Synthesis and Antimicrobial Study of Co-Ni-Cd Nanoferrites

$30.00

Synthesis and Antimicrobial Study of Co-Ni-Cd Nanoferrites

M. Raghasudha

CoxNi0.5Cd0.5-xFe2O4 (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5) nanoferrites were synthesized by citrate-gel auto combustion method. Antimicrobial study was tested on Gram-negative bacteria and Gram-positive bacteria by adopting disc-diffusion agar method. The prepared nanoferrites show excellent antimicrobial function with a zone of inhibition of 10-12 mm against E. coli, 5-7 mm against K. pneumonia, 9-12 mm against B. subtilis and 5-7 mm against S. aureus. Inhibition of the growth was ascertained with reference to Ampicillin, a standard antibacterial drug, that acts as positive control. The antibacterial properties of the prepared ferrites bid great challenges in biomedical and pharmaceutical applications.

Keywords
Nanoferrites, Structural Properties, Citrate-Gel Auto Combustion Method, Anti-Microbial Study

Published online 8/25/2020, 17 pages

Citation: M. Raghasudha, Synthesis and Antimicrobial Study of Co-Ni-Cd Nanoferrites, Materials Research Foundations, Vol. 83, pp 117-133, 2020

DOI: https://doi.org/10.21741/9781644900970-5

Part of the book on Magnetic Oxides and Composites II

References
[1] Goldman A. Modern Ferrite Technology, Van Nostrand, New York 1990.
[2] Amiri S, Shokrollahi H, The role of cobalt ferrite magnetic nanoparticles in medical science, Materials Science Engineering C, 33 (2013) 1– 8. https://doi.org/10.1016/j.msec.2012.09.003
[3] M.A. Fischbach, C. T. Walsh, Antibiotics for emerging pathogens, Science, 325 (5944): (2009) 1089-1093. https://doi.org/10.1126/science.1176667
[4] S.K. Pradhan, S. Bid, M. Gateshki, V. Petkov, Microstructure characterization and cation distribution of nanocrystalline magnesium ferrite prepared by ball milling, Materials Chemistry Physics, 93 (2005) 224–230. https://doi.org/10.1016/j.matchemphys.2005.03.017
[5] R. Arulmurugan, G. Vidyanathan, S. Sendhilnathan, B. Jeyadevan, Thermomagnetic properties of Co1-x Znx Fe2O4 (x = 0.1–0.5) nanoparticles, Journal of Magnetism and Magnetic Materials, 303 (2006)131–137. https://doi.org/10.1016/j.jmmm.2005.10.237
[6] C.K. Kim, J.H. Lee, S. Katoh, R. Murakami, M. Yoshimura, Material Research Bulletin, 36 (2001) 2241–2250. https://doi.org/10.1016/S0025-5408(01)00703-6
[7] X. Gao, U. Du, X. Liu, P. Xu, X. Han, Synthesis and characterization of Co-Sn substituted barium ferrite particles by a reverse micro emulsion technique, Materials Research Bulletin, 46 (2011) 643–648. https://doi.org/10.1016/S0025-5408(01)00703-6
[8] M. Atif, M. Nadeem, R. Grossinger, R. S. Turtelli, Studies on the magnetic, magnetostrictive and electrical properties of sol–gel synthesized Zn doped nickel ferrite, Journal of Alloys and Compounds, 509 (2011)5720–5724. https://doi.org/10.1016/j.jallcom.2011.02.163
[9] Linlin Wang, Chen Hu, and Longquan Shao, The antimicrobial activity of nanoparticles: Preent situation and prospects for the future, International Journal of Nanomedicine, 12 (2017) 1227–1249. https://doi.org/10.2147/IJN.S121956
[10] M. Satalkar , S. N. Kane, On the study of Structural properties and cation distribution of Zn0.75-xNixMg0.15Cu0.1Fe2O4 nano ferrite: Effect of Ni addition, Journal of Physics: Conference Series, 755 (2016) 012050. https://doi.org/10.1088/1742-6596/755/1/012050
[11] K. S. Lohar, S. M. Patange, M. L. Mane, and Sagar E. Shirsath, Cation distribution investigation and characterizations of Ni1-xCdxFe2O4 nanoparticles synthesized by citrate gel process, Journal of Molecular Structure,1032 (2013) 105–110. https://doi.org/10.1016/j.molstruc.2012.07.055
[12] M. B. Shelar, P. A. Jadhav, S. S. Chougule, M. M. Mallapur, and B. K. Chougule, Structural and electrical properties of nickel cadmium ferrites prepared through self-propagating auto combustion method, Journal of Alloys and Compounds, 476 (2009) 760–764. https://doi.org/10.1016/j.jallcom.2008.09.107
