Nanocellulose Aerogels

$30.00

Nanocellulose Aerogels

Elaine Crisitna Lengowski, Pedro Henrique Gonzalez de Cademartori, André Luiz Missio, Rodrigo Coldebella, Eraldo Antonio Bonfatti Júnior

Nanocellulose is a biodegradable material, which comes from natural sources and has properties such as good chemical compatibility, low density, high mechanical properties and low thermal conductivity, characteristics that make it a potential material for several applications. Among the potential forms and applications is the production of nanocellulose aerogel. This chapter summarizes the main ways of obtaining nanocellulose aerogel and its properties. The main applications, like materials absorbents, carbon porous materials, gas filters and membranes, packaging materials, biomedical and pharmaceutical, electrical devices, energy storage systems, thermal insulation and fire-retardant materials are also discussed.

Keywords
Cellulose, Nanotechnology, Biorefinery, Natural Composites, Advanced Materials

Published online 9/20/2020, 33 pages

Citation: Elaine Crisitna Lengowski, Pedro Henrique Gonzalez de Cademartori, André Luiz Missio, Rodrigo Coldebella, Eraldo Antonio Bonfatti Júnior, Nanocellulose Aerogels, Materials Research Foundations, Vol. 84, pp 1-33, 2020

DOI: https://doi.org/10.21741/9781644900994-1

Part of the book on Aerogels I

References
[1] S. Wang, A. Lu, L. Zhang, Recent advances in regenerated cellulose materials, Prog. Polym. Sci. 53 (2016) 169–206. https://doi.org/10.1016/j.progpolymsci.2015.07.003
[2] N. Lavoine, I. Desloges, A. Dufresne, J. Bras, Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review, Carbohydr. Polym. 90 (2012) 735–764. https://doi.org/10.1016/j.carbpol.2012.05.026
[3] Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose nanocrystals: Chemistry, self-assembly, and applications, Chem. Rev. 110 (2010) 3479–3500. https://doi.org/10.1021/cr900339w
[4] M.A.S.A. Samir, F. Alloin, A. Dufresne, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field, Biomolecules (2005). https://doi.org/10.1021/BM0493685
[5] E.C. Lengowski, E.A. Bonfatti Júnior, M.M.N. Kumode, M.E. Carneiro, K.G. Satyanarayana, Nanocellulose in the paper making, in: Inamuddin, S. Thomas, R.K. Mishra, A.M. Asiri (Eds.), Sustainable Polymer Composites and Nanocomposites, Springer International Publishing, Cham, 2019: pp. 1027–1066. https://doi.org/10.1007/978-3-030-05399-4_36
[6] J. Rojas, M. Bedoya, Y. Ciro, Current trends in the production of cellulose nanoparticles and nanocomposites for biomedical applications, in: Cellul. – Fundam. Asp. Curr. Trends, InTech, 2015. https://doi.org/10.5772/61334
[7] N. Lavoine, L. Bergström, Nanocellulose-based foams and aerogels: Processing, properties, and applications, J. Mater. Chem. A. 5 (2017) 16105–16117. https://doi.org/10.1039/c7ta02807e
[8] T. Abitbol, A. Rivkin, Y. Cao, Y. Nevo, E. Abraham, T. Ben-Shalom, S. Lapidot, O. Shoseyov, Nanocellulose, a tiny fiber with huge applications, Curr. Opin. Biotechnol. 39 (2016) 76–88. https://doi.org/10.1016/j.copbio.2016.01.002
[9] L.R. Amparo, M.J. Rovira, M.M. Sanz, L.G. Gómez-Mascaraque, Nanomaterials for food applications, n.d
[10] M.A. Hubbe, A. Ferre, P. Tyagi;, Y. Yin, C. Salas, L. Pal, O.J. Rojas, Nanocellulose in thin films, coatings, and plies for packaging applications: A Review Hubbe | BioResources, BioResources. 12 (2017) 2143–2233. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_12_1_2143_Hubbe_Review_Nanocellulose_Thin_Films_Coatings_Plies (accessed January 30, 2020)
[11] L. Liu, F. Kong, Influence of nanocellulose on in vitro digestion of whey protein isolate, Carbohydr. Polym. 210 (2019) 399–411. https://doi.org/10.1016/j.carbpol.2019.01.071
[12] L. Liu, W.L. Kerr, F. Kong, D.R. Dee, M. Lin, Influence of nano-fibrillated cellulose (NFC) on starch digestion and glucose absorption, Carbohydr. Polym. 196 (2018) 146–153. https://doi.org/10.1016/j.carbpol.2018.04.116
[13] Z. Liu, M. Zhang, B. Bhandari, Y. Wang, 3D printing: Printing precision and application in food sector, Trends Food Sci. Technol. 69 (2017) 83–94. https://doi.org/10.1016/j.tifs.2017.08.018
[14] A. Derossi, R. Caporizzi, D. Azzollini, C. Severini, Application of 3D printing for customized food. A case on the development of a fruit-based snack for children, J. Food Eng. 220 (2018) 65–75. https://doi.org/10.1016/j.jfoodeng.2017.05.015
