Graphene-Metal Modified Electrochemical Sensors for Toxic Chemicals
S. Vinodhal, L. Vidhya, T. Ramya, R. Jeba Beula, P. Jegathambal
The extent of amplified wastes produced and discharged into the environment contains wide variety of libelous chemicals, contaminants and toxic substances which are carcinogenic in nature. Toxic chemicals require special consideration in view of the risks posed to ecosystem. Comprehensive investigations on development of diverse variety of sensing materials are versatile and highly adaptive and have proven to be promising. A new class of electrochemical sensors has emerged where chemical functionalisation, hybridisation have led to improved performance, stability or versatility. Graphene which is a novel, fascinating type of nanocarbon possess positive contribution to the electrode properties and exhibits beneficial behaviour for a wide variety of electrochemical applications. Graphene based metal frameworks have received great interest and opened new gates in scientific communities due to their enhanced physiochemical properties, excellent stability, higher flexibility, and very good electrical conductivity. Graphene metal hybrid electrochemical sensors lay an enhanced platform for electro analytical applications as it effectively accelerates the transfer of electrons which provides a fast and highly sensitive current response. Owing to the enhanced electronic transport property and high electrocatalytic activity of graphene, the electrochemical reactions of analyte are greatly promoted on graphene film resulting in enhanced voltammetric response. This chapter discloses the advances in the field of graphene metal modified electrochemical sensors with particular focus on toxic chemicals. The main emphasis of the chapter is on the electrochemical sensing application, summarizing the advantages, disadvantages, and challenges offered in the field.
Keywords
Graphene, Modified Electrode, Toxic Chemicals, Electrochemical Sensors
Published online 8/30/2020, 34 pages
Citation: S. Vinodhal, L. Vidhya, T. Ramya, R. Jeba Beula, P. Jegathambal, Graphene-Metal Modified Electrochemical Sensors for Toxic Chemicals, Materials Research Foundations, Vol. 82, pp 91-124, 2020
DOI: https://doi.org/10.21741/9781644900956-4
Part of the book on Graphene-Based Electrochemical Sensors for Toxic Chemicals
References
[1] Hazrat Ali, Ezzat Khan, Ikram Ilahi Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation, Journal of Chemistry, Volume 2019, Article ID 6730305, 14 pages https://doi.org/10.1155/2019/6730305
[2] Vhahangwele Masindi and Khathutshelo L. Muedi, Environmental Contamination by Heavy Metals, 2018. https://doi.org/10.5772/intechopen.76082
[3] Md Ashfaque Hossain Khan, Mulpuri V Rao, Quiliang Li, Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO2, SO2 and H2S, Sensors, 19(4), 905, 2019, https://doi.org/10.3390/s19040905
[4] Yang G., Zhu C., Du D., Zhu J., Lin Y, Graphene like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine. Nanoscale 7(34), (2015), 14217–14231. https://doi.org/10.1039/C5NR03398E
[5] Varghese S.S., Lonkar S., Singh K., Swaminathan S., Abdala A.: Recent advances in graphene based gas sensors, Sensors Actuators B Chem. 218, (2015), 160–183. https://doi.org/10.1016/j.snb.2015.04.062
[6] Mao S., Lu G., Chen J.: Nanocarbon-based gas sensors: progress and challenges. J. Mat. Chem. A, 2 (16), (2014), 5573–5579. https://doi.org/10.1039/c3ta13823b
[7] Xu M., Liang T., Shi M., Chen H. Graphene-like two-dimensional materials. Chem. Rev. 113 (5), (2013), 3766–3798. https://doi.org/10.1021/cr300263a
[8] Kostarelos K., Novoselov K.S. Graphene devices for life. Nat. Nanotechnol. 9(10), (2014), 744–745. https://doi.org/10.1038/nnano.2014.224
[9] Cheng Z., Li Q., Li Z., Zhou Q., and Fang Y. Suspended graphene sensors with improved signal and reduced noise. Nano Lett. 10, (2010), 1864–1868. https://doi.org/10.1021/nl100633g
[10] Ohno, Y., Maehashi, K., and Matsumoto, K. Label-free biosensors based on aptamer-modified graphene field-effect transistors. J. Am. Chem. Soc. 132, (2010), 18012–18013. https://doi.org/10.1021/ja108127r
[11] Wang X., Zhang X., Electrochemical co-reduction synthesis of graphene/nano-gold composites and its application to electrochemical glucose biosensor. Electrochem. Acta 112, (2013), 774–782. https://doi.org/10.1016/j.electacta.2013.09.036
