Theoretical Insights in Green Corrosion Inhibitors

$30.00

Theoretical Insights in Green Corrosion Inhibitors

G. Tian

Metal corrosion is prevalent and has caused serious harm to the economy, industrial production, science and technology and other related fields. Adding corrosion inhibitors is an effective method to prevent metal corrosion. In recent years, considerable research progress has been achieved in green corrosion inhibitors for copper, carbon steel and aluminum. However, most works are mainly focused on the effect and efficiency of corrosion inhibitors, the microscopic mechanism of corrosion inhibitors is still unclear. Therefore, theoretical insights in green corrosion inhibitors are especially important. In the present chapter, we will present the advance and perspective on the theoretical study in green corrosion inhibitors. The theoretical studies, including quantitative structure activity relationship (QSAR), quantum chemistry, and molecular dynamics simulation on the green corrosion inhibitors for copper, carbon steel and aluminum are reviewed and discussed. Further research directions are also presented.

Keywords
Green Corrosion Inhibitors, Cooper, Aluminum, Carbon Steel, Quantum Chemistry, Molecular Dynamics Simulation, Absorption, Quantitative Structure-Activity Relationship (QSAR)

Published online 11/3/2020, 37 pages

Citation: G. Tian, Theoretical Insights in Green Corrosion Inhibitors, Materials Research Foundations, Vol. 86, pp 1-37, 2021

DOI: https://doi.org/10.21741/9781644901052-1

Part of the book on Theory and Applications of Green Corrosion Inhibitors

References
[1] M.M. Antonijevic, M.B. Petrovic. Copper corrosion inhibitors. A review. Int. J. Electroch. 3 (2008) 1-28.
[2] C. Verma, E.E. Ebenso, M.A. Quraishi. Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: an overview. J. Mol. Liq. 233 (2017) 403-414. https://doi.org/10.1016/j.molliq.2017.02.111
[3] D. Kesavan, M. Gopiraman, N. Sulochana. Green inhibitors for corrosion of metals: a review. Chem. Sci. Rev. Lett. 1(1) (2012) 1-8.
[4] K.Y. Quan. Research on the method and application of strong polarization detection of metal corrosion. Chongqing: Chongqing University, (2018) 8-12.
[5] J.H. Chen, S.D Zhang, X. Gao, J.R. Sun, P. Yan. Research status of temporary protection of steel under severe environmental conditions. Contemporary Chemical Industry, 48 (2019) 83-87.
[6] X. Wen, P. Bai, B. Luo, S. Zheng, C. Chen. Review of recent progress in the study of corrosion products of steels in a hydrogen sulphide environment, Corros. Sci. 139 (2018) 124-140. https://doi.org/10.1016/j.corsci.2018.05.002
[7] C. Verma, E.E. Ebenso, I. Bahadur, M.A. Quraishi. An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media. J. Mol. Liq. 266 (2018) 577-590.
[8] T.S. Zhang, H. Zhang, H. Gao, Inhibitors. Beijing: Chemical Industry Press, 2008, 316-339.
[9] W.H. Li. Synthesis and evaluation of new corrosion inhibitors, Beijing: Science Press, 2015, pp. 1-40.
[10] R.X. Li. Synthesis and application of green solvent-ionic liquid, Beijing: Chemical Engineering Press, 2004, pp. 2-10.
[11] Y. Deng. Ionic liquid-property, preparation and application. Beijing: China Petrochemical Press, 2006, pp. 10-23.
[12] S.J. Zhang, X.M. Lv, Z.P. Liu. Ionic liquids: from basic research to industrial applications . Beijing: Science Publishing, 2006, pp. 50-380.
[13] P.G. Yi, C.Z. Cao, X.Y.Wang. Synthesis of a novel ionic liquid and its cationic group corrosion inhibition performance. CIESC J., 56 (2005) 1112-1119.