[15] H. Du, W. Liu, M. Zhang, C. Si, X. Zhang, B. Li, Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications, Carbohydr. Polym. 209 (2019) 130–144. https://doi.org/10.1016/j.carbpol.2019.01.020
[16] T.H. Tan, H.V. Lee, W.A. Yehya Dabdawb, S.B.B.O.A.A. Hamid, A review of nanocellulose in the drug-delivery system, in: Materials for biomedical engineering: Nanomaterials based drug delivery, Elsevier, 2019: pp. 131–164. https://doi.org/10.1016/b978-0-12-816913-1.00005-2
[17] A. Zaman, F. Huang, M. Jiang, W. Wei, Z. Zhou, Preparation, properties, and applications of natural cellulosic aerogels: A review, Energy Built Environ. (2019). https://doi.org/10.1016/j.enbenv.2019.09.002
[18] H. Sehaqui, M. Salajková, Q. Zhou, L.A. Berglund, Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose i nanofiber suspensions, Soft Matter. 6 (2010) 1824–1832. https://doi.org/10.1039/b927505c
[19] E. Barrios, D. Fox, Y.Y. Li Sip, R. Catarata, J.E. Calderon, N. Azim, S. Afrin, Z. Zhang, L. Zhai, Nanomaterials in advanced, high-performance aerogel composites: A review, Polymers (Basel). 11 (2019) 726. https://doi.org/10.3390/polym11040726
[20] H.F. Ko, C. Sfeir, P.N. Kumta, Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368 (2010) 1981–1997. https://doi.org/10.1098/rsta.2010.0009
[21] N. Lin, C. Bruzzese, A. Dufresne, TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges, ACS Appl. Mater. Interfaces. 4 (2012) 4948–4959. https://doi.org/10.1021/am301325r
[22] T. Lu, Q. Li, W. Chen, H. Yu, Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold, Compos. Sci. Technol. 94 (2014) 132–138. https://doi.org/https://doi.org/10.1016/j.compscitech.2014.01.020
[23] A.B. Castro-Ceseña, T.A. Camacho-Villegas, P.H. Lugo-Fabres, E.E. Novitskaya, J. McKittrick, A. Licea-Navarro, Effect of starch on the mechanical and in vitro properties of collagen-hydroxyapatite sponges for applications in dentistry, Carbohydr. Polym. 148 (2016) 78–85. https://doi.org/https://doi.org/10.1016/j.carbpol.2016.04.056
[24] A. Tang, S. Zhao, J. Song, Structure control and characterization of 3D porous scaffold based on cellulose-nanofibers for tissue engineering, Cailiao Yanjiu Xuebao/Chinese J. Mater. Res. 28 (2014) 721–729
[25] A. Liu, L. Medina, L.A. Berglund, High-strength nanocomposite aerogels of ternary composition: poly(vinyl alcohol), clay, and cellulose nanofibrils, ACS Appl. Mater. Interfaces. 9 (2017) 6453–6461. https://doi.org/10.1021/acsami.6b15561
[26] R. Li, J. Du, Y. Zheng, Y. Wen, X. Zhang, W. Yang, A. Lue, L. Zhang, Ultra-lightweight cellulose foam material: preparation and properties, Cellulose. 24 (2017) 1417–1426. https://doi.org/10.1007/s10570-017-1196-y
[27] B.L. Tardy, S. Yokota, M. Ago, W. Xiang, T. Kondo, R. Bordes, O.J. Rojas, Nanocellulose–surfactant interactions, Curr. Opin. Colloid Interface Sci. 29 (2017) 57–67. https://doi.org/https://doi.org/10.1016/j.cocis.2017.02.004
[28] H. Yousefian, D. Rodrigue, Morphological, physical and mechanical properties of nanocrystalline cellulose filled Nylon 6 foams, J. Cell. Plast. 53 (2016) 253–271. https://doi.org/10.1177/0021955X16651241
[29] Y. Wang, K. Uetani, S. Liu, X. Zhang, Y. Wang, P. Lu, T. Wei, Z. Fan, J. Shen, H. Yu, S. Li, Q. Zhang, Q. Li, J. Fan, N. Yang, Q. Wang, Y. Liu, J. Cao, J. Li, W. Chen, Multifunctional bionanocomposite foams with a chitosan matrix reinforced by nanofibrillated cellulose, ChemNanoMat. 3 (2017) 98–108. https://doi.org/10.1002/cnma.201600266
[30] K.J. De France, T. Hoare, E.D. Cranston, Review of hydrogels and aerogels containing nanocellulose, Chem. Mater. 29 (2017) 4609–4631. https://doi.org/10.1021/acs.chemmater.7b00531
[31] C. Tan, B.M. Fung, J.K. Newman, C. Vu, Organic aerogels with very high impact strength, Adv. Mater. 13 (2001) 644–646. https://doi.org/10.1002/1521-4095(200105)13:9<644::AID-ADMA644>3.0.CO;2-#
[32] I. Smirnova, P. Gurikov, Aerogel production: Current status, research directions, and future opportunities, J. Supercrit. Fluids. 134 (2018) 228–233. https://doi.org/https://doi.org/10.1016/j.supflu.2017.12.037
[33] C. Jiménez-Saelices, B. Seantier, B. Cathala, Y. Grohens, Effect of freeze-drying parameters on the microstructure and thermal insulating properties of nanofibrillated cellulose aerogels, J. Sol-Gel Sci. Technol. 84 (2017) 475–485. https://doi.org/10.1007/s10971-017-4451-7
[34] Y. Kobayashi, T. Saito, A. Isogai, Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators, Angew. Chemie Int. Ed. 53 (2014) 10394–10397. https://doi.org/10.1002/anie.201405123
