/c0jm02396e
[164] G. Kalita, M. Matsushima, H. Uchida, K. Wakita, M. Umeno, Graphene constructed carbon thin films as transparent electrodes for solar cell applications, J. Mater. Chem. 20 (2010) 9713-9717. https://doi.org/10.1039/c0jm01352h
[165] K. Zhang, L.L. Zhang, X.S. Zhao, J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes, Chem. Mater. 22 (2010) 1392-1401. https://doi.org/10.1021/cm902876u
[166] T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M.H. Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, Functionalized graphene sheets for polymer nanocomposites, Nat. Nanotechnol. 3 (2008) 327-331. https://doi.org/10.1038/nnano.2008.96
[167] D. Cai, M. Song, Recent advance in functionalized graphene/polymer nanocomposites, J. Mater. Chem. 20 (2010) 7906-7915. https://doi.org/10.1039/c0jm00530d
[168] H.J. Salavagione, G. Martinez, M.A. Gomez, Synthesis of poly(vinyl alcohol)/reduced graphite oxide nanocomposites with improved thermal and electrical properties, J. Mater. Chem. 19 (2009) 5027-5032. https://doi.org/10.1039/b904232f
[169] J. Zhao, S. Pei, W. Ren, L. Gao, H.M. Cheng, Efficient preparation of large-area graphene oxide sheets for transparent conductive films, ACS Nano 4 (2010) 5245-5252. https://doi.org/10.1021/nn1015506
[170] J. Zhu, Graphene production: New solutions to a new problem, Nat Nano 3 (2008) 528-529. https://doi.org/10.1038/nnano.2008.249
[171] C.H. Chang, T.C. Huang, C.W. Peng, T.C. Yeh, H.I. Lu, W.I. Hung, C.J. Weng, T.I. Yeh, J.M. Yang, Novel anticorrosion coatings prepared from polyaniline/graphene composites, Carbon 50 (2012) 5044-5051. https://doi.org/10.1016/j.carbon.2012.06.043
[172] J. Qiu, S. Wang, Enhancing polymer performance through graphene sheets, J. Appl. Polym. Sci. 119 (2011) 3670-3674. https://doi.org/10.1002/app.33068
[173] A. Yasmin, I.M. Daniel, Mechanical and thermal properties of graphite platelet/epoxy composites, Polymer 45 (2004) 8211-8219. https://doi.org/10.1016/j.polymer.2004.09.054
[174] M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano 3 (2009) 3884-3890. https://doi.org/10.1021/nn9010472
[175] S.G. Miller, J.L. Bauer, M.J. Maryanski, P.J. Heimann, J.P. Barlow, J.M. Gosau, R.E. Allred, Characterization of epoxy functionalized graphite nanoparticles and the physical properties of epoxy matrix nanocomposites, Compos. Sci. Technol. 70 (2010) 1120-1125. https://doi.org/10.1016/j.compscitech.2010.02.023
[176] C.L. Chiang, S.W. Hsu, Synthesis, characterization and thermal properties of novel epoxy/expandable graphite composites, Polym. Int. 59 (2010) 119-126. https://doi.org/10.1002/pi.2699
[177] M. Martin-Gallego, R. Verdejo, M.A. Lopez-Manchado, M. Sangermano, Epoxy-graphene UV-cured nanocomposites, Polymer 52 (2011) 4664-4669. https://doi.org/10.1016/j.polymer.2011.08.039
[178] P.A. Sorensen, S. Kiil, K. Dam-Johansen, C.E. Weinell, Anticorrosive coatings: A review, J. Coat. Technol. Res. 6 (2009) 135-176. https://doi.org/10.1007/s11998-008-9144-2
[179] C. Bao, Y. Guo, L. Song, Y. Kan, X. Qian, Y. Hu, In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements, J. Mater. Chem. 21 (2011) 13290-13298. https://doi.org/10.1039/c1jm11434d
[180] H. Fang, K. Chen, Z. Zhang, C. Zhu, Effect of Yb addition on microstructure and properties of 7A60 aluminium alloy, Trans. Nonferrous Met. Soc. China. 18 (2008) 28-32. https://doi.org/10.1016/S1003-6326(08)60006-0
[181] S. Caporali, A. Fossati, A. Lavacchi, I. Perissi, A. Tolstogouzov, U. Bardi, Aluminium electroplated from ionic liquids as protective coating against steel corrosion, Corros. Sci., 50 (2008) 534-539. https://doi.org/10.1016/j.corsci.2007.08.001
[182] C. Verma, P. Singh, I. Bahadur, E. Ebenso, M.A. Quraishi, Electrochemical, thermodynamic, surface and theoretical investigation of 2-aminobenzene-1,3-dicarbonitriles as green corrosion inhibitor for aluminum in 0.5 M NaOH, J. Mol. Liq. 209 (2015) 767-778. https://doi.org/10.1016/j.molliq.2015.06.039
[183] T.C.E. Tringham, Causes and Prevention of Corrosion in Aircraft, Pitman, London, 1958.
[184] S. Benavides, Corrosion Control in the Aerospace Industry, first ed., CRC Press, USA, 2009. https://doi.org/10.1201/9781439829202.ch1
[185] K. Xhanari, M. Finsgar, M.K. Hrncic, U. Maver, Z. Kneza, B. Seiti, Green corrosion inhibitors for aluminium and its alloys: A review, RSC Adv. 7 (2017) 27299-27330. https://doi.org/10.1039/C7RA03944A
[186] N. Raghavendra, J.I. Bhat, Anti-corrosion Properties of Areca Palm Leaf Extract on Aluminium in 0.5 M HCl Environment, S. Afr. J. Chem. 71 (2018) 30-38. https://doi.org/10.17159/0379-4350/2018/v71a4
[187] O.U. Abakedi, Inhibition of aluminium corrosion in hydrochloric acid solution by Stachytarpheta indica leaf extract, J. Sci. Eng. Res. 3 (2016) 105-110.
