Recent Patents on Aerogels
Sapna Raghav, Pallavi Jain, Praveen Kumar Yadav, Dinesh Kumar
Aerogels possess low density, large surface area, and high porosity, as a result these are considered as the fascinating materials of the 21st century. Aerogel materials have a broad range of extraordinary properties and, therefore, have a remarkable number of applications. Several industrial applications of aerogels are under advance development, like particle detectors, catalysts, and thermal insulators. As the researchers realized their peculiar and extraordinary properties, newer applications of aerogels started emerging. There are technical and scientific applications, besides increasing industrial applications of aerogels. This chapter addresses the recent patents on aerogels.
Keywords
Granted Patents, Cellulose Aerogel, Patents, Industrial Applications
Published online 9/20/2020, 20 pages
Citation: Sapna Raghav, Pallavi Jain, Praveen Kumar Yadav, Dinesh Kumar, Recent Patents on Aerogels, Materials Research Foundations, Vol. 84, pp 230-249, 2020
DOI: https://doi.org/10.21741/9781644900994-10
Part of the book on Aerogels I
References
[1] S.K.Montesa, G.H. Maleki, Aerogels and their applications, in S. Thomas, A.T. Sunny, P. Velavudhan (Eds.), Colloidal Metal Oxide Nanoparticles, Elsevier 2002, pp.337–399. https://doi.org/10.1016/B978-0-12-813357-6.00015-2
[2] S. Mulik, C. Sotiriou-Leventis, G. Churu, H. Lu, N. Leventis, Cross-linking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization, Chem. Mater. 20 (2008) 5035–5046. https://doi.org/10.1021/cm800963h
[3] S.S. Kistler, Coherent expanded aerogels and jellies, Nature 127 (1931) 741–741. https://doi.org/ 10.1038/127741a0
[4] I. Smirnova, P. Gurikov, Aerogels in chemical engineering: strategies toward tailor-made aerogels, Annu. Rev. Chem. Biomol. Eng. 8 (2017) 14.1–14.28. https://doi.org/10.1146/annurev-chembioeng-060816-10145810.1146/annurev-chembioeng-060816-101458
[5] W.A.W.I. Thielemans, R. Davies, Cellulose nanoparticle aerogels, hydrogels and organogels, PCT/GB2010/051542, 2009.
[6] J.V. Aleman, A.V. Chadwick, J. He, M. Hess, K. Horie, R.G. Jones, P. Kratochvíl, I. Meisel, I. Mita, G. Moad, S. Penczek, Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC recommendations 2007), Pure Appl. Chem. 79 (2007) 1801–1829. https://doi.org/10.135/pac200779101801
[7] S. Araby, A. Qiu, R. Wang, Z. Zhao, C.H. Wang, J. Ma, Aerogels based on carbon nanomaterials, J. Mater. Sci. 51 (2016) 9157–9189. https://doi.org/10.1007/s10853-016-0141-z
[8] A.C. Pierre, History of aerogels,in M. Aegerter, N. Leventis, M. Koebel, (Eds.),Aerogels handbook. advances in sol-gel derived materials and technologies, Springer: New York, NY, USA, 2011; pp. 3–18. https://doi.org/10.1007/978-1-4419-7589-8_1
[9] S. Teichner, G.A. Nicolaon, M.A. Vicarini, G.E.E. Gardes, Inorganic oxide aerogels, Adv. Colloid Interf. Sci. 5 (1976) 245–273. https://doi.org/10.1016/0001-8686(76)80004-8
[10] R. Saliger, U. Fischer, C. Herta, J. Fricke, High surface area carbon aerogels for supercapacitors, J. Non-Cryst. Solids 225 (1998) 81–85. https://doi.org/10.1016/S0022-3093(98)00104-5