[35] W. Chen, Q. Li, Y. Wang, X. Yi, J. Zeng, H. Yu, Y. Liu, J. Li, Comparative study of aerogels obtained from differently prepared nanocellulose fibers, ChemSusChem. 7 (2014) 154–161. https://doi.org/10.1002/cssc.201300950
[36] P. Munier, K. Gordeyeva, L. Bergström, A.B. Fall, Directional freezing of nanocellulose dispersions aligns the rod-like particles and produces low-density and robust particle networks, Biomacromolecules. 17 (2016) 1875–1881. https://doi.org/10.1021/acs.biomac.6b00304
[37] M.S. Toivonen, A. Kaskela, O.J. Rojas, E.I. Kauppinen, O. Ikkala, Ambient-dried cellulose nanofibril aerogel membranes with high tensile strength and their use for aerosol collection and templates for transparent, flexible devices, Adv. Funct. Mater. 25 (2015) 6618–6626. https://doi.org/10.1002/adfm.201502566
[38] K. Ganesan, T. Budtova, L. Ratke, P. Gurikov, V. Baudron, I. Preibisch, P. Niemeyer, I. Smirnova, B. Milow, Review on the Production of Polysaccharide Aerogel Particles., Mater. (Basel, Switzerland). 11 (2018). https://doi.org/10.3390/ma11112144
[39] Y. Peng, D.J. Gardner, Y. Han, Drying cellulose nanofibrils: in search of a suitable method, Cellulose. 19 (2012) 91–102. https://doi.org/10.1007/s10570-011-9630-z
[40] P. Srinivasa, A. Kulachenko, C. Aulin, Experimental characterisation of nanofibrillated cellulose foams, Cellulose. 22 (2015) 3739–3753. https://doi.org/10.1007/s10570-015-0753-5
[41] K.S. Gordeyeva, A.B. Fall, S. Hall, B. Wicklein, L. Bergström, Stabilizing nanocellulose-nonionic surfactant composite foams by delayed Ca-induced gelation, J. Colloid Interface Sci. 472 (2016) 44–51. https://doi.org/https://doi.org/10.1016/j.jcis.2016.03.031
[42] S. Deville, Freeze-Casting of porous biomaterials: structure, properties and opportunities, Materials (Basel). 3 (2010) 1913–1927
[43] A. Zaman, F. Huang, M. Jiang, W. Wei, Z. Zhou, Preparation, Properties, and applications of natural cellulosic aerogels: A review, Energy Built Environ. 1 (2020) 60–76. https://doi.org/https://doi.org/10.1016/j.enbenv.2019.09.002
[44] C. Jiménez-Saelices, B. Seantier, B. Cathala, Y. Grohens, Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties, Carbohydr. Polym. 157 (2017) 105–113. https://doi.org/10.1016/j.carbpol.2016.09.068
[45] H. Sehaqui, Q. Zhou, O. Ikkala, L.A. Berglund, Strong and tough cellulose nanopaper with high specific surface area and porosity, Biomacromolecules. 12 (2011) 3638–3644. https://doi.org/10.1021/bm2008907
[46] G. Zu, T. Shimizu, K. Kanamori, Y. Zhu, A. Maeno, H. Kaji, J. Shen, K. Nakanishi, Transparent, Superflexible Doubly Cross-Linked Polyvinylpolymethylsiloxane Aerogel Superinsulators via Ambient Pressure Drying, ACS Nano. 12 (2018) 521–532. https://doi.org/10.1021/acsnano.7b07117
[47] M. Zanini, A. Lavoratti, L.K. Lazzari, D. Galiotto, M. Pagnocelli, C. Baldasso, A.J. Zattera, Producing aerogels from silanized cellulose nanofiber suspension, Cellulose. 24 (2017) 769–779. https://doi.org/10.1007/s10570-016-1142-4
[48] T. Köhnke, A. Lin, T. Elder, H. Theliander, A.J. Ragauskas, Nanoreinforced xylan–cellulose composite foams by freeze-casting, Green Chem. 14 (2012) 1864–1869. https://doi.org/10.1039/C2GC35413F
[49] Q. Yang, J. Yang, Z. Gao, B. Li, C. Xiong, Carbonized cellulose nanofibril/graphene oxide composite aerogels for high-performance supercapacitors, ACS Appl. Energy Mater. (2019). https://doi.org/10.1021/acsaem.9b02195
[50] B. Wu, G. Zhu, A. Dufresne, N. Lin, Fluorescent aerogels based on chemical crosslinking between nanocellulose and carbon dots for optical sensor, ACS Appl. Mater. Interfaces. 11 (2019) 16048–16058. https://doi.org/10.1021/acsami.9b02754
[51] M. Farooq, M.H. Sipponen, A. Seppälä, M. Österberg, Eco-friendly flame-retardant cellulose nanofibril aerogels by incorporating sodium bicarbonate, ACS Appl. Mater. Interfaces. 10 (2018) 27407–27415. https://doi.org/10.1021/acsami.8b04376
[52] J. Zhou, Y.-L. Hsieh, Conductive polymer protonated nanocellulose aerogels for tunable and linearly responsive strain sensors, ACS Appl. Mater. Interfaces. 10 (2018) 27902–27910. https://doi.org/10.1021/acsami.8b10239
[53] G. Hayase, K. Kanamori, K. Abe, H. Yano, A. Maeno, H. Kaji, K. Nakanishi, Polymethylsilsesquioxane–cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity, ACS Appl. Mater. Interfaces. 6 (2014) 9466–9471. https://doi.org/10.1021/am501822y
