Tailor-Made Aerogels
Pallavi Jain, Sapna Raghav, Praveen Kumar Yadav, Dinesh Kumar
This chapter emphasizes modern progress in aerogel researches and its technological implementation. The methods that allow introducing required characteristics in aerogels to meet the necessary requirements in their implementations are given prime attention. The determining factors of aerogels regarding the already present and capable implementation areas are provided in brief. Many customizing techniques like modulating the pore structure, changing the surface, coating of the surface, and post-treatment is described by the outcomes of the last ten years. Regarding the commercial uses of aerogels and its products, an unbroken view of industrial aerogel suppliers is provided and a discussion of plausible substitute sources for raw materials and precursors. Last, the chapter summarizes opinions and potential points regarding the aerogels.
Keywords
Tailor-made Aerogels, Pore Structure, Surface Coating, Post-Treatment, Technical Implementations
Published online 9/20/2020, 13 pages
Citation: Pallavi Jain, Sapna Raghav, Praveen Kumar Yadav, Dinesh Kumar, Tailor-Made Aerogels, Materials Research Foundations, Vol. 84, pp 201-213, 2020
DOI: https://doi.org/10.21741/9781644900994-8
Part of the book on Aerogels I
References
[1] M.A. Aegerter, N. Leventis, M.M. Koebel, Aerogels handbook, Springer, New York, 2011.
[2] S. Mulik,C.Sotiriou-Leventis, G. Churu,H. Lu, N. Leventis, Crosslinking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization, Chem. Mater. 20 (2008) 5035–5046. https://doi.org/10.1021/cm800963h
[3] D.H. Everett, Manual of symbols and terminology for physicochemical quantities and units, appendix ii: definitions, terminology and symbols in colloid and surface chemistry, Pure Appl. Chem. 31 (1972) 577–638.https://doi.org/10.1351/pac197231040577
[4] L. Falk,A. Nikita, S.Christian,P. Antje, R. Thomas, Bacterial cellulose aerogels: from lightweight dietary food to functional materials, Funct. Mater. Renew. Sources 1107 (2012) 57–74. https://doi.org/10.1021/bk-2012-1107.ch004
[5] M. Venkataraman,R. Mishra, T.M. Kotresh, J. Militky, H.Jamshaid, Aerogels for thermal insulation in high-performance textiles, Text. Prog. 48 (2016) 55–118. https://doi.org/10.1080/00405167.2016.1179477
[6] M.M. Titirici, R.J. White, N.Brun, V.L.Budarin, D.S. Su, Sustainable carbon materials, Chem. Soc. Rev. 44 (2014) 250–290. https://doi.org/10.1039/C4CS00232F.
[7] S. Araby, A.Qiu, R. Wang, Z. Zhao, C.H. Wang, J. Ma, Aerogels based on carbon nanomaterials, J. Mater. Sci. 51 (2016) 9157–9189. https://doi.org/ 10.1007/s10853-016-0141-z
[8] C. Zhu, D.Du, A. Eychmuller, Y. Lin, Engineering ordered and non ordered porous noble metal nanostructures: synthesis, assembly, and their applications in electrochemistry, Chem. Rev. 115 (16) 8896– 8943. https://doi.org/10.1021/acs.chemrev.5b00255
[9] H. Maleki, Recent advances in aerogels for environmental remediation applications: a review, Chem. Eng. J. 300 (2016) 98– 118. https://doi.org/10.1016/j.cej.2016.04.098
[10] O.A. Madyan, M. Fan, L. Feo, D. Hui, Physical properties of clay aerogel composites: an overview, Compos. B Eng. 102 (2016) 29– 37. https://doi.org/10.1016%2Fj.composites b.2016.06.057
[11] L. Zuo,Y. Zhang, L. Zhang, Y.E. Miao, W. Fan, T. Liu, Polymer/carbon-based hybrid aerogels: preparation, properties and applications, Materials 8 (2015) 6806–6848. https://doi.org/10.3390/ma8105343
[12] A. Feinle, N. Husing, Mixed metal oxide aerogels from tailor-made precursors. J. Supercrit. Fluids 106 (2015) 2–8. https://doi.org/10.1016/j.supflu.2015.07.015.
