Aerogels Envisioning Future Applications

$30.00

Aerogels Envisioning Future Applications

Rafael Henrique Holanda Pinto, Jhonatas Rodrigues Barbosa, Lucas Cantão Freitas, Ivonete Quaresma da Silva de Aguiar, Flávia Cristina Seabra Pires, Ana Paula de Souza e Silva and Raul Nunes de Carvalho Junior

Aerogels are nanoporous structures with low thermal conductivity, specific mass and refractive index. These materials can be divided into organic, inorganic and hybrid groups. The advantages of aerogels include their synthesis with raw materials from different natures, such as macronutrients, metal oxides, polymers, carbon allotropes and transition metals. Prospects for the future applications of aerogels focus on the synthesis of functional foods, medicines, impact absorbing materials, catalytic supports, and aerospace components.

Keywords
Aerogels, Nanoporous, Structures, Perspectives, Applications

Published online 9/20/2020, 16 pages

Citation: Rafael Henrique Holanda Pinto, Jhonatas Rodrigues Barbosa, Lucas Cantão Freitas, Ivonete Quaresma da Silva de Aguiar, Flávia Cristina Seabra Pires, Ana Paula de Souza e Silva and Raul Nunes de Carvalho Junior, Aerogels Envisioning Future Applications, Materials Research Foundations, Vol. 84, pp 214-229, 2020