[54] S. Zhou, T. You, X. Zhang, F. Xu, Superhydrophobic cellulose nanofiber-assembled aerogels for highly efficient water-in-oil emulsions separation, ACS Appl. Nano Mater. 1 (2018) 2095–2103. https://doi.org/10.1021/acsanm.8b00079
[55] S.F. Plappert, S. Quraishi, J.-M. Nedelec, J. Konnerth, H. Rennhofer, H.C. Lichtenegger, F.W. Liebner, Conformal ultrathin coating by scCO2-mediated pmma deposition: a facile approach to add moisture resistance to lightweight ordered nanocellulose aerogels, Chem. Mater. 30 (2018) 2322–2330. https://doi.org/10.1021/acs.chemmater.7b05226
[56] X. Zhang, H. Wang, Z. Cai, N. Yan, M. Liu, Y. Yu, Highly compressible and hydrophobic anisotropic aerogels for selective oil/organic solvent absorption, ACS Sustain. Chem. Eng. 7 (2019) 332–340. https://doi.org/10.1021/acssuschemeng.8b03554
[57] D.C. Wang, H.Y. Yu, D. Qi, M. Ramasamy, J. Yao, F. Tang, K. (Michael) C. Tam, Q. Ni, Supramolecular self-assembly of 3D conductive cellulose nanofiber aerogels for flexible supercapacitors and ultrasensitive sensors, ACS Appl. Mater. Interfaces. 11 (2019) 24435–24446. https://doi.org/10.1021/acsami.9b06527
[58] T. Or, S. Saem, A. Esteve, D.A. Osorio, K.J. De France, J. Vapaavuori, T. Hoare, A. Cerf, E.D. Cranston, J.M. Moran-Mirabal, Patterned cellulose nanocrystal aerogel films with tunable dimensions and morphologies as ultra-porous scaffolds for cell culture, ACS Appl. Nano Mater. 2 (2019) 4169–4179. https://doi.org/10.1021/acsanm.9b00640
[59] V.C.F. Li, C.K. Dunn, Z. Zhang, Y. Deng, H.J. Qi, Direct Ink Write (DIW) 3D Printed cellulose nanocrystal aerogel structures, Sci. Rep. 7 (2017) 8018. https://doi.org/10.1038/s41598-017-07771-y
[60] X. Yang, K. Shi, I. Zhitomirsky, E.D. Cranston, Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials, Adv. Mater. 27 (2015) 6104–6109. https://doi.org/10.1002/adma.201502284
[61] D.A. Osorio, B. Seifried, P. Moquin, K. Grandfield, E.D. Cranston, Morphology of cross-linked cellulose nanocrystal aerogels: cryo-templating versus pressurized gas expansion processing, J. Mater. Sci. 53 (2018) 9842–9860. https://doi.org/10.1007/s10853-018-2235-2
[62] X. Wei, T. Huang, J. Nie, J. Yang, X. Qi, Z. Zhou, Y. Wang, Bio-inspired functionalization of microcrystalline cellulose aerogel with high adsorption performance toward dyes, Carbohydr. Polym. 198 (2018) 546–555. https://doi.org/https://doi.org/10.1016/j.carbpol.2018.06.112
[63] T. Or, K. Miettunen, E.D. Cranston, J.M. Moran-Mirabal, J. Vapaavuori, Cellulose nanocrystal aerogels as electrolyte scaffolds for glass and plastic dye-sensitized solar cells, ACS Appl. Energy Mater. 2 (2019) 5635–5642. https://doi.org/10.1021/acsaem.9b00795
[64] P. Gupta, B. Singh, A.K. Agrawal, P.K. Maji, Low density and high strength nanofibrillated cellulose aerogel for thermal insulation application, Mater. Des. 158 (2018) 224–236. https://doi.org/https://doi.org/10.1016/j.matdes.2018.08.031
[65] J. Wei, S. Geng, J. Hedlund, K. Oksman, Lightweight, flexible, and multifunctional anisotropic nanocellulose-based aerogels for CO2 adsorption, Cellulose. (2020). https://doi.org/10.1007/s10570-019-02935-7
[66] P.B. de Oliveira, M. Godinho, A.J. Zattera, Oils sorption on hydrophobic nanocellulose aerogel obtained from the wood furniture industry waste, Cellulose. 25 (2018) 3105–3119. https://doi.org/10.1007/s10570-018-1781-8
[67] F. Rafieian, M. Hosseini, M. Jonoobi, Q. Yu, Development of hydrophobic nanocellulose-based aerogel via chemical vapor deposition for oil separation for water treatment, Cellulose. 25 (2018) 4695–4710. https://doi.org/10.1007/s10570-018-1867-3
[68] J. Li, K. Zuo, W. Wu, Z. Xu, Y. Yi, Y. Jing, H. Dai, G. Fang, Shape memory aerogels from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu(II) and Pb(II), Carbohydr. Polym. 196 (2018) 376–384. https://doi.org/https://doi.org/10.1016/j.carbpol.2018.05.015
[69] T. Zhang, Y. Zhang, X. Wang, S. Liu, Y. Yao, Characterization of the nano-cellulose aerogel from mixing CNF and CNC with different ratio, Mater. Lett. 229 (2018) 103–106. https://doi.org/https://doi.org/10.1016/j.matlet.2018.06.101
[70] C.A. García-González, M.C. Camino-Rey, M. Alnaief, C. Zetzl, I. Smirnova, Supercritical drying of aerogels using CO2: Effect of extraction time on the end material textural properties, J. Supercrit. Fluids. 66 (2012) 297–306. https://doi.org/https://doi.org/10.1016/j.supflu.2012.02.026