[14] H. Ashassi-Sorkhabi, M. Es’haghi. Corrosion inhibition of mild steel in acidic media by [BMIM]Br Ionic liquid. Mater. Chem. Phys. 114 (2009) 267-271. https://doi.org/10.1016/j.matchemphys.2008.09.019
[15] Q.B. Zhang, Y.X. Hua. Corrosion inhibition of mild steel by alkylimidazolium ionic liquids in hydrochloric acid. Electrochim. Acta. 54 (2009) 1881-1887. https://doi.org/10.1016/j.electacta.2008.10.025
[16] S.K. Shukla, L.C. Murulana, E.E. Ebenso. Inhibitive effect of imidazolium based aprotic ionic liquids on mild steel corrosion in hydrochloric acid medium. Int. J. Electroch. 6 (2011) 4286-4295.
[17] X. Zhou, H. Yang, F. Wang. [BMIM]BF4 ionic liquids as effective inhibitor for carbon steel in alkaline chloride solution. Electrochim. Acta. 56 (2011) 4268-4275. https://doi.org/10.1016/j.electacta.2011.01.081
[18] T. Tüken, F. Demir, N. Kıcır, G. Sığırcık, M. Erbil. Inhibition effect of 1-ethyl-3-methylimidazolium dicyanamide against steel corrosion. Corros. Sci. 59 (2012) 110-118. https://doi.org/10.1016/j.corsci.2012.02.021
[19] A. Zarrouk, M. Messali, H. Zarrok. Synthesis, characterization and comparative study of new functionalized imidazolium-based ionic liquids derivatives towards corrosion of C38 steel in molar hydrochloric acid. Int. J. Electrochem. Sci 7 (2012) 6998-7015.
[20] X. Zheng, S. Zhang, W. Li, L. Yin, J. He, J. Wu. Investigation of 1-butyl-3-methyl-1-H-benzimidazolium iodide as inhibitor for mild steel in sulfuric acid solution. Corros. Sci. 80 (2014) 383-392. https://doi.org/10.1016/j.corsci.2013.11.053
[21] E. Kowsari, M. Payami, R. Amini. Task-specific ionic liquid as a new green inhibitor of mild steel corrosion. Appl. Surf. Sci. 289 (2014) 478-486. https://doi.org/10.1016/j.apsusc.2013.11.017
[22] I. Lozano, E. Mazario, C.O. Olivares-Xometl. Corrosion behaviour of API 5LX52 steel in HCl and H2SO4 media in the presence of 1,3-dibencilimidazolio acetate and 1, 3-dibencilimidazolio dodecanoate ionic liquids as inhibitors. Mater. Chem. Phys. 147 (2014) 191-197. https://doi.org/10.1016/j.matchemphys.2014.04.029
[23] A. Acidi, M. Hasib-ur-Rahman, F. Larachi, A. Abbaci. Ionic liquids [EMIM]BF4, [EMIM]OTf and [BMIM]OTf as corrosion inhibitors for CO2 capture applications. Korean J. Chem. Eng. 31 (2014) 1043-1048. https://doi.org/10.1007/s11814-014-0025-3
[24] X. Zheng, S. Zhang, M. Gong, W. Li. Experimental and theoretical study on the corrosion inhibition of mild steel by 1-octyl-3-methylimidazolium l-prolinate in sulfuric acid solution. Ind. Eng. Chem. Res. 53 (2014) 16349-16358. https://doi.org/10.1021/ie502578q
[25] M.E. Mashuga, L.O. Olasunkanmi, A.S. Adekunle. Adsorption, thermodynamic and quantum chemical studies of 1-hexyl-3-methylimidazolium based ionic liquids as corrosion inhibitors for mild steel in HCl. Materials. 8 (2015) 3607-3632. https://doi.org/10.3390/ma8063607
[26] Y. Ma, F. Han, Z. Li, C. Xia. Corrosion behavior of metallic materials in acidic-functionalized ionic liquids. ACS Sustain. Chem. Eng. 4 (2016) 633-639. https://doi.org/10.1021/acssuschemeng.5b00974
[27] O. Olivares-Xometl, C. López-Aguilar, P. Herrastí-González, N. V. Likhanova, I. Lijanova, R. Martínez-Palou. Adsorption and corrosion inhibition performance by three new ionic liquids on API 5L X52 steel surface in acid media. Ind. Eng. Chem. Res. 53 (2014) 9534-9543. https://doi.org/10.1021/ie4035847
[28] Y. Ma, F. Han, Z. Li. Acidic-functionalized ionic liquid as corrosion inhibitor for 304 stainless steel in aqueous sulfuric acid. ACS Sustain. Chem. Eng. 4 (2016) 5046-5052. https://doi.org/10.1021/acssuschemeng.6b01492
[29] L. Feng, S. Zhang, S. Yan. Experimental and theoretical studies of 1-vinyl-3-hexylimidazolium iodide ([VHIM]I) as corrosion inhibitor for the mild steel in sulfuric acid solution. Int. J. Electroch. 12 (2017) 1915-1928. https://doi.org/10.20964/2017.03.30