DOI: https://doi.org/10.21741/9781644900994-9

Part of the book on Aerogels I

References
[1] F. P. Soorbaghi, M. Isanejad, S. Salatin, M. Ghorbani, S. Jafari, H. Derakhshankhah, Bioaerogels: Synthesis approaches, cellular uptake, and the biomedical applications, Biomedicine & Pharmacotherapy 111 (2019) 964–975. https://doi.org/10.1016/j.biopha.2019.01.014
[2] S.W. Ruban, Biobasedpackaging-application in meatindustry, Vet. World 2 (2)(2009) 79–82.https://doi.org/10.5455/vetworld.2009.79-82
[3] L.L. Hench, J.K. West, The sol-gel process, Chem. Rev. 90 (1) (1990) 33–72.https://doi.org/10.1021/cr00099a003
[4] A.S. Dorcheh, M. Abbasi, Silicaaerogel; synthesis, propertiesandcharacterization, J. Mater. Process. Technol. 199 (1–3) (2008) 10–26.https://doi.org/10.1016/j.jmatprotec.2007.10.060
[5] S. Jafari, H. Derakhshankhah, L. Alaei, A. Fattahi, B.S. Varnamkhasti, A.A. Saboury, Mesoporoussilicananoparticles for therapeutic/diagnosticapplications, Biomed.Pharmacother. 109 (2019) 1100–1111.https://doi.org/10.1016/j.biopha.2018.10.167
[6] M. Alnaief, ProcessDevelopment for ProductionofAerogelswithControlledMorphology as PotentialDrug Carrier Systems, TechnischeUniversität Hamburg, 2011.
[7] A. Ubeyitogullari, O. N. Ciftci, Formation of nanoporous aerogels from wheat starch, Carbohydrate Polymers 147 (2016) 125–132. https://dx.doi.org/10.1016/j.carbpol.2016.03.086
[8] A. Ubeyitogullari, O. N. Ciftci, Generating phytosterol nanoparticles in nanoporousbioaerogels via supercritical carbon dioxide impregnation: Effect of impregnation conditions, Journal of Food Engineering xxx (2017) 1-9. https://dx.doi.org/10.1016/j.jfoodeng.2017.03.022
[9] C. Gupta, D. Prakash, Phytonutrients as therapeutic agents, J Complement Integr Med. 2014; 11(3): 151–169. https://dx.doi.org/10.1515/jcim-2013-0021
[10] A. Ubeyitogullari, O. N. Ciftci, Fabrication of bioaerogels from camelina seed mucilage for food applications, Food Hydrocolloids 102 (2020) 105597. https://doi.org/10.1016/j.foodhyd.2019.105597
[11] R. Mavelil-Sam, L.A. Pothan, S. Thomas, Polysaccharide and protein based aerogels: an introductory outlook, Biobased Aerogels (2018) 1–8 978-1-78262-765-4.https://doi.org/10.1039/9781782629979-00001
[12] C. Tresoldi, D.P. Peneda Pacheco, E. Formenti, R. Gentilini, S. Mantero, P. Petrini, Alginate/gelatin hydrogels to coat porous tubular scaffolds for vascular tissue engineering, Eur. Cells Mater. 33 (2017).
[13] S. Frindy, A. Primo, H. Ennajih, A. el KacemQaiss, R. Bouhfid, M. Lahcini, E.M. Essassi, H. Garcia, A. El Kadib, Chitosan–graphene oxide films and CO2-dried porous aerogel microspheres: interfacial interplay and stability, Carbohydr. Polym. 167 (2017) 297–305. https://dx.doi.org/10.1016/j.carbpol.2017.03.034
[14] J.R. Barbosa, M.M.S. Freitas, L.H.S. Martins, R.N.C. Junior, Polysaccharides of mushroom Pleurotusspp: New extraction techniques, biological activities and development of new technologies, Carbohydrate Polymers. 229 (2019) 115550. https://doi.org/10.1016/j.carbpol.2019.115550
[15] J.P. Vareda, A. Lamy-Mendes, L. Durães, A reconsideration on the definition of the term aerogel based on current drying trends, Micropor. Mesopor. Mat. 258 (2018) 211-216. https://doi.org/10.1016/j.micromeso.2017.09.016
[16] C. Wan, Y. Jiao, S. Wei, L. Zhang, Y. Wu, J. Li, Functional nanocomposites from sustainable regenerated cellulose aerogels: A review, Chem. Eng. J. 359 (2019) 459–475. https://doi.org/10.1016/j.cej.2018.11.115
[17] J.P. Oliveira, G.P. Bruni, S. L. M. el Halal, F. C. Bertoldi, A.R.G. Dias, E.R. Zavareze, Cellulose nanocrystals from rice and oat husks and their application in aerogels for food packaging, ‎Int. J. Biol. Macromol. 124 (2019) 175-184. https://doi.org/10.1016/j.ijbiomac.2018.11.205
[18] L. Heath, W. Thielemans, Cellulose nanowhisker aerogels, Green Chem. 12 (2010) 1448–1453. https://doi.org/10.1039/c0gc00035c
[19] L. Nguyen, F.F. Tao, Y. Tang, J. Dou, X.J. Bao, Understanding Catalyst Surfaces during Catalysis through Near Ambient Pressure X ray Photoelectron Spectroscopy, Chem. Rev. 119 (2019) 16822-6905. https://doi.org/10.1021/acs.chemrev.8b00114