[71] J. Quiño, M. Ruehl, T. Klima, F. Ruiz, S. Will, A. Braeuer, Supercritical drying of aerogel: In situ analysis of concentration profiles inside the gel and derivation of the effective binary diffusion coefficient using Raman spectroscopy, J. Supercrit. Fluids. 108 (2016) 1–12. https://doi.org/https://doi.org/10.1016/j.supflu.2015.10.011
[72] L.M. Sanz-Moral, M. Rueda, R. Mato, Á. Martín, View cell investigation of silica aerogels during supercritical drying: Analysis of size variation and mass transfer mechanisms, J. Supercrit. Fluids. 92 (2014) 24–30. https://doi.org/https://doi.org/10.1016/j.supflu.2014.05.004
[73] K. Sakai, Y. Kobayashi, T. Saito, A. Isogai, Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose, Sci. Rep. 6 (2016) 20434. https://doi.org/10.1038/srep20434
[74] H. Liu, B. Geng, Y. Chen, H. Wang, Review on the aerogel-type oil sorbents derived from nanocellulose, ACS Sustain. Chem. Eng. 5 (2017) 49–66. https://doi.org/10.1021/acssuschemeng.6b02301
[75] N.T. Cervin, C. Aulin, P.T. Larsson, L. Wågberg, Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids, Cellulose. 19 (2012) 401–410. https://doi.org/10.1007/s10570-011-9629-5
[76] S. Mueller, J. Sapkota, A. Nicharat, T. Zimmermann, P. Tingaut, C. Weder, E.J. Foster, Influence of the nanofiber dimensions on the properties of nanocellulose/poly(vinyl alcohol) aerogels, J. Appl. Polym. Sci. 132 (2015). https://doi.org/10.1002/app.41740
[77] C. Aulin, J. Netrval, L. Wågberg, T. Lindström, Aerogels from nanofibrillated cellulose with tunable oleophobicity, Soft Matter. 6 (2010) 3298–3305. https://doi.org/10.1039/C001939A
[78] T. Lindström, C. Aulin, Market and technical challenges and opportunities in the area of innovative new materials and composites based on nanocellulosics, Scand. J. For. Res. 29 (2014) 345–351. https://doi.org/10.1080/02827581.2014.928365
[79] H. Kargarzadeh, J. Huang, N. Lin, I. Ahmad, M. Mariano, A. Dufresne, S. Thomas, A. Gałęski, Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites, Prog. Polym. Sci. 87 (2018) 197–227. https://doi.org/https://doi.org/10.1016/j.progpolymsci.2018.07.008
[80] B.N. Nguyen, E. Cudjoe, A. Douglas, D. Scheiman, L. McCorkle, M.A.B. Meador, S.J. Rowan, Polyimide cellulose nanocrystal composite aerogels, Macromolecules. 49 (2016) 1692–1703. https://doi.org/10.1021/acs.macromol.5b01573
[81] L. Heath, W. Thielemans, Cellulose nanowhisker aerogels, Green Chem. 12 (2010) 1448–1453. https://doi.org/10.1039/C0GC00035C
[82] M. Cai, S. Shafi, Y. Zhao, Preparation of compressible silica aerogel reinforced by bacterial cellulose using tetraethylorthosilicate and methyltrimethoxylsilane co-precursor, J. Non. Cryst. Solids. 481 (2018) 622–626. https://doi.org/https://doi.org/10.1016/j.jnoncrysol.2017.12.015
[83] M. Karzar Jeddi, O. Laitinen, H. Liimatainen, Magnetic superabsorbents based on nanocellulose aerobeads for selective removal of oils and organic solvents, Mater. Des. 183 (2019) 108115. https://doi.org/https://doi.org/10.1016/j.matdes.2019.108115
[84] D.A. Osorio, B.E.J. Lee, J.M. Kwiecien, X. Wang, I. Shahid, A.L. Hurley, E.D. Cranston, K. Grandfield, Cross-linked cellulose nanocrystal aerogels as viable bone tissue scaffolds, Acta Biomater. 87 (2019) 152–165. https://doi.org/https://doi.org/10.1016/j.actbio.2019.01.049
[85] K. Rahbar Shamskar, H. Heidari, A. Rashidi, Preparation and evaluation of nanocrystalline cellulose aerogels from raw cotton and cotton stalk, Ind. Crops Prod. 93 (2016) 203–211. https://doi.org/https://doi.org/10.1016/j.indcrop.2016.01.044
[86] N.T. Cervin, C. Aulin, P.T. Larsson, L. Wågberg, Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids, Cellulose. 19 (2012) 401–410. https://doi.org/10.1007/s10570-011-9629-5
[87] H. Jin, M. Kettunen, A. Laiho, H. Pynnönen, J. Paltakari, A. Marmur, O. Ikkala, R.H.A. Ras, Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil, Langmuir. 27 (2011) 1930–1934. https://doi.org/10.1021/la103877r
[88] F. Jiang, Y.L. Hsieh, Amphiphilic superabsorbent cellulose nanofibril aerogels, J. Mater. Chem. A. 2 (2014) 6337–6342. https://doi.org/10.1039/C4TA00743C
[89] C. Buesch, S.W. Smith, P. Eschbach, J.F. Conley, J. Simonsen, The microstructure of cellulose nanocrystal aerogels as revealed by transmission electron microscope tomography, Biomacromolecules. 17 (2016) 2956–2962. https://doi.org/10.1021/acs.biomac.6b00764
[90] J. Ha, J. Kim, Y. Jung, G. Yun, D.-N. Kim, H.-Y. Kim, Poro-elasto-capillary wicking of cellulose sponges, Sci. Adv. 4 (2018) eaao7051. https://doi.org/10.1126/sciadv.aao7051