[13] D. H. Kim, D. E. Nikles, D. T. Johnson, C. S. Brazel, Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia, Journal of Magnetism and Magnetic Materials, 320 (2008) 2390–2396. https://doi.org/10.1016/j.jmmm.2008.05.023
[14] N. Sanpo, C. C. Berndt, C. Wen, J. Wang, Transition metal substituted cobalt ferrite nanoparticles for biomedical applications, Acta Biomaterialia, 9 (3) (2013) 5830–5837. https://doi.org/10.1016/j.actbio.2012.10.037
[15] T. Smitha, P. J. Binu, X. Sheena, E. M. Mohammed, Effect of samarium substitution on structural and magnetic properties of magnesium ferrite nanoparticles, Journal of Magnetism and Magnetic Materials, 348 (2013)140 – 145. https://doi.org/10.1016/j.jmmm.2013.07.065
[16] M. Raghasudha, D. Ravinder, P. Veerasomaiah, Characterization of nanostructured magnesium-chromium ferrites synthesized by citrate gel auto combustion method, Advanced Material letters, 4 (12) (2013) 910– 916. https://doi.org/10.5185/amlett.2013.5479
[17] C. O. Ehi-Eromosele, J. A. O. Olugbuyiro, O. S. Taiwo, O. A. Bamgboye, C. E. Ango, Synthesis and evaluation of the antimicrobial potentials of cobalt doped- and magnesium ferrite spinel nanoparticles, Bulletin of Chemical Society of Ethiopia, 32(3) (2018) 451–458. https://doi.org/10.4314/bcse.v32i3.4
[18] B. D. Cullity, Elements of X-Ray Diffraction, Addison Wesley publishing Company, Inc., Massachusetts, 1(1959)132–136.
[19] R. C. Kumbale, P. A. Sheikh, S. S. Kamble and Y. D. Kolekar, Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite, Journal of Alloys and Compounds, 478(1-2) (2009) 599–603. https://doi.org/10.1016/j.jallcom.2008.11.101
[20] X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, Permeability and microstructure of manganese modified lithium ferrite prepared by sol-gel auto-combustion method, Materials Science Engineering B, 99 (2003) 278–281. https://doi.org/10.1016/S0921-5107(02)00524-X
[21] P. P. Hankare, V.T. Vader, U.B. Sankpal, L.V. Gavali, I.S. Mulla and R. Sashikala, Effect of sintering temperature and thermoelectric power studies of the system Mg Fe2-xCrxO4, Solid State Sciences, 11(2009) 2075–2079. https://doi.org/10.1016/j.solidstatesciences.2009.09.005
[22] K. S. Lohar, S. M. Patange, M. L. Mane, and Sagar E. Shirsath, Cation distribution investigation and characterizations of Ni1-xCdxFe2O4 nano particles synthesized by citrate gel process, Journal of Molecular Structure, 1032 (2013) 105–110. https://doi.org/10.1016/j.molstruc.2012.07.055
[23] A. B. Gadkari, T. S. Shinde and P. N. Vasambekar, Magnetic properties of rate earth ion (Sm3+) added nanocrystalline Mg-Cd ferrites, prepared by oxalate co-precipitation method, Journal of Magnetism and Magnetic Materials, 322 (2010) 3823–3827. https://doi.org/10.1016/j.jmmm.2010.06.021
[24] M.U. Rana, M.U. Islam, T. Abbas, X-ray diffraction and site preference analysis of Ni-substituted MgFe2O4 ferrites, Pakistan Journal of Applied Science, 2 (2002) 1110–1114. https://doi.org/10.3923/jas.2002.1110.1114
[25] E. Rezlescu, L. Sachelarie, P. D. Popa and N. Rezlescu, Effect of substitution of divalent ions on the electrical and magnetic properties of Ni-Zn-Me ferrites, IEEE Transactions of Magnetics, 36 (2000) 3962–3967. https://doi.org/10.1109/20.914348
[26] R. D. Waldron, Infrared Spectra of Ferrites, Physical Review, 99 (1955) 1725–1727. https://doi.org/10.1103/PhysRev.99.1727
[27] A. T. Raghavender. Sagar E. Shirsath, K. Vijaya Kumar, Synthesis and study of nanocrystalline Ni-Cu-Zn ferrites prepared by oxalate based precursor method, Journal Alloys and Compounds, 509 (2011) 7004–7008. https://doi.org/10.1016/j.jallcom.2011.03.127
[28] X. Sheena, C. Harry, P. J. Nimila, S. Thankachan, M. S. Rintu, E. M. Mohammed, Structural and antibacterial properties of silver substituted cobalt ferrite nanoparticles, Research Journal of Pharmaceutical, Biological and Chemical Sciences. 5(2014) 364–371.