[30] C. Verma, I.B. Obot, I. Bahadur. Choline based ionic liquids as sustainable corrosion inhibitors on mild steel surface in acidic medium: Gravimetric, electrochemical, surface morphology, DFT and Monte Carlo simulation studies. Appl. Surf. Sci. 457 (2018) 134-149. https://doi.org/10.1016/j.apsusc.2018.06.035
[31] F. El-Hajjaji, M. Messali, A. Aljuhani. Pyridazinium-based ionic liquids as novel and green corrosion inhibitors of carbon steel in acid medium: electrochemical and molecular dynamics simulation studies. J. Mol. Liq. 249 (2018) 997-1008. https://doi.org/10.1016/j.molliq.2017.11.111
[32] Y. Guo, Z. Chen, Y. Zuo. Ionic liquids with two typical hydrophobic anions as acidic corrosion inhibitors. J. Mol. Liq. 269 (2018) 886-895. https://doi.org/10.1016/j.molliq.2018.08.090
[33] C. Verma, L.O. Olasunkanmi, I. Bahadur. Experimental, density functional theory and molecular dynamics supported adsorption behavior of environmental benign imidazolium based ionic liquids on mild steel surface in acidic medium. J. Mol. Liq. 273 (2019) 1-15. https://doi.org/10.1016/j.molliq.2018.09.139
[34] S. Cao, D. Liu, H. Ding. Corrosion inhibition effects of a novel ionic liquid with and without potassium iodide for carbon steel in 0.5 M HCl solution: An experimental study and theoretical calculation. J. Mol. Liq. 275 (2019) 729-740. https://doi.org/10.1016/j.molliq.2018.11.115
[35] P. Arellanes-Lozada, O. Olivares-Xometl, N.V. Likhanova. Adsorption and performance of ammonium-based ionic liquids as corrosion inhibitors of steel. J. Mol. Liq. 265 (2018) 151-163. https://doi.org/10.1016/j.molliq.2018.04.153
[36] N.V. Likhanova, P. Arellanes-Lozada, O. Olivares-Xometl. Effect of organic anions on ionic liquids as corrosion inhibitors of steel in sulfuric acid solution. J. Mol. Liq. 279 (2019) 267-278. https://doi.org/10.1016/j.molliq.2019.01.126
[37] V. Branzoi, F. Golgovici, F. Branzoi. Aluminium corrosion in hydrochloric acid solutions and the effect of some organic inhibitors. Mater. Chem. Phys. 78 (2003) 122-131. https://doi.org/10.1016/S0254-0584(02)00222-5
[38] Q.B. Zhang, Y.X. Hua. Corrosion inhibition of aluminum in hydrochloric acid solution by alkylimidazolium ionic liquids. Mater. Chem. Phys. 119 (2010) 57-64. https://doi.org/10.1016/j.matchemphys.2009.07.035
[39] X. Li, S. Deng, H. Fu. Inhibition by tetradecylpyridinium bromide of the corrosion of aluminium in hydrochloric acid solution. Corros. Sci. 53 (2011) 1529-1536. https://doi.org/10.1016/j.corsci.2011.01.032
[40] P. Arellanes-Lozada, O. Olivares-Xometl, D. Guzmán-Lucero, N. Likhanova, M. Domínguez-Aguilar, I. Lijanova, E. Arce-Estrada. The inhibition of aluminum corrosion in sulfuric acid by poly (1-vinyl-3-alkyl- imidazolium hexafluorophosphate). Materials. 7 (2014) 5711-5734. https://doi.org/10.3390/ma7085711
[41] S.K. Shetty, A.N. Shetty. Ionic liquid as an effective corrosion inhibitor on 6061 Al-15 Vol. Pct. SiC(p) composite in 0.1 M H2SO4 medium–an ecofriendly approach. Can. Chem. Trans. 3 (2015) 41-64. https://doi.org/10.13179/canchemtrans.2015.03.01.0160
[42] P. Huang, A. Somers, P.C. Howlett. Film formation in trihexyl (tetradecyl) phosphonium diphenylphosphate ([P6,6,6,14]dpp) ionic liquid on AA5083 aluminium alloy. Surf. Coat. Tech. 303 (2016) 385-395. https://doi.org/10.1016/j.surfcoat.2015.12.060
[43] I. Perissi, U. Bardi, S. Caporali. High temperature corrosion properties of ionic liquids, Corros. Sci. 48 (2006) 2349-2362. https://doi.org/10.1016/j.corsci.2006.06.010
[44] Q.B. Zhang, Y.X. Hua. Effect of alkylimidazolium ionic liquids on the corrosion inhibition of copper in sulfuric acid solution. Acta Phys.-Chim. Sin. 27 (2011) 655-663.