[20] M.R. Mansor, A.H. Nurfaizey, N. Tamaldin, M.N.A. Nordin, Natural fiber polymer composites: utilization in aerospace engineering, in: D. Verma, E. Fortunati, S. Jain, X. Zhang (Eds.), Biomass, Biopolymer-Based Materials, and Bioenergy: Construction, Biomedical, and other Industrial Applications, Elsevier Ltd., Amsterdã, 2019, pp. 203-224. https://doi.org/10.1016/B978-0-08-102426-3.00011-4
[21] E. Fortunati, J.M. Kenny, L. Torre, Lignocellulosic materials as reinforcements in sustainable packaging systems: processing, properties, and applications, in: D. Verma, E. Fortunati, S. Jain, X. Zhang (Eds.), Biomass, Biopolymer-Based Materials, and Bioenergy: Construction, Biomedical, and other Industrial Applications, Elsevier Ltd., Amsterdã, 2019, pp. 87-102. https://doi.org/10.1016/B978-0-08-102426-3.00005-9
[22] C. Rudaz, R. Courson, L. Bonnet, S. Calas-Etienne, H. Sallée, T. Budtova, Aeropectin: Fully biomass-based mechanically strong and thermal superinsulating aerogel, Biomacromolecules. 15 (2014) 2188–2195. https://doi.org/10.1021/bm500345u
[23] C. Wang, S.Yang, Q. Ma, X. Jia, P.C. Ma, Preparation of carbon nanotubes/graphene hybrid aerogel and its application for the adsorption of organic compounds. Carbon, 118 (2017), 765-771. https://doi.org/10.1016/j. carbon.2017.04.001
[24] I. Smirnova, P. Gurikov, Aerogel production: Current status, research directions, and future opportunities, J. Supercrit. Fluids. 134 (2018) 228–233. https://doi.org/10.1016/j.supflu.2017.12.037
[25] Z. Ulker, C. Erkey, An emerging platform for drug delivery: Aerogel based systems, J. Control. Release. 177 (2014) 51–63. https://doi.org/10.1016/j.jconrel.2013.12.033
[26] M.E. El-Naggar, S.I. Othman, A.A. Allam, O.M. Morsy, Synthesis, drying process and medical application of polysaccharide-based aerogels, Int. J. Biol. Macromol. In press (2019) 1–14. https://doi.org/10.1016/j.ijbiomac.2019.10.037
[27] Y. Wang, Y. Su, W. Wang, Y. Fang, S.B. Riffat, F. Jiang, The advances of polysaccharide-based aerogels: Preparation and potential application, Carbohydr. Polym. 226 (2019) 1–13. https://doi.org/10.1016/j.carbpol.2019.115242
[28] N. Justh, G. J. Mikula, L. P. Bakos, B. Nagy, K. László, B. Parditka, J.Mikula, Z. Erdélyi, V.Takáts, J. Mizse, I. M. Szilágyi. Photocatalytic properties of TiO2 polymer and TiO2 carbon aerogel composites prepared by atomic layer deposition. Carbon, 147 (2019), 476-482.
[29] A. Abdelwahab, J. Castelo-Quibén, M. Pérez-Cadenas, F. J.Maldonado-Hódar, F. Carrasco-Marín, A. F. Pérez-Cadenas,Insight of the effect of graphitic cluster in the performance of carbon aerogels doped with nickel as electrodes for supercapacitors, Carbon, 139 (2018), 888-895. https://doi.org/10.1016/j.carbon.2018.07.034
[30] M. Serrapede, A. Rafique, M. Fontana, A. Zine, P. Rivolo, S. Bianco, L. Cetibi, E.Tresso& A. Lamberti. Fiber-shaped asymmetric supercapacitor exploiting rGO/Fe2O3 aerogel and electrodeposited MnOx nanosheets on carbon fibers. Carbon, 144 (2019), 91-100. https://doi.org/10.1016/j.carbon.2018.12.002
[31] M. Zhang, D. Yang, S. Zhang, T. Xu, Y. Shi, Y. Liu, W. Chang &Z. Z.Yu., Elastic and hierarchical carbon nanofiber aerogels and their hybrids with carbon nanotubes and cobalt oxide nanoparticles for high-performance asymmetric supercapacitors. Carbon (2019). https://doi.org/10.1016/j.carbon.2019.11.071
[32] Q.Yin, L.He, J.Lian, J.Sun, S.Xiao, J.Luo, D. Sun, A.Xie & Lin, B. The synthesis of Co3O4/C composite with aloe juice as the carbon aerogel substrate for asymmetric supercapacitors. Carbon, 155 (2019), 147-154. https://doi.org/10.1016/j.carbon.2019.08.060
[33] Y. Qin, Q. Peng, Y. Ding, Z. Lin, C. Wang, Y. Li, F. Xu, J. Li, Y. Yuan, X. He&Y. Li. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS nano, 9 (2015), 8933-8941. https://doi.org/10.1021/acsnano.5b02781