[91] Z. Zhang, G. Sèbe, D. Rentsch, T. Zimmermann, P. Tingaut, Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water, Chem. Mater. 26 (2014) 2659–2668. https://doi.org/10.1021/cm5004164
[92] S. Elazzouzi-Hafraoui, Y. Nishiyama, J.L. Putaux, L. Heux, F. Dubreuil, C. Rochas, The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose, Biomacromolecules. 9 (2008) 57–65. https://doi.org/10.1021/bm700769p
[93] Y. Zhao, C. Hu, Y. Hu, H. Cheng, G. Shi, L. Qu, A Versatile, Ultralight, nitrogen-doped graphene framework, Angew. Chemie Int. Ed. 51 (2012) 11371–11375. https://doi.org/10.1002/anie.201206554
[94] J. Zou, J. Liu, A.S. Karakoti, A. Kumar, D. Joung, Q. Li, S.I. Khondaker, S. Seal, L. Zhai, Ultralight multiwalled carbon nanotube aerogel, ACS Nano. 4 (2010) 7293–7302. https://doi.org/10.1021/nn102246a
[95] E. Abraham, D.E. Weber, S. Sharon, S. Lapidot, O. Shoseyov, Multifunctional cellulosic scaffolds from modified cellulose nanocrystals, ACS Appl. Mater. Interfaces. 9 (2017) 2010–2015. https://doi.org/10.1021/acsami.6b13528
[96] S.T. Nguyen, J. Feng, S.K. Ng, J.P.W. Wong, V.B.C. Tan, H.M. Duong, Advanced thermal insulation and absorption properties of recycled cellulose aerogels, Colloids Surfaces A Physicochem. Eng. Asp. 445 (2014) 128–134. https://doi.org/https://doi.org/10.1016/j.colsurfa.2014.01.015
[97] H. Huang, P. Chen, X. Zhang, Y. Lu, W. Zhan, Edge-to-edge assembled graphene oxide aerogels with outstanding mechanical performance and superhigh chemical activity, Small. 9 (2013) 1397–1404. https://doi.org/10.1002/smll.201202965
[98] Y. Kharbanda, M. Urbańczyk, O. Laitinen, K. Kling, S. Pallaspuro, S. Komulçainen, H. Liimatainen, V.V. Telkki, Comprehensive NMR analysis of pore structures in superabsorbing cellulose nanofiber aerogels, J. Phisical Chem. C. 123 (2019) 30986–30995. https://doi.org/10.1021/acs.jpcc.9b08339
[99] X. Yang, E.D. Cranston, Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties, Chem. Mater. 26 (2014) 6016–6025. https://doi.org/10.1021/cm502873c
[100] W.J. Yang, A.C.Y. Yuen, A. Li, B. Lin, T.B.Y. Chen, W. Yang, H.D. Lu, G.H. Yeoh, Recent progress in bio-based aerogel absorbents for oil/water separation, Cellulose. 26 (2019) 6449–6476. https://doi.org/10.1007/s10570-019-02559-x
[101] J. Huang, X. Wang, Q. Jin, Y. Liu, Y. Wang, Removal of phenol from aqueous solution by adsorption onto OTMAC-modified attapulgite, J. Environ. Manage. 84 (2007) 229–236. https://doi.org/10.1016/j.jenvman.2006.05.007
[102] R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: Structure, properties and nanocomposites, Chem. Soc. Rev. 40 (2011) 3941–3994. https://doi.org/10.1039/c0cs00108b
[103] S.J. Eichhorn, Cellulose nanowhiskers: Promising materials for advanced applications, Soft Matter. 7 (2011) 303–315. https://doi.org/10.1039/c0sm00142b
[104] Y. Kharbanda, M. Urbańczyk, O. Laitinen, K. Kling, S. Pallaspuro, S. Komulainen, H. Liimatainen, V.V. Telkki, Comprehensive NMR analysis of pore structures in superabsorbing cellulose nanofiber aerogels, J. Phys. Chem. C. 123 (2019) 30986–30995. https://doi.org/10.1021/acs.jpcc.9b08339
[105] A. Fakhru’l-Razi, A. Pendashteh, L.C. Abdullah, D.R.A. Biak, S.S. Madaeni, Z.Z. Abidin, Review of technologies for oil and gas produced water treatment, J. Hazard. Mater. 170 (2009) 530–551. https://doi.org/10.1016/j.jhazmat.2009.05.044
[106] B. Liu, L. Zhang, H. Wang, Z. Bian, Preparation of MCC/MC silica sponge and its oil/water separation apparatus application, Ind. Eng. Chem. Res. 56 (2017) 5795–5801. https://doi.org/10.1021/acs.iecr.6b04854
[107] J. Saleem, M. Adil Riaz, M. Gordon, Oil sorbents from plastic wastes and polymers: A review, J. Hazard. Mater. 341 (2018) 424–437. https://doi.org/10.1016/j.jhazmat.2017.07.072
[108] W. Wan, Y. Lin, A. Prakash, Y. Zhou, Three-dimensional carbon-based architectures for oil remediation: from synthesis and modification to functionalization, J. Mater. Chem. A. 4 (2016) 18687–18705. https://doi.org/10.1039/C6TA07211A
[109] J.T. Korhonen, M. Kettunen, R.H.A. Ras, O. Ikkala, Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents, ACS Appl. Mater. Interfaces. 3 (2011) 1813–1816. https://doi.org/10.1021/am200475b
[110] T. Ohno, S. Tashiro, Y. Amano, R. Yoshida, H. Abe, Rapid clogging of high-efficiency particulate air filters during in-cell solvent fires at reprocessing facilities, Nucl. Technol. 206 (2020) 40–47. https://doi.org/10.1080/00295450.2019.1620057