[11] N. H€using, U. Schubert, Aerogels—airy materials: chemistry, structure, and properties, Angew. Chem. Int. Ed. 37 (1998) 22–45. https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I
[12] B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino, M. Antonietti, L. Bergström, Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide, Nat. Nanotechnol. 10 (2015) 277–283. https://doi.org/10.1038/NNANO.2014.248
[13] C. Li, X. Yang, G. Zhang, Mesopore-dominant activated carbon aerogels with high surface area for electric double-layer capacitor application, Mater. Lett. 161 (2015) 538–541. https://doi.org/10.1016/j.matlet.2015.09.003
[14] S. Araby, A. Qiu, R. Wang, Z. Zhao, C.H. Wang, J. Ma, Aerogels based on carbon nanomaterials, J. Mater. Sci. 51 (2016) 9157–9189. https://doi.org/10.1007/s10853-016-0141-z
[15] M. Venkataraman, R. Mishra, T.M. Kotresh, J. Militky, H. Jamshaid, Aerogels for thermal insulation in high-performance textiles, Text. Prog. 48 (2016) 55–118. https://doi.org/10.1080/00405167.2016.1179477
[16] M. Koebel, A. Rigacci, P. Achard, Aerogel-based thermal superinsulation: an overview, J. Sol-Gel Sci. Technol. 63 (2012) 315–339. https://doi.org/10.1007/s10971-012-2792-9
[17] Z. Ulker, C. Erkey, An emerging platform for drug delivery: aerogel based systems, J. Control. Release 177 (2014) 51–63. https://doi.org/10.1016/j.jconrel.2013.12.033
[18] H. Maleki, L. Duraes, C.A. Garcıa-Gonzalez, P. del Gaudio, A. Portugal, M. Mahmoudi, Synthesis and biomedical applications of aerogels: possibilities and challenges, Adv. Colloid Interface Sci. 236 (2016) 1–27. https://doi.org/10.1016/j.cis.2016.05.011
[19] M. Martins, A.A. Barros, S. Quraishi, P. Gurikov, S.P. Raman, I. Smirnova, A.R.C. Duarte, R.L. Reis, Preparation of microporous alginate-based aerogels for biomedical applications, J. Supercrit. Fluids 106 (2015) 152–159. https://doi.org/10.1016/j.supflu.2015.05.010
[20] S. Quraishi, M. Martins, A.A. Barros, P. Gurikov, S.P. Raman, I. Smirnova, A.R.C. Duarte, R.L. Reis, Novel non-cytotoxic alginate-lignin hybrid aerogels as scaffolds for tissue engineering, J. Supercrit. Fluids 105 (2015) 1–8. https://doi.org/10.1016/j.supflu.2014.12.026
[21] A.A. Barros, A. Rita, C. Duarte, R.A. Pires, B. Sampaio-Marques, P. Ludovico, E. Lima, J.F. Mano, R.L. Reis, Bioresorbable ureteral stents from natural origin polymers, J. Biomed. Mater. Res. B Appl. Biomater. 103 (2015) 608–617. https://doi.org/10.1002/jbm.b.33237
[22] F. Sabri, J.A. Cole, M.C. Scarbrough, N. Leventis, Investigation of polyurea-crosslinked silica aerogels as a neuronal scaffold: a pilot study,Plos One 7 (2012) e33242. https://doi.org/10.1371/journal.pone.0033242
[23] F. Sabri, D. Gerth, G.R.M. Tamula, T.C.N. Phung, K.J. Lynch, Boughter JD Jr. Novel technique for repair of severed peripheral nerves in rats using polyurea crosslinked silica aerogel scaffold, J. Investig. Surg. 27 (2014) 294–303. https://doi.org/10.3109/08941939.2014.906688
[24] R. Lorant, Cosmetic composition comprising silica aerogel particles, a gemini surfactant and a solid fatty substance, US Patent No. 20140302105 A1, 2014.