[34] H. L. Gao, Y. B. Zhu, L. B. Mao, F. C. Wang, X. S. Luo, Y. Y. Liu, Y. Lu, Z. Pan, J. Ge, W. Shen, Y.R. Zheng, L. Xu, L.J.Wang, W.H.Xu, H.A. Wu &Y. R. Zheng. Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nature communications, 7 (2016), 12920. https://doi:10.1038/ncomms12920
[35] Qiu, L., Liu, J. Z., Chang, S. L., Wu, Y., & Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nature communications, 3 (2012), 1241. https://doi:10.1038/ncomms2251
[36] Y. Wu, N. Yi, L. Huang, T. Zhang, S. Fang, H. Chang, N. Li, J. Oh, J. A. Lee, M. Kozlov, A. C. Chipara, H. Terrones, P. Xiao, G. Long, Y. Huang, F. Zhang, L. Zhang, X. Lepró, C. Haines, M. D. Lima, N. P. Lopez, L. P. Rajukumar, A. L. Elias, S. Feng, S. J. Kim, N. T. Narayanan, P. M. Ajayan, M. Terrones, A. Aliev, P. Chu, Z. Zhang, R. H. Baughman & Y. Chen. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio. Nature communications, 6 (2015), 6141. https://doi.org/10.1038/ncomms7141
[37] J. Liu, Y. Liu, H. B. Zhang, Y. Dai, Z. Liu, & Z. Z. Yu. Superelastic and multifunctional graphene-based aerogels by interfacial reinforcement with graphitized carbon at high temperatures. Carbon, 132 (2018), 95-103. https://doi.org/10.1016/j.carbon.2018.02.026
[38] C. Ziegler, A. Wolf, W. Liu, A. K. Herrmann, N.Gaponik& A.Eychmüller. Modern Inorganic Aerogels. AngewandteChemieInternational Edition, 16, 56(43) (2017),13200-13221. https://doi.org/10.1002/anie.201611552
[39] G. Gan, X. Li, S. Fan, L. Wang, M. Qin, Z. Yin & G. Chen, Carbon Aerogels for Environmental Clean‐Up, European Journal of Inorganic Chemistry, 27 (2019), 3126-3141. https://doi.org/10.1002/ejic.201801512
[40] S. Rezaei, A. Jalali, A. M. Zolali, M. Alshrah, S. Karamikamkar& C. B. Park, Robust, Ultra-Insulative and Transparent Polyethylene-based Hybrid Silica Aerogel with a Novel Non-particulate Structure, Journal of Colloid and Interface Science (2019). https://doi.org/10.1016/j.jcis.2019.04.028
[41] S. Rezaei, A. M. Zolali, A. Jalali& C. B. Park, Novel and simple design of nanostructured, super-insulative and flexible hybrid silica aerogel with a new macromolecular polyether-based precursor, J. Colloid Interface Sci. (2019).https://doi.org/10.1016/j.jcis.2019.11.072
[42] Y. Shen, D. Li, B. Deng, Q. Liu, H. Liu & T. Wu, Robust polyimide nano/microfibre aerogels welded by solvent-vapour for environmental applications, Royal Society Open Science, 6, 8 (2019), https://doi.org/10.1098/rsos.190596
[43] J. Yang, Y. Li, Y. Zheng, Y. Xu, Z. Zheng, X. Chen & Wei Liu, Versatile aerogels for sensors, Small, 15 (2019). https://doi.org/10.1002/smll.201902826
[44] N. Hebalkar, K. S. Kollipara, Y. Ananthan& M. K.Sudha, Nanoporous Aerogels for Defense and Aerospace Applications, Handbook of Advanced Ceramics and Composites, 5-1, (1-43), (2019). https://doi.org/10.1007/978-3-319-73255-8
[45] García-González, Budtova, Durães, Erkey, D.Gaudio, Gurikov, Koebel, Liebner, Neagu and Smirnova, An opinion paper on aerogels for biomedical and environmental applications, Molecules, 24, 9, (1815), (2019).https://doi.org/10.3390/molecules 24091815
[46] A. Benad, F. Jürries, B. Vetter, B. Klemmed, R. Hübner, C.Leyens& A.Eychmüller, Mechanical properties of metal oxide aerogels. Chem. Mater.1 (2018), 145-152. https://doi.org/10.1021/acs.chemmater.7b03911
[47] B. Trepka, J. Stiegeler, I. Wimmer, M. Fonin and S. Polarz, Eurogels: A ferromagnetic semiconductor with a porous structure prepared via the assembly of hybrid nanorods, Nanoscale (2018).https://doi.org/10.1039/C8NR06536E
[48] Z. Qian, M. Yang, R. Li, D. Li, J. Zhang, Y. Xiao, C. Li, R. Yang, N. Zhao & J.Xu, Fire-resistant, ultralight, superelastic and thermally insulated polybenzazole aerogels, J. Mater. Chem. A, (2018). https://doi.org/10.1039/C8TA07204C
[49] T.Berestok, P. Guardia, R. Du, J. B. Portals, M. Colombo, S. Estradé, F. Peiró, S. L. Brock & A. Cabot, Metal oxide aerogels with controlled crystallinity and faceting from the epoxide-Driven cross-linking of colloidal nanocrystals, ACS Appl. Mater. Interfaces, 10, 18 (2018), 16041-16048.https://doi.org/10.1021/acsami.8b03754