[111] I.M. Hutten, Handbook of nonwoven filter media, Elsevier Inc., 2015. https://doi.org/10.1016/C2011-0-05753-8
[112] J. Nemoto, T. Saito, A. Isogai, Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters, ACS Appl. Mater. Interfaces. 7 (2015) 19809–19815. https://doi.org/10.1021/acsami.5b05841
[113] B. Bereiter, S. Eggleston, J. Schmitt, C. Nehrbass-Ahles, T.F. Stocker, H. Fischer, S. Kipfstuhl, J. Chappellaz, Revision of the EPICA Dome C CO2 record from 800 to 600-kyr before present, Geophys. Res. Lett. 42 (2015) 542–549. https://doi.org/10.1002/2014GL061957
[114] N. Mahfoudhi, S. Boufi, Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review, Cellulose. 24 (2017) 1171–1197. https://doi.org/10.1007/s10570-017-1194-0
[115] C. Gebald, J.A. Wurzbacher, P. Tingaut, T. Zimmermann, A. Steinfeld, Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air, Environ. Sci. Technol. 45 (2011) 9101–9108. https://doi.org/10.1021/es202223p
[116] H. Sehaqui, M.E. Gálvez, V. Becatinni, Y. cheng Ng, A. Steinfeld, T. Zimmermann, P. Tingaut, Fast and reversible direct CO2 capture from air onto all-polymer nanofibrillated cellulose—polyethylenimine foams, Environ. Sci. Technol. 49 (2015) 3167–3174. https://doi.org/10.1021/es504396v
[117] W.D. Callister Júnior, D.G. Retcwisch, Materials science and engineering: An introduction, 10th ed., WileyPlus, Hoboken, 2018
[118] R.C. Hibbeler, Mechanics of Materials, 10th ed., Pearson, London, 2016
[119] S.K. Goyal, The big book of packaging : science, art & technology, Sanex Packaging Connections Pvt. Ltd., Gurugram, 2016
[120] J. Wang, Z. Yu, P. Li, D. Ding, X. Zheng, C. Hu, T. Hu, X. Gong, Y. Chang, C. Wu, Poly(styrene-: Ran -cinnamic acid) (SCA), an approach to modified polystyrene with enhanced impact toughness, heat resistance and melt strength, RSC Adv. 9 (2019) 39631–39639. https://doi.org/10.1039/c9ra08635h
[121] J. Wiener, F. Arbeiter, A. Tiwari, O. Kolednik, G. Pinter, Bioinspired toughness improvement through soft interlayers in mineral reinforced polypropylene, Mech. Mater. 140 (2020). https://doi.org/10.1016/j.mechmat.2019.103243
[122] M. Mihalic, L. Sobczak, C. Pretschuh, C. Unterweger, Increasing the impact toughness of cellulose fiber reinforced polypropylene composites—influence of different impact modifiers and production scales, J. Compos. Sci. 3 (2019) 82. https://doi.org/10.3390/jcs3030082
[123] I. Nennewitz, W. Nutsch, P. Peschel, S. Schulzig, G. Seifert, T. Strechel, Holztechnik Tabellenbuch, 11th ed., Europa Lehrmittel Verlag, Haan, 2019
[124] A.E. Donius, A. Liu, L.A. Berglund, U.G.K. Wegst, Superior mechanical performance of highly porous, anisotropic nanocellulose-montmorillonite aerogels prepared by freeze casting, J. Mech. Behav. Biomed. Mater. 37 (2014) 88–99. https://doi.org/10.1016/j.jmbbm.2014.05.012
[125] A.B. Perumal, P.S. Sellamuthu, R.B. Nambiar, E.R. Sadiku, O.A. Adeyeye, Biocomposite reinforced with nanocellulose for packaging applications, in: D. Gnanasekaran (Ed.), Green biopolym. their nanocomposites, Springer, Singapore, 2019: pp. 83–123. https://doi.org/10.1007/978-981-13-8063-1_4
[126] P. Komarnicki, P. Lombardi, Z. Styczynski, Electric energy storage systems, Springer, Berlin, 2017. https://doi.org/10.1007/978-3-662-53275-1
[127] X. Yang, K. Shi, I. Zhitomirsky, E.D. Cranston, Cellulose Nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials, Adv. Mater. 27 (2015) 6104–6109. https://doi.org/10.1002/adma.201502284
[128] M. Hamedi, E. Karabulut, A. Marais, A. Herland, G. Nyström, L. Wågberg, Nanocellulose Aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond, Angew. Chemie Int. Ed. 52 (2013) 12038–12042. https://doi.org/10.1002/anie.201305137
[129] M. Pääkkö, J. Vapaavuori, R. Silvennoinen, H. Kosonen, M. Ankerfors, T. Lindström, L.A. Berglund, O. Ikkala, Long and entangled native cellulose i nanofibers allow flexible aerogels and hierarchically porous templates for functionalities, Soft Matter. 4 (2008) 2492–2499. https://doi.org/10.1039/b810371b
[130] S. Zhou, M. Wang, X. Chen, F. Xu, Facile template synthesis of microfibrillated cellulose/polypyrrole/silver nanoparticles hybrid aerogels with electrical conductive and pressure responsive properties, ACS Sustain. Chem. Eng. 3 (2015) 3346–3354. https://doi.org/10.1021/acssuschemeng.5b01020
