A Brief Review on Magnetic and Magnetocaloric Properties of La-Type Manganites

$30.00

A Brief Review on Magnetic and Magnetocaloric Properties of La-Type Manganites

Mohamed Ellouze, F. Ben Jemaa, S.H. Mahmood, E.K. Hlil

In present chapter, experimental techniques and preparation conditions adopted for the synthesis of La-type manganites and their influence on the structural, magnetic and magnetocaloric properties are briefly reviewed. The effects of various strategies of substitutions on magnetic and magnetocaloric properties are addressed. Further, our synthesis and findings on Mn-Fe substituted manganites are presented. It was found that partial substitution of Mn by Fe results in decreasing the magnetization and the Curie temperature, but the magnetic entropy change values remained in the range suitable for magnetic refrigeration.

Keywords
Synthesis of Manganites, Structural and Magnetic Properties, Magnetic entropy, RCP

Published online 8/25/2020, 38 pages

Citation: Mohamed Ellouze, F. Ben Jemaa, S.H. Mahmood, E.K. Hlil, A Brief Review on Magnetic and Magnetocaloric Properties of La-Type Manganites, Materials Research Foundations, Vol. 83, pp 41-78, 2020

DOI: https://doi.org/10.21741/9781644900970-3

Part of the book on Magnetic Oxides and Composites II

References
[1] S. Ben Abdelkhalek, N. Kallel, S. Kallel, O. Pena, M. Oumezzine, Critical behavior and magnetic entropy change in the La0.6Sr0.4Mn0.8Fe0.1Cr0.1O3 perovskite, Journal of Magnetism and Magnetic Materials, 324 (2012) 3615-3619. https://doi.org/10.1016/j.jmmm.2012.06.024
[2] The-Long Phan, T. A. Ho, P. D. Thang, Q. T. Tran, T. D. Thanh, N. X. Phuc, M. H. Phan, B. T. Huy, S. C. Yua, Critical behavior of Y-doped Nd0.7Sr0.3MnO3 manganites exhibiting the tricritical point and large magnetocaloric effect, Journal of Alloys and Compounds, 615 (2014), 937-945. https://doi.org/10.1016/j.jallcom.2014.06.107
[3] N. Dhahri, J. Dhahri, E. K. Hlil, E. Dhahri, Critical behavior in Co-doped manganites La0.67Pb0.33Mn1-xCoxO3 (0 ≤ x ≤ 0.08), Journal of Magnetism and Magnetic Materials, 324 (2012) 806-811. https://doi.org/10.1016/j.jmmm.2011.09.024
[4] L. Chen, J. H. He,Y. Mei, Y. Z. Cao, W.W. Xia, H. F. Xu, Z.W. Zhu, Z.A. Xu, Critical behavior of Mo-doping La0.67Sr0.33Mn1-xMoxO3 perovskite system, Physica B, 404 (2009) 1879-1882. https://doi.org/10.1016/j.physb.2008.07.023
[5] M. Oumezzine, O. Pena, S. Kallel, M. Oumezzine, Crossover of the magnetocaloric effect and its importance on the determination of the critical behaviour in the La0.67Ba0.33Mn0.9Cr0.1O3 perovskite manganite, Journal of Alloys and Compounds, 539 (2012) 116-123. https://doi.org/10.1016/j.jallcom.2012.06.043
[6] C. Zener, Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure, Physical Review, 82 (1951) 403-405. https://doi.org/10.1103/PhysRev.82.403
[7] P.W. Anderson and H. Hasegawa, Considerations on Double Exchange, Physical Review, 100 (1955) 675-681. https://doi.org/10.1103/PhysRev.100.675
[8] A. J. Millis, B.I. Shraiman, R. Mueller, Dynamic Jahn-Teller Effect and Colossal Magnetoresistance in La1-xSrxMnO3, Physical Review Letters, 77 (1996) 175-178. https://doi.org/10.1103/PhysRevLett.77.175
[9] M. Triki, E. Dhahri, E.K. Hlil, Unconventional critical magnetic behavior in the Griffiths ferromagnet La0.4Ca0.6MnO2.8□0.2 oxide, Journal of Solid State Chemistry, 201 (2013) 63-67. https://doi.org/10.1016/j.jssc.2013.02.019
[10] S. Ghodhbane, E.Tka, J. Dhahri, E. K. Hlil, A large magnetic entropy change near room temperature in La0.8Ba0.1Ca0.1Mn0.97Fe0.03O3 perovskite, Journal of Alloys and Compounds, 600 (2014) 172-177. https://doi.org/10.1016/j.jallcom.2014.02.096