[13] J.B. Miller, S.T. Johnston, E.I. Ko, Effect of prehydrolysis on the textural and catalytic properties of titania-silica aerogels, J. Catal. 150 (1994) 311–320. https://doi.org/ 10.1006/jcat.1994.1349
[14] K. Brodzik, J. Walendziewski, M. Stolarski, L.V. Ginneken, K. Elst, V. Meynen, The influence of preparation method on the physicochemical properties of titania silica aerogels : part two, J. Porous Mater. 15 (2007) 541–549. https://doi.org/10.1007/s10934- 007-9130-6
[15] S.P. Raman, P. Gurikov, I. Smirnova, Hybrid alginate based aerogels by carbon dioxide induced gelation: novel technique for multiple applications, J. Supercrit. Fluids 106 (2015) 23–33. https://doi.org/10.1016/j.supflu.2015.05.003
[16] N. Pircher, D. Fischhuber, L. Carbajal, C.. Strauß,J.M. Nedelec, C. Kasper, T. Rosenau, F. Liebner,. Preparation and reinforcement of dual-porous biocompatible cellulose scaffolds for tissue engineering, Macromol. Mater. Eng. 300 (2015) 911–924. https://doi.org/10.1002/mame.201500048
[17] A. El Kadib, M. Bousmina, Chitosan bio-based organic-inorganic hybrid aerogel microspheres, Chem. Eur. J. 18 (2012) 8264–8277. https://doi.org/10.1002/chem.201104006.
[18] T. Xia, H. Yang, J. Li, C. Sun, C. Lei, Z. Hua, Y.Zhanga, Tailoring structure and properties of silica aerogels by varying the content of the tetramethoxysilane added in batches, Micropor. Mesopor. Mat. 280 (2019) 20–25.https://doi.org/10.1016/ j.micromeso.2019.01.038
[19] C.Kleemann, I. Selmer, I. Smirnova, U.Kulozik, Tailor made protein based aerogel particles from egg white protein, whey protein isolate and sodium caseinate: Influence of the preceding hydrogel characteristics, Food Hydrocoll., 83 (2018) 365-374. https://doi.org/10.1016/j.foodhyd.2018.05.021
[20] L. Chen, Q. Huang, Y. Wang, H. Xiao, W. Liu, D. Zhang, T. Yang, Tailoring performance of Co-Pt/MgO-Al2O3 bimetallic aerogel catalyst for methane oxidative carbon dioxide reforming: Effect of Pt/Co ratio, Inter. J. Hyd. Energy 44 (2019) 19878-19889. https://doi.org/10.1016/j.ijhydene.2019.05.201
[21] Z. Li, X. Cheng, S. He, X. Shi, H. Yang, H. Zhang, Tailoring thermal properties of ambient pressure dried MTMS/TEOS co-precursor aerogels, Mater. Letters 171 (2016) 91–94. https://doi.org/10.1016/j.matlet.2016.02.025
[22] Y. Xue, W. Pei-wen, L. You-chang, W. Liang, F. Li-Juan, L. Chun-Hu, Dopamine and L-arginine tailored fabrication of ultralight nitrogen-doped graphene aerogels for oil spill treatment, J. Fuel Chem. Technol. 45 (2017) 1230-1235. https://doi.org/10.1016/S1872-5813(17)30055-5
[23] H. Shan, D. Xiong, X. Li, Y. Sun, B. Yan, D. Li, S. Lawes, Y. Cui, X. Sun, Tailored lithium storage performance of graphene aerogel anodes with controlled surface defects for lithium-ion batteries, Appl. Surface Sci. 364 (2015) 651-659. https://doi.org/10.1016/j.apsusc.2015.12.143
[24] C.A. García-González, I. Smirnova, Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems, J. Supercrit. Fluids 79 (2013) 152–158. https://doi.org/10.1016/j.supflu.2013.03.001
[25] V.S. Pradeep, D.G. Ayana, M. Graczyk-Zajac, G.D. Soraru, R. Riedel, High rate capability of SiOC ceramic aerogels with tailored porosity as anode materials for Li-ion batteries, Electrochim. Acta 157 (2015) 41–45. https://doi.org/10.1016/j.electacta. 2015.01.088
[26] C. Zhao, C. Yu, M. Zhang, J. Yang, S. Liu, M. Li, X. Han, Y.Dong, J. Qiu, Tailormade graphene aerogels with inbuilt baffle plates by charge-induced template directed assembly for high-performance Li-S batteries, J. Mater. Chem. A, 3 (2015) 21842-21848. https://doi.org/10.1039/C5TA05146K
[27] C. Zhao, C. Yu, M. Zhang, J. Yang, S. Liu, M. Li, X. Han, Y.Dong, J. Qiu,Tailor-made graphene aerogels with inbuilt baffle plates by charge-induced template-directed assembly for high-performance Li-S batteries, J. Mater. Chem. A, 3 (2015) 21842-21848.https://doi.org/10.1039/C5TA05146K