[45] M. Cai, Y. Liang, F. Zhou, W. Liu. Anticorrosion imidazolium ionic liquids as the additive in poly (ethylene glycol) for steel/Cu–Sn alloy contacts, Faraday Discuss. 156 (2012) 147-157. https://doi.org/10.1039/c2fd00124a
[46] Y. Qiang, S. Zhang, L. Guo, X. Zheng, B. Xiang, S. Chen. Experimental and theoretical studies of four alkyl imidazolium-based ionic liquids as green inhibitors for copper corrosion in sulfuric acid, Corros. Sci. 119 (2017) 68-78. https://doi.org/10.1016/j.corsci.2017.02.021
[47] L. Feng, S. Zhang, Y. Lu. Synergistic corrosion inhibition effect of thiazolyl-based ionic liquids between anions and cations for copper in HCl solution, Appl. Surf. Sci., 483 (2019) 901-911. https://doi.org/10.1016/j.apsusc.2019.03.299
[48] C.W. Yan, H. C. Lin, C.N. Cao. Valence state and film formation mechanism of cu in MBO inhibition films, Corros. Sci. and Protec. Tech. 13 (2001) 12-15.
[49] H. Yu, J.H. Wu, J.H. Qian. Research on corrosion inhibition behavior of a seawater corrosion inhibitor, J. Chin. Soc. Corr. Pro., 23 (2003) 295-298.
[50] X.Q. Jie, Z.G. Ding, L. Zhu. SERs study of corrosion inhibition of btah and its derivative on copper electrode in sulphuric acid solution, J. Chin. Soc. Corr. Pro. 21 (2001) 172-176.
[51] K. Yu, C.C. Xu. Inhibition of sodium molybdate on iron cultural relics, J. B. Univ. Chem. Techol (Nat. Sci. Ed.). 31 (2004) 41-44.
[52] R.G. Parr and W.T. Yang. Density-functional theory of atoms and molecules: Oxford University Press, New York, and Clarendon Press, Oxford, 1989.
[53] J.F. Dobson, G. Vignale, M.P. Das, (Eds.). Electronic density functional theory: recent progress and new directions. Springer Science & Business Media, 2013.
[54] J.K. Labanowski, J.W. Andzelm (Eds.), Density Functional Methods in Chemistry, Springer Science & Business Media, 2012.