[11] J. Mira, J. Rivsa, F. Rivadulla, C.V.Vazquez, M.A.L. Quintela, Change from first- to second-order magnetic phase transition in La2/3(Ca,Sr)1/3MnO3 perovskites, Physical Review B, 60 (1999) 2998-3001. https://doi.org/10.1103/PhysRevB.60.2998
[12] P. Zhang, P. Lampe, T.L. Phan, S. C. Yu, T. D. Thanh, N. H. Dan, V. D. Lam, H. Srikanth, M. H. Phan, Influence of magnetic field on critical behavior near a first order transition in optimally doped manganites: The case of La1-xCaxMnO3 (0.2 ≤ x ≤ 0.4), Journal of Magnetism and Magnetic Materials, 348 (2013) 146-153. https://doi.org/10.1016/j.jmmm.2013.08.025
[13] M. H. Phan, V. Franco, N. S. Bingham, H. Srikanth, N. H. Hur, S. C. Yu, Tricritical point and critical exponents of La0.7Ca0.3-xSrxMnO3 (x = 0, 0.05, 0.1, 0.2, 0.25) single crystals, Journal of Alloys and Compounds, 508 (2010) 238 – 244. https://doi.org/10.1016/j.jallcom.2010.07.223
[14] T.-L. Phan, Q.T. Tran, P.Q. Thanh, P.D.H. Yen, T.D. Thanh, S.C. Yu, Critical behavior of La0.7Ca0.3Mn1−xNixO3 manganites exhibiting the crossover of first- and second-order phase transitions, Solid State Communications, 184 (2014) 40-46. https://doi.org/10.1016/j.ssc.2013.12.032
[15] E. Bucher and W. Sitte, Defect chemical analysis of the electronic conductivity of strontium-substituted lanthanum ferrite, Solid State Ionics, 173 (2004) 23-28. https://doi.org/10.1016/j.ssi.2004.07.047
[16] S. P. Simner, J. F. Bonnett, N. L. Canfield, K. D. Meinhardt, J. P. Shelton, V. L. Sprenkle, and J. W. Stevenson, Development of lanthanum ferrite SOFC cathodes, Journal of Power Sources, 113 (2003) 1-10. https://doi.org/10.1016/S0378-7753(02)00455-X
[17] S. Tanasescu, N. D. Totir, D. I. Marchidan, and A. Turcanu, The influence of compositional variables on the thermodynamic properties of lanthanum strontium ferrite manganites and lanthanum strontium manganites, Materials Research Bulletin, 32 (1997) 915-923. https://doi.org/10.1016/S0025-5408(97)00054-8
[18] K. Yan, X. Fu, and Y. Cui, Influence of stoichiometric ratio and Mn-doping on the surface morphology and dielectric properties of perovskite (La,Sr)FeO3 films, Journal of Inorganic and Organometallic Polymers and Materials, 22 (2012) 59-63. https://doi.org/10.1007/s10904-011-9567-6
[19] M. Paraskevopoulos, F. Mayr, J. Hemberger, A. Loidl, R. Heichele, D. Maurer, V. Müller, A. Mukhin, A. Balbashov, Magnetic properties and the phase diagram of La1-xSrxMnO3 for x ≤ 0.2, Journal of Physics: Condensed Matter, 12 (2000) 3993-4011. https://doi.org/10.1088/0953-8984/12/17/307
[20] E. Dixon, J. Hadermann, M.A. Hayward, Structures and Magnetism of La1–xSrxMnO3–(0.5+x)/2 (0.67 ≤ x ≤ 1) Phases, Chemistry of Materials, 24 (2012) 1486-1495. https://doi.org/10.1021/cm300199b
[21] A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Insulator-metal transition and giant magnetoresistance in La1−xSrxMnO3, Physical Review B, 51 (1995) 14103-14109. https://doi.org/10.1103/PhysRevB.51.14103
[22] N. Chau, H. N. Nhat, N. H. Luong, D. L. Minh, N. D. Tho, N. N. Chau, Structure, magnetic, magnetocaloric and magnetoresistance properties of La1-xPbxMnO3 perovskite, Physica B: Condensed Matter, 327 (2003) 270-278. https://doi.org/10.1016/S0921-4526(02)01759-3
[23] N. H. Luong, D. T. Hanh, N. Chau, N. D. Tho and T. D. Hiep, Properties of perovskites La1-xCdxMnO3, Journal of Magnetism and Magnetic Materials, 290-291 (1) (2005) 690-693. https://doi.org/10.1016/j.jmmm.2004.11.338