[188] O.U. Abakedi, I.E. Moses, Aluminium corrosion inhibition by maesobatrya barteri root extract in hydrochloric acid solution, Am. Chem. Sci. J. 10 (2016) 1-10. https://doi.org/10.9734/ACSJ/2016/21812
[189] A. Singh, I. Ahamad, M.A. Quraishi, Piper longum extract as green corrosion inhibitor for aluminium in NaOH solution, Arab. J. Chem. 9 (2016) S1584-S1589. https://doi.org/10.1016/j.arabjc.2012.04.029
[190] L.A. Nnanna, K.O. Uchendu, G. Ikwuagwu, W.O. John, U. Ihekoronye, Inhibition of corrosion of aluminum alloy AA8011 in alkaline medium using palisota hirsute extract, Int. Lett. Chem. Phys. Astron. 67 (2016) 14-20. https://doi.org/10.18052/www.scipress.com/ILCPA.67.14
[191] N. Chaube, V.K. Singh, Savita, M.A. Quraishi, E.E. Ebenso, Corrosion inhibition of aluminium alloy in alkaline media by neolamarkia cadamba bark extract as a green inhibitor, Int. J. Electrochem. Sci.10 (2015) 504-518.
[192] S. Deng, X. Li, Inhibition by jasminum nudiflorum lindl. leaves extract of the corrosion of aluminium in HCl solution, Corros. Sci. 64 (2012) 253-262. https://doi.org/10.1016/j.corsci.2012.07.017
[193] K. Krishnaveni, J. Ravichandran, Effect of aqueous extract of leaves of Morinda tinctoria on corrosion inhibition of aluminium surface in HCl medium, T. Nonferr. Metal Soc. 24 (2014) 2704-2712. https://doi.org/10.1016/S1003-6326(14)63401-4
[194] X. Li, S. Deng, Inhibition effect of Dendrocalamus brandisii leaves extract on aluminumin HCl, H3PO4 solutions, Corros. Sci. 65 (2012) 299-308. https://doi.org/10.1016/j.corsci.2012.08.033
[195] A. Singh, E.E. Ebenso, M.A. Quraishi, Stem extract of brahmi (Bacopa Monnieri) as green corrosion inhibitor for aluminum in NaOH solution, Int. J. Electrochem. Sci, 7 (2012) 3409-3419.
[196] A. Ali, N. Foaud, Inhibition of aluminum corrosion in hydrochloric acid solution using black mulberry extract, J. Mater. Environ. Sci, 3 (2012) 917-924.
[197] J. Halambek, K. Berkovic, J. Vorkapic-Furac, Laurusnobilis L. oil as green corrosion inhibitor for aluminium and AA5754 aluminium alloy in 3% NaCl solution, Mater. Chem. Phys. 137 (2013) 788-795. https://doi.org/10.1016/j.matchemphys.2012.09.066
[198] I.M. Mejeha, M.C. Nwandu, K.B. Okeoma, L.A. Nnanna, M.A. Chidiebere, F.C. Eze, E.E. Oguzie, Experimental and theoretical assessment of the inhibiting action of Aspilia Africana extract on corrosion aluminium alloy AA3003 in hydrochloric acid, J. Mater. Sci. 47 (2012) 2559-2572. https://doi.org/10.1007/s10853-011-6079-2
[199] S. Ambrish, M.A. Quraishi, Azwain (Trachyspermum copticum) seed extract as an efficient corrosion inhibitor for aluminium in NaOH solution, Res. J. Recent Sci. 1 (2012) 57-61.
[200] L.A. Nnanna, V. Obasi, O. Nwadiuko, K. Mejeh, N. Ekekwe, S.C. Udensi, Inhibition by Newbouldia leavis leaf extract of the corrosion of aluminium in HCl and H2SO4 solutions, Arch. Appl. Sci. Res. 4 (2012) 207-217.
[201] L.A. Nnanna, O.C. Nwadiuko, N.D. Ekekwe, C.F. Ukpabi, S.C. Udensi, K.B. Okeoma, B.N. Onwuagba, I.M. Mejeha, Adsorption and inhibitive properties of leaf extract of Newbouldia leavis as a green inhibitor for aluminium alloy in H2SO4, Am. J. Mater. Sci. 1 (2011) 143-148. https://doi.org/10.5923/j.materials.20110102.24
[202] H.M. Elabbasy, A.S. Fouda, Olive leaf as green corrosion inhibitor for C-steel in Sulfamic acid solution, Green Chem. Lett. Rev. 12 (2019) 332-342. https://doi.org/10.1080/17518253.2019.1646812
[203] M. Deyab, Inhibition activity of Seaweed extract for mild carbon steel corrosion in saline formation water, Desalination 384 (2016) 60-67. https://doi.org/10.1016/j.desal.2016.02.001
[204] A. El Bribri, M. Tabyaoui, B. Tabyaoui, H. El Attari, F. Bentiss, The use of Euphorbia falcata extract as eco-friendly corrosion inhibitor of carbon steel in hydrochloric acid solution, Mater. Chem. Phys. 141 (2013) 240-247. https://doi.org/10.1016/j.matchemphys.2013.05.006
[205] M. Deyab, Egyptian licorice extract as a green corrosion inhibitor for copper in hydrochloric acid solution, J. Ind. Eng. Chem. 22 (2015) 384-389. https://doi.org/10.1016/j.jiec.2014.07.036