Multifunctional Ferrites: Synthesis, Behavior and Biomedical Applications

$30.00

Multifunctional Ferrites: Synthesis, Behavior and Biomedical Applications

Amar K. Nandanwar, Kishor G. Rewatkar

Ferrites are a family of oxides with outstanding magnetic properties. Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used in experimentation for various in vivo applications. All biomedical applications require high value of magnetization and the average size of particles should be less than 100 nm. To prepare multifunctional ferrite nanoparticles, sol-gel auto combustion synthesis technique was adopted. It was found that Cd-Ni substitution results in improving the saturation magnetization and reducing the coercivity values favorable for hyperthermia treatment. In this review, we have discussed magnetic parameters with increasing heating potential of nanoparticles.

Keywords
Magnetization, Multifunctional Ferrites, Magnetic Hyperthermia, SPION, Specific Absorption Ratio

Published online 8/25/2020, 40 pages

Citation: Amar K. Nandanwar, Kishor G. Rewatkar, Multifunctional Ferrites: Synthesis, Behavior and Biomedical Applications, Materials Research Foundations, Vol. 83, pp 193-232, 2020

DOI: https://doi.org/10.21741/9781644900970-9

Part of the book on Magnetic Oxides and Composites II

References
[1] P.L. Alan and J. Youtie Jan, How interdisciplinary is nanotechnology, Journal of Nanoparticles Research, 11 (5) (2009) 1023-1041. https://doi.org/10.1007/s11051-009-9607-0
[2] E. Aghion and B. Bronfin, Magnesium alloys development towards the 21st century, Materials Science Forum. Vol. 350. (2000) 74-80. https://doi.org/10.4028 /www.scientific.net/MSF.350-351.1
[3] F. Haldar, O. Arabinda, and A. Adeyeye, Deterministic control of magnetization dynamics in reconfigurable nanomagnetic networks for logic applications, ACS Nano, 10 (1) (2016) 1690-1698. https://doi.org/10.1021/acsnano.5b07849
[4] E. Wernsdorfer and S. Wolfgang, from micro-to nano-SQUIDs: applications to nanomagnetism, Superconductor Science and Technology, 22 (6) (2009) 064013-064018. https://doi.org/10.1007/s10853-006-6564-1
[5] E. Chen, J. Ching, Y. Haik, and J. Chatterjee, Development of nanotechnology for biomedical applications, Emerging Information Technology Conference, IEEE, 5 (2005) 564-570. https://doi.org/10.1109/EITC.2005.1544329
[6] H. S. Ahamad, N. S. Meshram, S. B. Bankar, S. J. Dhoble and K. G. Rewatkar, Structural properties of CuxNi1-xFe2O4 nano ferrites prepared by urea gel microwave auto combustion method, Ferroelectrics, 516 (2017) 167–173. https://doi.org/ 10.1080/ 00150193.2017.1362285
[7] A. Bulte, W. M. Jeff, T. Douglas, S. Mann, R. B. Frankel, B. M. Moskowitz, R. A. Brooks, C. D. Baumgarner, J. Vymazal, M. Strub, and Joseph A. Frank, Magnetoferritin: characterization of a novel superparamagnetic MR contrast agent, Journal of Magnetic Resonance Imaging, 4 (3) (1994) 497-505. https://doi.org/ 10.1002 /jmri.1880040343
[8] E. Song, R. Qing, and Z. John Zhang, Correlation between spin orbital coupling and the superparamagnetic properties in magnetite and cobalt ferrite spinel nanocrystals, The Journal of Physical Chemistry B, 110 (23) (2006) 11205-11209. https://doi.org/ 10.1021/jp060577
[9] A. Laurent, G. Sophie, S. Dutz, U. O. Häfeli, and Morteza Mahmoudi, Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles, Advances in Colloid and Interface Science, 166 (1-2) (2011) 8-23.https://doi.org/ 10.1016/ j.cis. 2011. 04.003