[24] G. H. Jonker, Magnetic compounds with perovskite structure IV Conducting and non-conducting compounds, Physica, 20 (1956) 707-722. https://doi.org/10.1016/S0031-8914(56)90023-4
[25] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica, A32 (1976) 751-767. https://doi.org/10.1107/S0567739476001551
[26] J. Mira, J. Rivas, L. E. Hueso, F. Rivadulla, M. A. Lopez Quintela, Drop of magnetocaloric effect related to the change from first- to second-order magnetic phase transition in La2/3(Ca1−xSrx)1/3MnO3, Journal of Applied Physics, 91 (2002) 8903-8907. https://doi.org/10.1063/1.1451892
[27] J.Z. Sun, W.J. Gallagher, P.R. Duncombe, L. Krusin-Elbaum, R.A. Altman, A. Gupta, Y. Lu, G.Q. Gong, G. Xiao, Observation of large low‐field magnetoresistance in trilayer perpendicular transport devices made using doped manganate perovskites, Applied Physics Letter, 69 (1996) 3266-3271. https://doi.org/10.1063/1.118031
[28] S. Kallel, N. Kallel, O. Peña, M. Oumezzine, Large magnetocaloric effect in Ti-modified La0.7Sr0.3MnO3 perovskite, Materials Letters, 64 (2010) 1045-1048. https://doi.org/10.1016/j.matlet.2010.02.005
[29] N. A. Viglin, S. V. Naumov, Y. M. Mukovskii, A Magnetic resonance study of La1−xSrxMnO3 manganites, Physics of the Solid State, 43 (2001) 1855–1863. https://doi.org/10.1134/1.1410634
[30] A. S. Erchidi Elyacoubi, R. Masrour, A. Jabar, Magnetocaloric effect and magnetic properties in SmFe1-xMnxO3 perovskite: Monte Carlo simulations, Solid State Communications, 271 (2018) 39-43. https://doi.org/10.1016/j.ssc.2017.12.015
[31] R. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, E. K. Hlil, Monte Carlo simulation study of magnetocaloric effect in NdMnO3 perovskite, Journal of Magnetism and Magnetic Materials, 401 (2016) 91-95. https://doi.org/10.1016/j.jmmm.2015.10.019
[32] R. Masrour, A. Jabar, H. Khlif, F. Ben Jemaa, M. Ellouze, E. K. Hlil, Experiment, mean field theory and Monte Carlo simulations of the magnetocaloric effect in La0.67Ba0.22Sr0.11MnO3 compound, Solid State Communications, 268 (2017) 64-69. https://doi.org/10.1016/j.ssc.2017.10.003
[33] A. S. Erchidi Elyacoubi, R. Masrour, A. Jabar, M. Ellouze, E. K. Hill, Magnetic properties and magnetocaloric effect in double Sr2FeMoO6 perovskites, Materials Research Bulletin, 99 (2018) 132-135. https://doi.org/10.1016/j.materresbull.2017.10.037
[34] H. M. Rietveld, A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography, 2 (1969) 65-71. https://doi.org/10.1107/S0021889869006558
[35] P. A. Joy, C. R. Sankar, S. K. Date, The limiting value of x in the ferromagnetic compositions La1-xMnO3, Journal of Physics: Condensed Matter, 14 (2002) L663-L669. https://doi.org/10.1088/0953-8984/14/39/104
[36] A. G. Mostafa, E. K. Abdel-Khalek, W. M. Daoush, S. F. Moustfa, Study of some co-precipitated manganite perovskite samples doped iron, Journal of Magnetism and Magnetic Materials, 320 (2008) 3356-3360. https://doi.org/10.1016/j.jmmm.2008.07.025
[37] P. Schiffer, A.P. Ramírez, W. Bao, S.-W. Cheong, Low Temperature Magnetoresistance and the Magnetic Phase Diagram of La1−xCaxMnO3, Physical Review Letters, 75 (1995) 3336-3339. https://doi.org/10.1103/PhysRevLett.75.3336
[38] N. Kallel, M. Oumezzine, H. Vincent, Neutron powder diffraction study of structural and magnetic structure of La0.7Sr0.3Mn1−xTixO3 (x = 0, 0.10, 0.20, and 0.30), Journal of Magnetism and Magnetic Materials, 320 (2008) 1810-1816. https://doi.org/10.1016/j.jmmm.2008.02.106
[39] A. Guinier. in: X. Dunod (Ed.), Théorie et Technique de la Radiocristallographie, 3rd ed., 482 (1964).