[55] J. Vosta, J. Eliasek, Study on corrosion inhibition from aspect of quantum chemistry, Corros. Sci. 11 (1971) 223-229. https://doi.org/10.1016/S0010-938X(71)80137-3
[56] T. Koopmans, Ordering of wave functions and eigenenergies to the individual electrons of an atom, Physica. 1 (1933) 104-113. https://doi.org/10.1016/S0031-8914(34)90011-2
[57] S. Kaya, C. Kaya, I.B. Obot, N. Islam, A novel method for the calculation of bond stretching force constants of diatomic molecules, Spectrochim. Acta. A. 154 (2016) 103-107. https://doi.org/10.1016/j.saa.2015.10.030
[58] H. Chermette, Chemical reactivity indexes in density functional theory, J. Comput. Chem. 20 (1999) 129-154. https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A
[59] R.G. Parr, P.K. Chattaraj, Principle of maximum hardness, J. Am. Chem. Soc. 113 (1991) 1854-1855. https://doi.org/10.1021/ja00005a072
[60] R.P. Iczkowski, J.L. Margrave, Electronegativity, J. Am. Chem. Soc. 83 (1961) 3547-3551. https://doi.org/10.1021/ja01478a001
[61] W. Yang, R.G. Parr, Hardness, softness, and the fukui function in the electronic theory of metals and catalysis, P. Natl. Acad. Sci. Usa. 82 (1985) 6723-6726. https://doi.org/10.1073/pnas.82.20.6723
[62] A.Y. Musa, A.A.H. Kadhum, A.B. Mohamad, A.A.B. Rahoma, H. Mesmari, Electrochemical and quantum chemical calculations on 4, 4-dimethyloxazolidine-2-thione as inhibitor for mild steel corrosion in hydrochloric acid, J. Mol. Struct. 969 (2010) 233-237. https://doi.org/10.1016/j.molstruc.2010.02.051
[63] M. Shahraki, M. Dehdab, S. Elmi, Theoretical studies on the corrosion inhibition performance of three amine derivatives on carbon steel: molecular dynamics simulation and density functional theory approaches, J. Taiwan Inst. Chem. E. 62 (2016) 313-321. https://doi.org/10.1016/j.jtice.2016.02.010
[64] R.G. Parr, W. Yang, Density functional approach to the frontier-electron theory of chemical reactivity, J. Am. Chem. Soc. 106 (1984) 4049-4050. https://doi.org/10.1021/ja00326a036
[65] K.F. Khaled, Experimental, density function theory calculations and molecular dynamics simulations to investigate the adsorption of some thiourea derivatives on iron surface in nitric acid solutions, Appl. Surf. Sci. 256 (2010) 6753-6763. https://doi.org/10.1016/j.apsusc.2010.04.085
[66] C. Verma, I.B. Obot, I. Bahadur, E.S.M. Sherif, E.E. Ebenso, Choline based ionic liquids as sustainable corrosion inhibitors on mild steel surface in acidic medium: Gravimetric, electrochemical, surface morphology, DFT and Monte Carlo Simulation studies, Appl. Surf. Sci. 457 (2018) 134-149. https://doi.org/10.1016/j.apsusc.2018.06.035
[67] S. Martinez, Inhibitory mechanism of mimosa tannin using molecular modeling and substitutional adsorption isotherms, Mater. Chem. Phys. 77 (2003) 97-102. https://doi.org/10.1016/S0254-0584(01)00569-7
[68] S. Kaya, C. Kaya, L. Guo, F. Kandemirli, B. Tüzün, İ. Uğurlu, M. Saraçoğlu, Quantum chemical and molecular dynamics simulation studies on inhibition performances of some thiazole and thiadiazole derivatives against corrosion of iron, J. Mol. Liq. 219 (2016) 497-504. https://doi.org/10.1016/j.molliq.2016.03.042
[69] B. Gómez, N.V. Likhanova, M.A D. Aguilar, O. Olivares, J.M. Hallen, J.M. Martínez-Magadán, Theoretical study of a new group of corrosion inhibitors. J. Phys. Chem. A., 2005, 109(39): 8950-8957. https://doi.org/10.1021/jp052188k
[70] K. Fukui, Role of frontier orbitals in chemical reactions, Science 218 (1982) 747-754. https://doi.org/10.1126/science.218.4574.747
[71] K.X. Chen, Computer-Aided Drug Design: Principles, Methods and Applications, Shanghai Science and Technology Press, 2000.
[72] X.J. Xu. Computer-aided drug molecular design Chemical Industry Press, 2004.