[10] S. N. Sable, K. G. Rewatkar, V. M. Nanoti, Structural and magnetic behavioral improvisation of nanocalcium hexaferrites, Materials Science and Engineering B, 168 (2010) 156–160. https://doi.org/10.1016/j.mseb.2009.10.034
[11] F. Gutiérrez, J. Tomy, and V. A. Alvarez, Nanoparticles for Hyperthermia Applications, Handbook of Nanomaterials for Industrial Applications, Elsevier, (2018) 563-576. https://doi.org/10.1016/B978-0-12-813351-4.00032-8
[12] A. K. Nandanwar, D. S. Choudhary, N. N. Sarkar, K. G. Rewatkar, Effect of Ni+2 Substitutions on Structural and Electrical Behavior of Nano-Size Cadmium Ferrites, Materials Today: Proceedings 5/10P3, (2017) 22669–22674. https://doi.org/10. 1016/j. matpr.2018.06.643
[13] S. N. Sable, K. G. Rewatkar and V. M. Nanoti, Structural and magnetic behavioral improvisation of nanocalcium hexaferrites, Materials Science and Engineering: B, 168.1-3 (2010) 156-160. https://doi.org/10.1016/j.mseb.2009.10.034
[14] R. Medal, R. K. Gilchrist, W. D. Shorey, R. C. Hanselman, J. C. Parrott and C.B. Taylor, Selective inductive heating of lymph nodes, Annals of Surgery, 146(4) (1957) p.596. https://doi.org/10.1097/00000658-195710000-00007
[15] H. S. Ahamad, N. S. Meshram, S. B. Bankar, S. J. Dhoble, and K. G. Rewatkar, Structural properties of CuxNi1-xFe2O4 nano ferrites prepared by urea-gel microwave auto combustion method, Ferroelectrics, 516, 1 (2017) 67-73. https://doi.org/ 10. 1080/ 001 50193.2017.1362285
[16] M. W. Freeman, A. Arrott, and J. H. L. Watson, Magnetism in medicine, Journal of Applied Physics, 31(5) (1960) S404-S405. https://doi.org/10.1063/1.1984765
[17] G. Fischer, B. J. Wagner, M. Schmitt and Rolf Hempelmann, Tuning the relaxation behaviour by changing the content of cobalt in CoxFe3−xO4 ferrofluids, Journal of Physics: Condensed Matter, 17 (50) (2005) 7875.
[18] M. Ansari, A. Bigham, S. M. Tabrizi, and H. A. Ahangar, Copper‐substituted spinel Zn‐Mg ferrite nanoparticles as potential heating agents for hyperthermia, Journal of the American Ceramic Society, 101 (8) (2018) 3649-3661.https://doi.org/10.1111 /jace.15510
[19] S. Amiri, and H. Shokrollahi, The role of cobalt ferrite magnetic nanoparticles in medical science, Materials Science and Engineering: C, 33(1) (2013) 1-8. https://doi.org/ 10.1016/j.msec.2012.09.003
[20] A. Usadel, D. Klaus, Dynamics of magnetic nanoparticles in a viscous fluid driven by rotating magnetic fields, Physical Review B, 95.10 (2017) 104430.
[21] R. Kötitz, P. C. Fannin, and L. Trahms, Time domain study of Brownian and Neel relaxation in ferrofluids, Journal of Magnetism and Magnetic Materials 149.1-2 (1995) 42-46. https://doi.org/10.1016/0304-8853(95)00333-9
[22] M. Ming, Y. W. J. Zhou, Y. Sun, Y. Zhang, and Ning Gu, Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field, Journal of Magnetism and Magnetic Materials, 268 (1-2) (2004) 33-39. https://doi.org/10.1016/S0304-8853(03)00426-8
[23] G. Abenojar, C. Eric, S. Wickramasinghe, J. B. Concepcion, and A. C. S. Samia, Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles, Progress in Natural Science: Materials International, 26 (5) (2016) 440 -448. https://doi.org/10.1016/j.pnsc.2016.09.004
[24] H. Rudolf, W. Andra, C. G. d’Ambly, I. Hilger, W. A. Kaiser, U. Richter, and H-G. Schmidt, Physical limits of hyperthermia using magnetite fine particles, IEEE Transactions on Magnetics, 34 (5) (1998) 3745-3754. https://doi.org/10.1109/20.718537
[25] F. G. Vallejo and K. O’Grady, Effect of the distribution of anisotropy constants on hysteresis losses for magnetic hyperthermia applications, Applied Physics Letters, 103(14) (2013) 142417. https://doi.org/10.1063/1.4824649.