[40] M. Ellouze, W. Boujelben, A. Cheikhrouhou, H. Fuess, R. Madar, Vacancy effects on the crystallographic and magnetic properties in lacunar Pr0.7Ba0.3-xMnO3 oxides, Solid State Communications, 124 (2002) 125-130. https://doi.org/10.1016/S0038-1098(02)00482-9
[41] J. Gutiérrez, A. Peña, J. M. Barandiarán, J. L. Pizarro, T. Hernández, L. Lezama, M. Insausti et T. Rojo, Structural and magnetic properties of La0.7Pb0.3(Mn1−xFex)O3 (0<~x<~0.3) giant magnetoresistance perovskites, Physical Review B, 61 (2000) 9028-9035. https://doi.org/10.1103/PhysRevB.61.9028 [42] K. H. Ahn, X. W. Wu, K. Liu, C. L. Chien, Magnetic properties and colossal magnetoresistance of La(Ca)MnO3 materials doped with Fe, Physical Review B, 54 (1996) 15299- 15302. https://doi.org/10.1103/PhysRevB.54.15299 [43] Y. L. Chang, Q. Huang, C. K. Ong, Effect of Fe doping on the magnetotransport properties in Nd0.67Sr0.33MnO3Nd0.67Sr0.33MnO3 manganese oxides, Journal of Applied Physics, 91 (2002) 789-793. https://doi.org/10.1063/1.1421044 [44] M. Baazaoui, S. Zemni, M. Boudard, H. Rahmouni, A. Gasmi, A. Selmi, M. Oumezzine. Magnetic and electrical behaviour of La0.67Ba0.33Mn1−xFexO3 perovskites, Materials Letters, 63 (2009) 2167-2170. https://doi.org/10.1016/j.matlet.2009.07.019 [45] N. Kallel, Ben S. Abdelkhalek, S. Kallel, O. Péna, M. Oumezzine, Structural and magnetic properties of (La0.70-xYx)Ba0.30Mn1-xFexO3 perovskites simultaneously doped on A and B sites (0.0 ≤ x ≤ 0.30) Journal of Alloys and Compounds, 501 (2010) 30-36. https://doi.org/10.1016/j.jallcom.2010.04.073 [46] W. Chérif, M. Ellouze, A.-F. Lehlooh, F. Elhalouani, Structure, ferromagnetism and magnetotransport properties of nanopowders of Pr0.67Ca0.33FexMn1-xO3 manganites oxide prepared by sol–gel method, Journal of Alloys and Compounds, 543 (2012) 152-158. https://doi.org/10.1016/j.jallcom.2012.06.014 [47] J. M. D. Coey, M. Viret, S. Von Molnar, Mixed-valence manganites, Advances in Physics, 48 (1999)167-293. https://doi.org/10.1080/000187399243455 [48] M. R. Said, Y. A Hamam, I. Abu-Aljarayesh, S. Mahmood, Critical exponents of (Fe,Mn)3Si, Journal of Magnetism and Magnetic Materials, 195 (1999) 679-686. https://doi.org/10.1016/S0304-8853(99)00285-1 [49] K. Ghosh, C. J. Lobb, R. L. Greene, S. G. Karabashev, D.A. Shulyatev, A. A. Arsenov, Y. Mukovskii, Critical phenomena in the double-Exchange ferromagnet La0.7Sr0.3MnO3, Physical Review Letters, 81 (1998) 4740-4743. https://doi.org/10.1103/PhysRevLett.81.4740 [50] Y. Motome, N. Furukawa, Critical phenomena of ferromagnetic transition in double-exchange systems, Journal of Physical Society of Japan, 70 (2001) 1487-1490. https://doi.org/10.1143/JPSJ.70.1487 [51] P. Zhang, P. Lampen, T. L. Phan, S. C. Yu, T. D. Thanh, N. H. Dan, V. D. Lam, H. Srikanth, M. H. Phan, Influence of magnetic field on critical behavior near a first order transition in optimally doped