[73] I. Lukovits, I. Bakó, A. Shaban, E. Kálmán, Polynomial model of the inhibition mechanism of thiourea derivatives. Electrochim. Acta, 43 (1998) 131-136. https://doi.org/10.1016/S0013-4686(97)00241-7
[74] P.G. Abdul-Ahad, S.H.F Al-Madfai, Elucidation of corrosion inhibition mechanism by means of calculated electronic indexes, Corros. Sci., 45 (1989) 978-980. https://doi.org/10.5006/1.3585015
[75] F. Bentiss, M. Traisnel, H. Vezin, Linear resistance model of the inhibition mechanism of steel in HCl by triazole and oxadiazole derivatives: structure–activity correlations, Corros. Sci., 45 (2003) 371-380. https://doi.org/10.1016/S0010-938X(02)00102-6
[76] S.G. Zhang, W. Lei, M.Z. Xia, QSAR study on N-containing corrosion inhibitors: Quantum chemical approach assisted by topological index. J. Mol. Struc-THEOCHEM. 732 (2005) 173-182. https://doi.org/10.1016/j.theochem.2005.02.091
[77] E.S.H.E. Ashry, A.E. Nemr, S.A. Esawy, Corrosion inhibitors Part II: Quantum chemical studies on the corrosion inhibitions of steel in acidic medium by some triazole, oxadiazole and thiadiazole derivatives, Electrochim. Acta. 51 (2006) 3957-3968. https://doi.org/10.1016/j.electacta.2005.11.010
[78] E.S.H.E. Ashry, A.E. Nemr, S.A. Esawy, Corrosion inhibitors Part V: QSAR of benzimidazole and 2-substituted derivatives as corrosion inhibitors by using the quantum chemical parameters, Prog. Org. Coat. 61 (2008) 11-20. https://doi.org/10.1016/j.porgcoat.2007.08.009
[79] S.Q. Hu, J.C. Hu, X. Shi, Quantitative structure-activity relationship and molecular design of imidazoline derivatives inhibitors, Acta Phys. Sin. 25 (2009) 2524-2530. https://doi.org/10.3866/PKU.WHXB20091126
[80] S.K. Saha, P. Ghosh, A. Hens, Density functional theory and molecular dynamics simulation study on corrosion inhibition performance of mild steel by mercapto-quinoline Schiff base corrosion inhibitor, Physica. E. 66 (2015) 332-341. https://doi.org/10.1016/j.physe.2014.10.035
[81] H. Zhao, X. Zhang L. Ji. Quantitative structure–activity relationship model for amino acids as corrosion inhibitors based on the support vector machine and molecular design, Corros. Sci. 83 (2014) 261-271. https://doi.org/10.1016/j.corsci.2014.02.023
[82] S. Ramachandran, B.-L. Tsai, M. Blanco, Atomistic simulations of oleic imidazolines bound to ferric clusters, J. Phys. Chem. A. 101(1997) 83-88. https://doi.org/10.1021/jp962041g
[83] X.C. Yan, H. Zhao, M.D. Luo, Current status and prospects of quantum chemistry research on corrosion inhibition mechanism of metals, Chin. J. Nature, 1998 (3) 134-137.
[84] T.S. Lawrence, Y. Wei, S.A. Jansen, Corrosion inhibition by aniline oligomers through charge transfer: a DFT approach, Synth. Met. 143(2004) 1-12. https://doi.org/10.1016/j.synthmet.2002.06.002
[85] L.C. Murulana, A.K. Singh, S.K. Shukla, M.M. Kabanda, E. E. Ebenso, Experimental and quantum chemical studies of some bis (trifluoromethyl-sulfonyl) imide imidazolium-based ionic liquids as corrosion inhibitors for mild steel in hydrochloric acid solution, Ind. Eng. Chem. Res. 51 (2012) 13282-13299. https://doi.org/10.1021/ie300977d
[86] X.H. Du, C.J. Feng, Prediction of corrosion inhibition efficiency of benzimidazole inhibitors based on density functional theory, J. Nanjing U. Sci. Tech: Nat. Sci. Ed., 38 (2014) 424-430.