[26] P. Bender, J. Fock, C. Frandsen, M. F. Hansen, C. Balceris, F. Ludwig, O. Posth, Relating magnetic properties and high hyperthermia performance of iron oxide nanoflowers, The Journal of Physical Chemistry C, 122 (5) (2018) 3068-3077. https://doi.org/10.1021/acs.jpcc.7b11255.
[27] A. T. Cayless, S. R. Hoon, B. K. Tanner, R. W. Chantrell, and M. Kilner, High sensitivity measurements of néel relaxation in fine particle ferromagnetic systems, Journal of Magnetism and Magnetic Materials 30, no. 3 (1983) 303-311. https://doi.org /10.1016/0304-8853(83)90068-9
[28] R. Sergiu, R. Chantrell, and O. Hovorka, Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles, Scientific Reports, 5 (2015) 9090. https://doi.org/10.1038/srep09090.
[29] G. B. Stillwagon, E. O. Stanley, C. Guse, S. A. Leibel, S. O. Asbell, J. L. Klein, and P. K. Leichner, Prognostic factors in unresectable hepatocellular cancer: Radiation Therapy Oncology Group study 83-01, International Journal of Radiation Oncology Biology Physics, 20 (1) (1991) 65-71.
[30] A. Hanini, K. Kacem, J. Gavard, H. Abdelmelek, and S. Ammar, Ferrite nanoparticles for cancer hyperthermia therapy, In Handbook of Nanomaterials for Industrial Applications, Elsevier, 2018 pp. 638-661. https://doi.org/10.1016/B978-0-12-813351-4.00036-5
[31] A. C. Blanco, F. J. Teran, and D. Ortega, Current outlook and perspectives on nanoparticle-mediated magnetic hyperthermia, Iron Oxide Nanoparticles for Biomedical Applications, (2018) 197-245. https://doi.org/10.1016/B978-0-08-101925-2.00007-3
[32] K. S. Martirosyan, Thermosensitive magnetic nanoparticles for self-controlled hyperthermia cancer treatment, Journal of Nanomedicine and Nanotecholnology, 3 (6) (2012) 1-2. https://doi.org/10.4172/2157-7439.1000e112
[33] I. Apostolova and J. M. Wesselinowa, Possible low-TC nanoparticles for use in magnetic hyperthermia treatments, Solid State Communications, 149 (25-26) (2009) 986-990. https://doi.org/10.1016/j.ssc.2009.04.015
[34] K. G. Rewatkar, N. M. Patil, and S. R. Gawali, Synthesis and magnetic study of Co-Al substituted calcium hexaferrites, Bulletin of Materials Science, 28 (6) (2005) 585-587. https://doi.org/10.1007/BF02706346
[35] D. T. Edward, H. B. Lawrence and R. E. Watson, Extension of the Bloch T3/2 law to magnetic nanostructures: Bose-Einstein condensation, Physical Review Letters, 94 (14) (2005) 147210. https://doi.org/10.1103/PhysRevLett.94.147210
[36] K. Mandal, S. Mitra, and P. A. Kumar, Deviation from Bloch T3/2 law in ferrite nanoparticles, EPL (Europhysics Letters), 75(4) (2006) 618- 623.
[37] R. W. Chantrell, S. R. Hoon, and B. K. Tanner, Time-dependent magnetization in fine-particle ferromagnetic systems, Journal of Magnetism and Magnetic Materials, 38(2) (1983) 133-141. https://doi.org/10.1016/0304-8853(83)90037-9
[38] E. Obaidat, I. M Bashar, and Yousef Haik, Magnetic properties of magnetic nanoparticles for efficient hyperthermia, Nanomaterials, 5(1) (2015) 63-89. https://doi.org /10.3390/nano5010063
[39] T. Nattermann, V. Pokrovsky, and V. M. Vinokur, Hysteretic dynamics of domain walls at finite temperatures, Physical Review Letters, 87 (19) (2001) 197005. https://doi.org/10.1103/PhysRevLett.87.197005
[40] M. A. Hakim, S. K. Nath, S. S. Sikder, K. H. Maria, Cation distribution and electromagnetic properties of spinel type Ni-Cd ferrites, Journal of Physics and Chemistry of Solids, 74 (2013) 1316-1321. https://doi.org/10.1016/j.jpcs.2013.04.011
[41] M. Rahimi, M. Eshraghi, P. Kameli, structural and magnetic characterization of Cd substituted nickel ferrite nanoparticles, Ceramic International, 40 (2014) 15569 15575. https://doi.org/10.1016/j.ceramint.2014.07.033
[42] A. Hanini, K. Kacem, J. Gavard, H. Abdelmelek, and S. Ammar, Ferrite Nanoparticles for Cancer Hyperthermia Therapy, In Handbook of Nanomaterials for Industrial Applications, pp. 638-661. Elsevier, 2018.