manganites: The case of La1-xCaxMnO3 (0.2≤x≤0.4), Journal of Magnetism and Magnetic Materials, 348 (2013) 146-153. https://doi.org/10.1016/j.jmmm.2013.08.025 [52] P.W. Anderson, H. Hasegawa, Considerations on double exchange, Physical Review, 100 (1955) 575-681. https://doi.org/10.1103/PhysRev.100.675 [53] H E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University Press (1971), London and New York. [54] C. Martin, A. Maignan, M. Hervieu, B. Raveau, Magnetic phase diagrams of L1−xAxMnO3 manganites (L = Pr, Sm, A = Ca, Sr), Physical Review B, 60 (1999) 12191-12199. https://doi.org/10.1103/PhysRevB.60.12191 [55] J. Fan, B. Hong, L. Zhang, Y. Shi, W. Tong, L. Ling, L. Pi, Y. Zhang, Heisenberg-like ferromagnetism and percolative conductivity in the half-doped manganite Nd0.5Ca0.25Sr0.25MnO3, Journal of Magnetism and Magnetic Materials, 322 (2010) 3692-3695. https://doi.org/10.1016/j.jmmm.2010.07.027 [56] N. Moutis, I. Panagiotopoulos, M. Pissas, D. Niarxhos, Structural and magnetic properties of La0.67(BaxCa1−x)0.33MnO3 perovskites (0<~x<~1), Physical Review B, 59 (1999) 1129-1133. https://doi.org/10.1103/PhysRevB.59.1129 [57] T. l. Phan, P. Q. Thanh, N. H. Sinh, K. W. Lee, S.C. Yu, Critical behavior and magnetic entropy change in La0.7Ca0.3Mn0.9Zn0.1O3 perovskite manganite, Current Applied Physics, 11 (2011) 830-833. https://doi.org/10.1016/j.cap.2010.12.002 [58] J. C. Debnath, P. Shamba, A. M. Strydom, J. L. Wang and S. X. Dou, Investigation of the critical behavior in Mn0.94Nb0.06CoGe alloy by using the field dependence of magnetic entropy change, Journal of Applied Physics, 113 (2013) 0939021-0939025. https://doi.org/10.1063/1.4794100 [59] B. K. Banerjee, On a generalised approach to first and second order magnetic transitions, Physics Letters, 12 (1964) 16-17. https://doi.org/10.1016/0031-9163(64)91158-8 [60] A. Arrott, J. E. Noakes, Approximate equation of state for nickel near its critical temperature, Physical Review Letters, 19 (1967) 786-789. https://doi.org/10.1103/PhysRevLett.19.786 [64] A.Omri, A. Tozri, M. Bejar, E. Dhahri, E. K. Hlil, Critical behavior in Ga-doped manganites La0.75(Sr,Ca)0.25Mn1−xGaxO3 (0≤x≤0.1), Journal of Magnetism and Magnetic Materials, 324 (2012) 3122-3128. https://doi.org/10.1016/j.jmmm.2012.05.013 [65] M. Baazaoui, S. Zemni, M. Boudard, H. Rahmouni, A. Gasmi, A. Selmi, M. Oumezzin, Magnetic and electrical behaviour of La0.67Ba0.33Mn1-ₓFexO3 perovskites, The International Journal of Nanoelectronics and Materials, 3(2010) 23-26. https://doi.org/10.1016/j.matlet.2009.07.019 [66] S. M. Yusuf, J. M. De Teresa, P. A. Algarabel, J. Blasco, M. R. Ibarra, A. Kumar, C. Ritter, Nature of the magnetic ordering for small mean-size and large-size mismatch of A-site cations in CMR manganites, Physica B, 401 (2006) 385–386. https://doi.org/10.1016/j.physb.2006.05.083 [67] M.E. Fisher, S-K. Ma, B. G. Nickel, Critical