[25] D. Wen, W. Liu, A.K. Herrmann, A. Eychmuller, A membrane less glucose/O2 biofuel cell based on Pd aerogels, Chemistry 20 (2014) 4380–4385. https://doi.org/10.1002/chem.201304635
[26] B. Wang, S. Yan, Z. Lin, Y. Shi, X. Xu, L. Fu, J. Jiang, Fabrication of graphene aerogel/platinum nanoparticle hybrids for the direct electrochemical analysis of glucose, J. Nanosci. Nanotechnol. 16 (2016) 6895–6902. https://doi.org/10.1166/jnn.2016.11359
[27] Z. Yu, Y. Kou, Y. Dai, X. Wang, H. Wei, D. Xia, Direct electrochemistry of glucose oxidase on a three-dimensional porous zirconium phosphate-carbon aerogel composite, Electrocatalysis 6 (2015) 341–347. https://doi.org/10.1007/s12678-015-0249-y
[28] A. Harley-Trochimczyk, T. Pham, J. Chang, E. Chen, M.A. Worsley, M.A., A. Zettl, W. Mickelson, R. Maboudian, Platinum nanoparticle loading of boron nitride aerogel and its use as a novel material for low-power catalytic gas sensing, Adv. Funct. Mater. 26 (2016) 433. https://doi.org/10.1002/adfm.201503605
[29] C.E. Barao, L.D. de Paris, J.H. Dantas, M.M. Pereira, L.C. Filho, de H.F. Castro, G.M. Zanin, de F.F. Moraes, C.M. Soares, Characterization of biocatalysts prepared with Thermomyces lanuginosus lipase and different silica precursors, dried using aerogel and xerogel techniques, Appl. Biochem. Biotechnol. 172 (2013) 263–274. https://doi.org/10.1007/s12010-013-0533-3
[30] A. Karout, P. Buisson, A. Perrard, A.C. Pierre, Shaping and mechanical reinforcement of silica aerogel biocatalysts with ceramic fiber felts, J. Sol-Gel Sci. Technol. 36 (2005) 163–171. https://doi.org/10.1007/s10971-005-5288-z
[31] F. Schwertfeger, M. Schmidt, D. Frank, Use of aerogels for deadening structure-borne and/or impact sounds, US 6598358 B1, 2003.
[32] F.M. Paz, D. Howson, M.V. Wiernicki, Breath aerosol management and collection system, US 7364553 B2, 2008.
[33] S.D. Cross, M. Herbette, A.J.G. Kelly, D.J. Myers, W.W. Shen, R.D. Timmons, C. Tom, J.M. Virgili, M.J. Wensley, Multiple dose condensation aerosol devices and methods of forming condensation aerosols, US 7540.286 B2, 2009.
[34] G.E. Grollimund, D.D. Mcrea, W.A. Nichols, T.T. Nguyen, K.A. Cox, U. Smith, D.L. Brookman, Aerosol generating device and method of use thereof, W O 2004/022242 Al, 2004.
[35] D.D. McRae, K.A. Cox, W.A. Nichols, R. Gupta, Aerosol generating devices and methods for generating aerosols having controlled particle sizes, WO J240 04/022243 Al, 2004.
[36] D. Shiekh, D.A. Huitt, J.T. Kennedy, R. Ruiz De Gopegui, Compressed gas propellants in plastic aerosols, WO 2007/143330, 2007.
[37] W.H. Bosch, K.D. Ostrander, E.R. Cooper, Aerogels comprising nanoparticles drugs, WO 2000/27363 A1, 2000.
[38] D.L. Duan, G.L. Gould, C.J. Stepania, Ormosil aerogels containing silicon bonded polymethacrylate, WO2005/098553 A2, 2005.
[39] Schechter, A method for on-line analysis of polycyclic aromatic hydrocarbons in aerosols, PCT/US1998/000602, 1998.
[40] P.J. Wyatt, Aerosol hazard characterization and early warning network, EP 1 158 292, 2005.
[41] M.S. Chou, Detection and analysis of chemical and biological aerosols, EP1503204, 2005.
[42] W.A. Nicholas, R. Gupta, G.G. Faison, K.A. Cox, Aerosol generators and methods for producing aerosols, EP174527, 2004.
[43] M.S. Berry, R. Chang, Method and apparatus for the enhanced removal of aerosols from a gas stream, US 7,708,803 B2, 2006.
[44] D.B. Yeates, J. Yi, G. Li, Aerosol processing and inhalation method and system for high dose rate aerosol drug delivery, US 7,802,569 B2, 2005.
[45] M.A.B. Meador, B.N. Nguyen, H. Guo, Highly porous ceramic oxide aerogels having improved flexibility, US 8.258,251, 2010.
[46] R.L. Hale, P.M. Lloyd, A.T. Lu, J.D. Rabinowitz, M.J. Wensley, Respiratory drug condensation aerosols and methods of making and using them, US 8,506,935 B2, 2009.
[47] F.C. Millar, Medicinal aerosols and methods of delivery thereof, US 8,834,849, 2009.