[43] S. Bid and S. K. Pradhan, Characterization of crystalline structure of ball-milled nano-Ni–Zn-ferrite by Rietveld method, Materials Chemistry and Physics, 84(2-3) (2004) 291-301. https://doi.org/10.1016/j.matchemphys.2003.08.012
[44] S. F. Tehrani, V. Daadmehr, A. T. Rezakhani, R. Hosseini Akbarnejad, and S. Gholipour, Structural, magnetic, and optical properties of zinc-and copper-substituted nickel ferrite nanocrystals, Journal of Superconductivity and Novel Magnetism, 25 (7) (2012) 2443-2455. https://doi.org/10.1007/s10948-012-1655-5
[45] S.A.V. Prasad, M. Deepty, P. N. Ramesh, G. Prasad, K. Srinivasarao, Ch Srinivas, K. Vijaya Babu, E. Ranjith Kumar, N. Krisha Mohan, and D. L. Sastry, Synthesis of MFe2O4 (M = Mg2+, Zn2+, Mn2+) spinel ferrites and their structural, elastic and electron magnetic resonance properties, Ceramics International, 44 (9) (2018) 10517-10524. https://doi.org/10.1016/j.ceramint.2018.03.070
[46] B. L. Konecky, J. M. Russell, T. C. Johnson, E. T. Brown, M. A. Berke, J. P. Werne, and Y. Huang, Atmospheric circulation patterns during late Pleistocene climate changes at Lake Malawi, Africa, Earth and Planetary Science Letters, 312 (3-4) (2011) 318-326. https://doi.org/10.1016/j.materresbull.2012.12.039
[47] N. Sharma, P. Aghamkar, S. Kumar, M. Bansal, Anju and R. P. Tondon, Study of structural and magnetic properties of Nd doped zinc ferrites, Journal of Magnetism and Magnetic Materials, 369 (2014) 162-167. https://doi.org/10.1016/j.jmmm.2014.05.042
[48] J. N. Christy, K. G. Rewatkar, and P. S. Sawadh, Structural and magnetic behavior of M-type Co-Zr substituted calcium hexaferrites, Materials Today: Proceedings 4.11 (2017) 11857-11865. https://doi.org/10.1016/j.matpr.2017.09.104
[49] S. Sabale, V. Jadhav, V. Khot, X. Zhu, M. Xin, and H. Chen, Superparamagnetic MFe2O4 (M = Ni, Co, Zn, Mn) nanoparticles: Synthesis, characterization, induction heating and cell viability studies for cancer hyperthermia applications, Journal of Materials Science: Materials in Medicine, 26 (3) (2015) 127. https://doi.org /10.1007/ s10856-015-5466-7
[50] V. A. M. Brabers, Infrared spectra of cubic and tetragonal manganese ferrites, Physica Status Solidi (b), 33(2) (1969) 563-572. https://doi.org/10.1002/pssb.19690330209
[51] M. G. Naseri , E. B. Saion, H. A. Ahangar, A. H. Shaari, Fabrication, characterization, and magnetic properties of copper ferrite nanoparticles prepared by a simple, thermal-treatment method, Materials Research Bulletin, 48 (2013) 1439–1446.https://doi.org/10.1016/j.materresbull.2012.12.039
[52] A. Abdulaziz, W. H. Abdelraheem, C. Han, M. N. Nadagouda, L. Sygellou, M. K. Arfanis, P. Falaras, V. K. Sharma, and D. D. Dionysiou, Cobalt ferrite nanoparticles with controlled composition-peroxymonosulfate mediated degradation of 2-phenylbenzimidazole-5-sulfonic acid, Applied Catalysis B: Environmental, 221 (2018) 266-279. https://doi.org/10.1016/j.apcatb.2017.08.054