Exponents for Long-Range Interactions, Physical Review Letters, 29 (1972) 917-920. https://doi.org/10.1103/PhysRevLett.29.917 [68] S. Ghodhbane, A. Dhahri, N. Dhahri, E. K. Hlil, J. Dhahri, M. Alhabradi, M. Zaidi, Critical behavior in Fe-doped manganites La0.8Ba0.2Mn1−xFexO3 (x = 0.15 and x = 0.2), Journal of Alloys and Compounds, 580 (2013) 558-563. https://doi.org/10.1016/j.jallcom.2013.06.181 [69] N.V. Khiem, L.V. Bau, Critical exponents for the ferromagnetic-paramagnetic transition in La0.7Sr0.3Mn0.8Ti0.2O3, Journal of the Korean Physical Society, 52(2008) 1518-1521. https://doi.org/10.3938/jkps.52.1518 [70] F. Ben Jemaa, S. H. Mahmood, M. Ellouze, E. K. Hlil, F. Halouani, Critical behavior in Fe-doped manganites La0.67Ba0.22Sr0.11Mn1−xFexO3 (0 ≤ x ≤ 0.2, Journal of Materials Science, 49 (2014) 6883-4887. https://doi.org/10.1007/s10853-014-8390-1 [71] N. K. Singh, K. G. Suresh, A. K. Nigam, Itinerant electron metamagnetism and magnetocaloric effect in Dy(Co,Si)2, Solid State Communications, 127 (2003) 373-377. https://doi.org/10.1016/S0038-1098(03)00441-1 [72] R. D. McMichael, J. J. Ritter, R. D. Shull, Enhanced magnetocaloric effect in Gd3Ga5−xFexO12, Journal of Applied Physics, 73 (1993) 6946-4650. https://doi.org/10.1063/1.352443 [73] P. Nisha, S. Savitha Pillai, A. Darbandi, M. Varma, K.G. Suresh, H. Hahn, Critical behaviour and magnetocaloric effect of nano crystalline La0.67Ca0.33Mn1−xFexO3 (x = 0.05, 0.2) synthesized by nebulized spray pyrolysis, Journal of Materials Chemistry and Physics, 136 (2012) 74-74. https://doi.org/10.1016/j.matchemphys.2012.06.029 [74] S. Tapas, I. Das, S. Banerjee, Magnetocaloric effect in Ho5Pd2: Evidence of large cooling power, Applied Physics Letters, 91(2007) 082511-082515. https://doi.org/10.1063/1.2775050 [75] M.H. Phan, S. C. Yu, Review of the magnetocaloric effect in manganite materials, Journal of Magnetism and Magnetic Materials, 308 (2007) 325-340. https://doi.org/10.1016/j.jmmm.2006.07.025 [76] J. S. Lee, Evaluation of the magnetocaloric effect from magnetization and heat capacity data, Physica Status Solidi B, 7 (2004) 1765 – 1768. https://doi.org/10.1002/pssb.200304685 [77] F. Ben Jemaa, S. Mahmood, M. Ellouze, E. K. Hlil, F. Halouani, I. Bsoul, M. Awawdeh, Structural, magnetic and magnetocaloric properties of La0.67Ba0.22Sr0.11Mn1− xFexO3 nanopowders, Solid State Sciences, 37 (2014) 121-130. https://doi.org/10.1016/j.solidstatesciences.2014.09.004 [78] W. Zhong, W. Cheng, C. T. Au, Y. W. Du, Dependence of the magnetocaloric effect on oxygen stoichiometry in polycrystalline La2/3Ba1/3MnO3–δ, Journal of Magnetism and Magnetic Materials, 261 (2003) 238-243. https://doi.org/10.1016/S0304-8853(02)01479-8 [79] X. Bohigas, J. Tejada, E. D. Barco, X. X. Zhang, M. Sales, Tunable magnetocaloric effect in ceramic perovskites, Applied Physics Letters, 73 (1998) 390-394. https://doi.org/10.1063/1.121844