[131] J. Fricke, Thermal transport in porous superinsulations, in: J. Fricke (Ed.), Aerogels, Springer, Chan, 1985: pp. 94–103. https://doi.org/10.1007/978-3-642-93313-4_11
[132] J. Zhou, Y. Lo Hsieh, Nanocellulose aerogel coaxial fibers for thermal insulation, Nano Energy. (2019) 104305. https://doi.org/https://doi.org/10.1016/j.nanoen.2019.104305
[133] B. Seantier, D. Bendahou, A. Bendahou, Y. Grohens, H. Kaddami, Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties, Carbohydr. Polym. 138 (2016) 335–348. https://doi.org/10.1016/j.carbpol.2015.11.032
[134] B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino, M. Antonietti, L. Bergström, Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide, Nat. Nanotechnol. 10 (2015) 277–283. https://doi.org/10.1038/nnano.2014.248
[135] C. He, J. Huang, S. Li, K. Meng, L. Zhang, Z. Chen, Y. Lai, Mechanically resistant and sustainable cellulose-based composite aerogels with excellent flame retardant, sound-absorption, and superantiwetting ability for advanced engineering materials, ACS Sustain. Chem. Eng. 6 (2018) 927–936. https://doi.org/10.1021/acssuschemeng.7b03281
[136] B. Yuan, J. Zhang, Q. Mi, J. Yu, R. Song, J. Zhang, Transparent cellulose–silica composite aerogels with excellent flame retardancy via an in situ sol–gel process, ACS Sustain. Chem. Eng. 5 (2017) 11117–11123. https://doi.org/10.1021/acssuschemeng.7b03211
[137] Y. Han, X. Zhang, X. Wu, C. Lu, Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostructures, ACS Sustain. Chem. Eng. 3 (2015) 1853–1859. https://doi.org/10.1021/acssuschemeng.5b00438
[138] D.A. Gopakumar, S. Thomas, O. F.A.T, S. Thomas, A. Nzihou, S. Rizal, H.P.S. Abdul Khalil, Nanocellulose based aerogels for varying engineering applications, in: S. Hashmi (Eds.) Reference Module in Materials Science and Materials Engineering, Elsevier, 2019. https://doi.org/10.1016/b978-0-12-803581-8.10549-1
[139] M.L. Workman, L.A. LaCharity, S.L. Kruchko, Understanding pharmacology: Essentials for medication safety., Elsevier, Amsterdan, 2013
[140] U. Pal, S.K. Pramanik, Advances in the application of nanomaterials and nanosacled materials in physiology or medicine: Now and the future, in: B.N. Ganguly (Ed.), Nanomaterials in bio-medical applications; A novel approach, Materials Research Forum, Millersville, 2018: pp. 147–178
[141] V. Gopinath, S. Saravanan, A.R. Al-maleki, M. Ramesh, J. Vadivelu, Biomedicine & Pharmacotherapy A review of natural polysaccharides for drug delivery applications : Special focus on cellulose , starch and glycogen, Biomed. Pharmacother. 107 (2018) 96–108
[142] K. Löbmann, A.J. Svagan, Cellulose nano fi bers as excipient for the delivery of poorly soluble drugs, Int. J. Pharm. 533 (2017) 285–297
[143] H. Valo, S. Arola, P. Laaksonen, M. Torkkeli, L. Peltonen, M.B. Linder, R. Serimaa, S. Kuga, J. Hirvonen, T. Laaksonen, Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels, Eur. J. Pharm. Sci. 50 (2013) 69–77
[144] A.J. Svagan, J.W. Benjamins, Z. Al-Ansari, D.B. Shalom, A. Müllertz, L. Wågberg, K. Löbmann, Solid cellulose nanofiber based foams – Towards facile design of sustained drug delivery systems, J. Control. Release. 244 (2016) 74–82. https://doi.org/10.1016/j.jconrel.2016.11.009
[145] J. Zhao, C. Lu, X. He, X. Zhang, W. Zhang, X. Zhang, Polyethylenimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery, ACS Appl. Mater. Interfaces. 7 (2015) 2607–2615. https://doi.org/10.1021/am507601m
[146] M. Bhattacharya, M.M. Malinen, P. Lauren, Y.R. Lou, S.W. Kuisma, L. Kanninen, M. Lille, A. Corlu, C. Guguen-Guillouzo, O. Ikkala, A. Laukkanen, A. Urtti, M. Yliperttula, Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture, in: J. Control. Release, 2012: pp. 291–298. https://doi.org/10.1016/j.jconrel.2012.06.039
[147] H. Cai, S. Sharma, W. Liu, W. Mu, W. Liu, X. Zhang, Y. Deng, Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold, Biomacromolecules. 15 (2014) 2540–2547. https://doi.org/10.1021/bm5003976
[148] E. Carletti, A. Motta, C. Migliaresi, Scaffolds for tissue engineering and 3D cell culture., Methods Mol. Biol. 695 (2011) 17–39. https://doi.org/10.1007/978-1-60761-984-0_2
[149] M. Jorfi, E.J. Foster, Recent advances in nanocellulose for biomedical applications, J. Appl. Polym. Sci. 132 (2015) n/a-n/a. https://doi.org/10.1002/app.41719
[150] A.B. Seabra, J.S. Bernardes, W.J. Fávaro, A.J. Paula, Cellulose nanocrystals as carriers in medicine and their toxicities : A review, Carbohydr. Polym. 181 (2018) 514–527