[53] P. Nordblad, R. Mohan, and Samrat Mukherjee, Structural, magnetic and hyperfine characterizations of nanocrystalline Zn-Cd doped nickel ferrites, Journal of Magnetism and Magnetic Materials, 441 (2017) 710-717. https://doi.org/ 10.1016/ j.jmmm. 2017.06.040
[54] M. M. Karanjkar, N. L. Tarwal, A. S. Vaigankar, and P. S. Patil, Structural, Mössbauer and electrical properties of nickel cadmium ferrites, Ceramics International, 39(2) (2013) 1757-1764. https://doi.org/10.1016/j.ceramint.2012.08.022
[55] K. Lawrence, P. Kumar, and M. Kar, Cation distribution by Rietveld technique and magnetocrystalline anisotropy of Zn substituted nanocrystalline cobalt ferrite, Journal of Alloys and Compounds, 551 (2013) 72-81. https://doi.org /10.1016 /j.jallcom.2012.10.009
[56] F. Köseoğlu, A. Yüksel, Structural and magnetic properties of Cr doped Ni-Zn-ferrite nanoparticles prepared by surfactant assisted hydrothermal technique, Ceramics International 41.5 (2015) 6417-6423. https://doi.org/ 10.1016/ j.ceramint.2015.01.079
[57] K. G. Rewatkar, N. M. Patil, S. Jaykumar, D. S. Bhowmick, M. N. Giriya, and C. L. Khobragade, Synthesis and the magnetic characterization of iridium–cobalt substituted calcium hexaferrites, Journal of Magnetism and Magnetic Materials 316, no. 1 (2007) 19-22. https://doi.org/10.1016/j.jmmm.2007.03.192
[58] R. Desai, R. V. Mehta, R. V. Upadhyay, A. Gupta, A. Praneet, K.V. Rao. Bulk magnetic properties of CdFe2O4 in nano-regime. Bulletin of Materials Science, 30(3) (2007) 197-203. https://doi.org/10.1007/s12034-007-0035-4
[59] M. C. Boubeta, K. Simeonidis, A. Makridis, M. Angelakeris, O. Iglesias, P. Guardia, Andreu Cabot, Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications, Scientific Reports 3 (2013) 1652. https://doi.org/10.1002/adfm.201101243
[60] M.Gharibshahian, M. S. Nourbakhsh, and O. Mirzaee, Evaluation of the superparamagnetic and biological properties of microwave assisted synthesized Zn & Cd doped CoFe2O4 nanoparticles via Pechini sol–gel method, Journal of Sol-Gel Science and Technology, 85(3)(2018) 684-692. https://doi.org/10.1007/s10971-017-4570-1
[61] A. Hanini, L. Lartigue, J. Gavard, K. Kacem, C. Wilhelm, F. Gazeau, F. Chau, and S. d Ammar, Zinc substituted ferrite nanoparticles with Zn0.9Fe2.1O4 formula used as heating agents for in vitro hyperthermia assay on glioma cells, Journal of Magnetism and Magnetic Materials, 416 (2016) 315-320. https://doi.org/10.1016/j.jmmm.2016.05.016
[62] B. Thiesen and A. Jordan, Clinical applications of magnetic nanoparticles forhypertherm, International journal of hyperthermia, 24 (6) (2008) 467-474.
[63] M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy, Advanced drug delivery reviews, 63 (1-2) (2011) 24-46. https://doi.org/ 10.1016 /j.addr.2010.05.006
[64] M. Rai and R. Shegokar, Metal Nanoparticles in Pharma. Springer, 2017
[65] R. Kötitz, P. C. Fannin, and L. Trahms, Time domain study of Brownian and Néel relaxation in ferrofluids, Journal of Magnetism and Magnetic Materials, 149 (1-2) (1995) 42-46. https://doi.org/10.1016/0304-8853 (95)00333-9.