[48] B.C. Giovanella, J.V. Knight, J.C. Waldrep, N. Koshkina, B. Gilbert, C.W. Wellen, Small particle liposome aerosols for delivery of anti-cancer drugs, US 2004/0208935 A1, 2004.
[49] W.E. Rhine, W.L. Gourd, R. Begag, J.H. Sonn, D.L. Ou, Transparent assemblies with ormosl aerogels, US 2006/0246806, 2006.
[50] G.L. Gourd, J.K. Lee, C.J. Stepania, K.P. Lee, High strength, nanoporous bodies reinforced with fibrous materials, US 2007/0222116 A1, 2005.
[51] J.K. Lee, Organic aerogels reinforced with inorganic aerogel fillers, US 2007/0259979 A1, 2007.
[52] Y. Tang, A. Polli, C.A. Bilgerian, D.R. Young, W.E. Rhine, G.L. Gould, Aerogel-foam composites, US 2009/0029147 A1, 2009.
[53] D.A. Doshi, T.M. Miller, J.A. Chase, C.A. Norwood, Aerogel composites and methods for making and using them, US 2011/0206471 A1, 2010.
[54] T. Zhang, Y. Zhao, G. Chen, Silica aerogels and their preparation, US 2012/0128958 A1, 2011.
[55] D.L. OU, G.L. Gourd, Ormosil aerogels containing silicon bonded linear polymer, WO2005/068361.
[56] W.A.W. Thielemans, R. Davies, Irene Cellulose nanoparticle aerogels, hydrogels and organogels, PCT/GB20 10/05 1542, 2010.
[57] S. Samata, F.P. Pescator, B.P. Thomas, Aerogel blanket and method of production, WO2014/150310 A1, 2013.
[58] M.S. Berry, R. Chang, Method and apparatus for the enhanced removal of aerosol from a gas stream, US 7,708,803, 2006
[59] M. Koebel, A. Rigacci, P. Achard, Aerogel-based thermal superinsulation: anoverview, J. Sol-Gel. Sci. Technol. 63 (2012) 315–339. HTTPS://DOI.ORG/10.1007/s10971-012-2792-9.
[60] K.A. Cox, R. Gupta, D.D. Mcrae, W.A. Nicholas, Aerosol generating devices and methods for generating aerosols having controlled particle sizes, U.S. Patent No. 5,743, 251, 2002.
[61] K.A. Cox, T.P. Beane, W.R. Sweeny, Aerosol generator and methods of making and using an aerosol generator, U.S6234167, 1998.
[62] K.A. Cox, R. Gupta, D.D. Mcrae, W.A. Nicholas, Aerosol generating devices and methods for generating aerosols having controlled particle sizes, AU2003270321B2
[63] S. Samanta, F.P. Pescatore, B.P. Thomas, Aerogel blanket and its production PCT/US2014/022919, 2013.
[64] S.F. Rouanet, R.K. Massey, J. Menashi, Aerogel containing blanket, US 7635411, 2004.
[65] C. Tan, B.M. Fung, J.K. Newman, C.Vu, Organic aerogels with very high impact strength, Adv.Mater., 13(2002) 644. HTTPS://DOI.ORG/10.1002/1521-4095(200105)13:9<644::AID-ADMA644>3.0.CO;2-%23
[66] F. Schwertfeger, A. Zimmerann, The modified aerogel’s production processes and their use, WO1996022942A1, 1995.
[67] F. Schwertfeger, Method for producing organically modified, permanently hydrophobic aerogels, EP0946277A2, 1997.
[68] F. Schwertfeger, D. Frank, Organically modified aerogels, a method for their production by surface modification of the aqueous gel without previous solvent exchange and subsequent drying and the use thereof, WO1998023366A1, 1991.
[69] F. Schwertfeger, A. Zimmermann, Organically reformed aerogels preparation process with alcohols, wherein the resultant salts are precipitated, WO1997018161A1, 1995
[70] L. Yun, L. Jiang, S. Qingfeng, L. Yixing, Method for preparing lignocellulose aerogel by using ionic liquid, CN102702566B, 2012.
[71] R. Begag, Aerogel composite with fibrous batting CN1306993C, 2002.