[87] A. Yousefi, S. Javadian, N. Dalir, J. Kakemam, J. Akbari, Imidazolium-based ionic liquids as modulators of corrosion inhibition of SDS on mild steel in hydrochloric acid solutions: experimental and theoretical studies, RSC Advances 5 (2015) 11697-11713. https://doi.org/10.1039/C4RA10995C
[88] L.O. Olasunkanmi, I.B. Obot, E.E. Ebenso, Adsorption and corrosion inhibition properties of N-{n-[1-R-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-3-yl]phenyl} methane- sulfonamides on mild steel in 1 M HCl: experimental and theoretical studies, RSC Advances. 6 (2016) 86782-86797. https://doi.org/10.1039/C6RA11373G
[89] Y.M. Tang, Y. Chen, W.Z. Yang, Y. Liu, X.S. Yin, J.T. Wang, Electrochemical and theoretical studies of thienyl-substituted amino triazoles on corrosion inhibition of copper in 0.5 M H2SO4, J. Appl. Electrochem. 38 (2008) 1553-1559. https://doi.org/10.1007/s10800-008-9603-6
[90] M. Mousavi, T. Baghgoli, Application of interaction energy in quantitative structure-inhibition relationship study of some benzenethiol derivatives on copper corrosión, Corros. Sci., 105 (2016) 170-176. https://doi.org/10.1016/j.corsci.2016.01.014
[91] M.M. Kabanda, E.E. Ebenso, Density functional theory and quantitative structure- activity relationship studies of some quinoxaline derivatives as potential corrosion inhibitors for copper in acidic médium, Int. J. Electroch. 7(2012) 8713-8733.
[92] W.Z. Zhou, G.C. Tian, Theoretical study on corrosion inhibition mechanism of alkylimidazole ionic liquid corrosion inhibitors, J. Kunming Univ. Sci. Tech.(Nat. Sci. Ed.). 42 (2017) 1-9.
[93] W.Z. Zhou, Theoretical study on the inhibition mechanism of ionic liquid corrosion inhibitors, Kunming University of Science and Technology: Kunming, 2018
[94] G.C. Tian, K.T. Yuan, Mechanism of inhibition of carbon steel by imidazole ionic liquid in hydrochloric acid médium, J. Kunming Univ. Sci. Tech. (Nat. Sci. Ed.), 43 (2018) 9-19.
[95] Yuan Kaitao, Quantitative structure-activity relationship study of new ionic liquid corrosion inhibitors, Kunming University of Science and Technology: Kunming, 2019, 95-96.
[96] Y.M. Tang, Y. Chen, W.Z. Yang, Y. Liu, X.S. Yin, J.T. Wang, Electrochemical and theoretical studies of thienyl-substituted amino triazoles on corrosion inhibition of copper in 0.5 M H2SO4, J. Appl. Electrochem. 38 (2008) 1553-1559. https://doi.org/10.1007/s10800-008-9603-6
[97] M. Mousavi, T. Baghgoli, Application of interaction energy in quantitative structure-inhibition relationship study of some benzenethiol derivatives on copper corrosión, Corros. Sci. 105 (2016) 170-176. https://doi.org/10.1016/j.corsci.2016.01.014
[98] M.M. Kabanda, E.E. Ebenso, Density functional theory and quantitative structure-activity relationship studies of some quinoxaline derivatives as potential corrosion inhibitors for copper in acidic médium, Int. J. Electroch. 7 (2012) 8713-8733.
[99] J. Zhang, S.Q. Hu, Y. Wang, W.Y. Guo, J. X. Liu, L. You, Theoretical Study on the Inhibition Mechanism of 1- (2-hydroxyethyl) -2-alkyl-imidazoline Corrosion Inhibitors, Acta Chim. Sin. 66 (2008) 2469-2475.