[66] R. Valenzuela, Novel applications of ferrites, Physics Research International (2012). https://doi.org/10.1063/1.1855131
[67] J. Giri, P. Pradhan, T. Sriharsha, and D. Bahadur, Preparation and investigation of potentiality of different soft ferrites for hyperthermia applications, Journal of Applied Physics, 97 (10) (2005) 10Q916. https://doi.org/10.1063/1.1855131
[68] P. Nordblad, R. Mohan, and S. Mukherjee, Structural, magnetic and hyperfine characterizations of nanocrystalline Zn-Cd doped nickel ferrites, Journal of Magnetism and Magnetic Materials, 441 (2017) 710-717. https://doi.org/ 10.1016 /j.jmmm.2017.06.040
[69] S. Naik, A. Parveez, A. Chaudhuri, and S. A. Khader, Structural, dielectric and electrical properties of Ni(Cd,Zn)Fe2O4 by auto combustion method, Materials Today: Proceedings, 4 (11) (2017) 12103-12108. https://doi.org/ 10.10 16/ j.matpr. 2017.09.137
[70] P. Raja, T. Yadavalli, D. Ravi, H. A. Therese, C. Ramasamy, and Y. Hayakawa, Synthesis and magnetic properties of gadolinium substituted zinc ferrites, Materials Letters, 188 (2017) 406-408. https://doi.org/10.1016/j.matlet.2016.11.083
[71] R. A. Bohara, D. T. Nanasaheb, A. K. Chaurasia, and S. H. Pawar, Cancer cell extinction through a magnetic fluid hyperthermia treatment produced by superparamagnetic Co–Zn ferrite nanoparticles, RSC Advances, 5 (58) (2015) 47225-47234. https://doi.org/10.1039/C5RA04553C
[72] H. Köseoğlu and K. Yüksel, Structural and magnetic properties of Cr doped NiZn-ferrite nanoparticles prepared by surfactant assisted hydrothermal technique, Ceramics International 41.5 (2015) 6417-6423. https://doi.org/10.1016/ j.ceramint. 2015 .01.079
[73] M. F. Valan, A. Manikandan, and S. A. Antony, Microwave Combustion Synthesis and Characterization Studies of Magnetic Zn1–xCdxFe2O4 (0 ≤ x ≤ 0.5) Nanoparticles, Journal of Nanoscience and Nanotechnology, 15 (6) (2015) 4543-4551. https://doi.org/10.1166/jnn.2015.9801
[74] W. Xiaojuan, Z. Wei, L. Zhang, C. Zhang, H. Yang, and J. Jiang, Synthesis and characterization of Fe and Ni co-doped ZnO nanorods synthesized by a hydrothermal method, Ceramics International, 40 (9) (2014) 14635-14640. https://doi.org/10.1016/j.ceramint.2014.08.022
[75] T. Tatarchuk, M. Bououdina, J. J. Vijaya, and L. J. Kennedy, Spinel ferrite nanoparticles: synthesis, crystal structure, properties, and perspective applications, In International Conference on Nanotechnology and Nanomaterials, Springer, Cham, (2016) pp. 305-325. https://doi.org/10.1007/978-3-319-56422-7_22
[76] J. I. Martın, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, Ordered magnetic nanostructures: fabrication and properties, Journal of Magnetism and Magnetic Materials, 256 (1-3) (2003) 449-501. https://doi.org/10.1016/S0304-8853(02)00898-3
[77] N. Y. Lanje, D. K. Kulkarni, and K. G. Rewatkar, Synthesis, transport and magnetic study of CaLaCr11O19, Materials Letters, 47 (3) (2001) 125-127. https://doi.org/ 10.1016/ S0167-577X(00)00222-6
[78] A. K. Nandanwar, N. S. Meshram, V. B. Korde, D. S. Choudhary, and K. G. Rewatkar, Effects of Ni2+-substitution on structural, magnetic and electrical properties of cadmium spinel ferrite nanoparticles via chemical route, Integrated Ferroelectrics, 203 (1) (2019) 12-18. https://doi.org/10.1080/10584587.2019.1674955
[79] S. N. Kamde, A. K. Nandanwar, P. G. Agone, and K. G. Rewatkar, Effect of Cr3+ doped on structural, magnetic and electrical properties of sol-gel synthesized SrFe12O19 hexaferrite nanoparticle, Integrated Ferroelectrics, 203 (1) (2019) 150-155. https://doi.org/10.1080/10584587.2019.1674959