[100] X. Zheng, S. Zhang, W. Li, L. Yin, J. He, J. Wu, Investigation of 1-butyl-3-methyl-1-H-benzimidazolium iodide as inhibitor for mild steel in sulfuric acid solution, Corros. Sci. 80 (2014) 383-392. https://doi.org/10.1016/j.corsci.2013.11.053
[101] Y. Sasikumar, A.S. Adekunle, L.O. Olasunkanmi, I. Bahadur, R. Baskar, M.M. Kabanda, E.E. Ebenso, Experimental, quantum chemical and Monte Carlo simulation studies on the corrosion inhibition of some alkyl imidazolium ionic liquids containing tetrafluoroborate anion on mild steel in acidic médium, J. Mol. Liq. 211(2015) 105-118. https://doi.org/10.1016/j.molliq.2015.06.052
[102] C. Zuriaga-Monroy, R. Oviedo-Roa, L.E. Montiel-Sánchez, A. Vega-Paz, J. Marín-Cruz, J.M. Martinez-Magadan, Theoretical study of the aliphatic-chain length’s electronic effect on the corrosion inhibition activity of methylimidazole-based ionic liquids, Ind. Eng. Chem. Res. 55(2016) 3506-3516. https://doi.org/10.1021/acs.iecr.5b03884
[103] L. Feng, S. Zhang, S. Yan, S. Xu, S. Chen, Experimental and theoretical studies of 1-vinyl-3-hexylimidazolium iodide ([VHIM]I) as corrosion inhibitor for the mild steel in sulfuric acid solution. Int. J. Electroch., 12 (2017) 1915-1928. https://doi.org/10.20964/2017.03.30
[104] R.H. Albrakaty, N.A. Wazzan, I.B. Obot, Theoretical study of the mechanism of corrosion inhibition of carbon steel in acidic solution by 2-aminobenzothaizole and 2-mercatobenzothiazole, Int. J. Electroch., 13 (2018) 3535-3554. https://doi.org/10.20964/2018.04.50
[105] F.E.T Heakal, S.A. Rizk, A.E. Elkholy, Characterization of newly synthesized pyrimidine derivatives for corrosion inhibition as inferred from computational chemical análisis, J. Mol. Struc. 1152 (2018) 328-336. https://doi.org/10.1016/j.molstruc.2017.09.079
[106] G. Wu, N.M. Hao, B.J. Lian, S. Chen, S. Sun, S. Hu, Density functional theory analysis on pyridine corrosion inhibitors and adsorption behavior on Al (111) Surface, CIESC J. 64 (2013) 2565-2572.
[107] X.Y. Zhang, Q.X. Kang, Y. Wang, Theoretical study of N-thiazolyl-2 -cyanoacetamide derivatives as corrosion inhibitor for aluminum in alkaline environments, Comput. Theor. Chem. 1131(2018) 25-32. https://doi.org/10.1016/j.comptc.2018.03.026
[108] Y. Qiang, S. Zhang, L. Guo, Experimental and theoretical studies of four allyl imidazolium-based ionic liquids as green inhibitors for copper corrosion in sulfuric acid, Corros. Sci. 119 (2017) 68-78. https://doi.org/10.1016/j.corsci.2017.02.021
[109] S. Kaya, B. Tüzün, C. Kaya, I.B. Obot, Determination of corrosion inhibition effects of amino acids: Quantum chemical and molecular dynamic simulation study, J. Taiwan Inst. Chem. Eng. 58 (2016) 528-535. https://doi.org/10.1016/j.jtice.2015.06.009
[110] L. Guo, S. Zhu, S. Zhang, Q. He, W. Li, Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic médium, Corros. Sci. 87 (2014) 366-375. https://doi.org/10.1016/j.corsci.2014.06.040
[111] K.F. Khaled, N.M. Al-Nofai, N.S. Abdel-Shafi, QSAR of corrosion inhibitors by genetic function approximation, neural network and molecular dynamics simulation methods. J. Mater. Environ. Sci. 7(6) (2016) 2121-2136.
[112] S. Yesudass, L.O. Olasunkanmi, I. Bahadur, M.M. Kabanda, I. B. Obot, E.E. Ebenso, Experimental and theoretical studies on some selected ionic liquids with different cations/anions as corrosion inhibitors for mild steel in acidic médium, J. Taiwan Inst. Chem. Eng. 64 (2016) 252-268. https://doi.org/10.1016/j.jtice.2016.04.006
[113] F. El-Hajjaji, M. Messali, A. Aljuhani, M.R. Aouad, B. Hammouti, M.E. Belghiti, M.A. Quraishi, Pyridazinium-based ionic liquids as novel and green corrosion inhibitors of carbon steel in acid medium: Electrochemical and molecular dynamics simulation studies, J. Mol. Liq. 249 (2018) 997-1008. https://doi.org/10.1016/j.molliq.2017.11.111
[114] M.M. Kabanda, E.E. Ebenso, Density functional theory and quantitative structure-activity relationship studies of some quinoxaline derivatives as potential corrosion inhibitors for copper in acidic médium, Int. J. Electroch. 7 (2012) 8713-8733