[12] Urbanova, V., Magro, M., Gedanken, A., Baratella, D., Vianello, F., Zboril, R.: Nanocrystalline iron oxides, composites, and related materials as a platform for electrochemical, magnetic, and chemical biosensors. Chem. Mater. 26(23), (2014), 6653–6673. https://doi.org/10.1021/cm500364x
[13] N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang and J. Chen, One- Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite, Adv. Funct. Mater., 18,2008, 1518–1525. https://doi.org/10.1002/adfm.200700797
[14] K. S. Subrahmanyam, L. S. Panchakarla, A. Govindaraj and C. N. R. Rao, Simple Method of Preparing Graphene Flakes by an Arc-Discharge Method, J. Phys. Chem. C, 113, 2009, 4257–4259. https://doi.org/10.1021/jp900791y
[15] Z.-S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang and H.-M. Cheng, Synthesis of Graphene Sheets with High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation, ACS Nano, 3, 2009, 411–417. https://doi.org/10.1021/nn900020u
[16] X. Wang, G. Sun, P. Routh, D.-H. Kim, W. Huang and P. Chen, Heteroatom-Doped Graphene Materials: Syntheses, Properties and Applications, Chem. Soc. Rev., 43, 2014, 7067–7098. https://doi.org/10.1039/C4CS00141A
[17] Huang, K.-J., Li, J., Wu, Y.-Y., Liu, Y.-M.: Amperometric immunobiosensor for α-fetoprotein using Au nanoparticles/chitosan/TiO2–graphene composite based platform. Bioelectrochemistry 90, (2013) 18–23. https://doi.org/10.1016/j.bioelechem.2012.10.005
[18] Lepinay, S., Staff, A., Ianoul, A., Albert, J, Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles. Biosens. Bioelectron. 52, (2014) 337–344. https://doi.org/10.1016/j.bios.2013.08.058
[19] Devi, R.V., Doble, M., Verma, R.S.: Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosens. Bioelectron. 68, (2015), 688–698. https://doi.org/10.1016/j.bios.2015.01.066
[20] Yusoff, N., Pandikumar, A., Ramaraj, R., Lim, H.N., Huang, N.M.: Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchim. Acta 182, (2015), (13–14), 2091–2114. https://doi.org/10.1007/s00604-015-1609-2
[21] Yola, M.L., Eren, T., Atar, N.: A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: application to selective determination of tyrosine in milk. Sens. Actuators B Chem. 210, (2015), 149–157. https://doi.org/10.1016/j.snb.2014.12.098
[22] Gotti, G., Fajerwerg, K., Evrard, D., Gros, P.: Electrodeposited gold nanoparticles on glassy carbon: correlation between nanoparticles characteristics and oxygen reduction kinetics in neutral media. Electrochim. Acta 128, (2014), 412–419. https://doi.org/10.1016/j.electacta.2013.10.172
[23] Sabury, S., Kazemi, S.H., Sharif, F.: Graphene–gold nanoparticle composite: application as a good scaffold for construction of glucose oxidase biosensor. Mat. Sci. Eng. C 49, (2015) 297–304. https://doi.org/10.1016/j.msec.2015.01.018
[24] Xue, C., Gao, M., Xue, Y., Zhu, L., Dai, L., Urbas, A., Li, Q.: Building 3D layer-by-layer graphene–gold nanoparticle hybrid architecture with tunable interlayer distance. J. Phys. Chem. C 118 (28), (2014), 15332–15338. https://doi.org/10.1021/jp504553w
[25] Dutta, S., Ray, C., Mallick, S., Sarkar, S., Roy, A., Pal, T.: Au@ Pd core–shell nanoparticles-decorated reduced graphene oxide: a highly sensitive and selective platform for electrochemical detection of hydrazine. RSC Adv. 5(64), (2015), 51690–51700. https://doi.org/10.1039/C5RA04817F
[26] Henry, A.L., Plumejeau, S., Heux, L., Louvain, N., Monconduit, L., Stievano, L., Boury, B.: Conversion of nanocellulose aerogel into TiO2 and TiO2@C nano-thorns by direct anhydrous mineralization with TiCl4. Evaluation of electrochemical properties in Li batteries. ACS Appl. Mater. Interfaces 7(27), (2015), 14584–14592. https://doi.org/10.1021/acsami.5b00299
[27] Ma, H., Sun, J., Zhang, Y., Bian, C., Xia, S., Zhen, T.: Label-free immunosensor based on one-step electrodeposition of chitosan-gold nanoparticles biocompatible film on Au microelectrode for determination of aflatoxin B1 in maize. Biosens. Bioelectron. 80, (2016), 222–229. https://doi.org/10.1016/j.bios.2016.01.063
[28] Pasang, T., Namratha, K., Parvin, T., Ranganathaiah, C., Byrappa, K.: Tuning of band gap in TiO2 and ZnO nanoparticles by selective doping for photocatalytic applications. Mat. Res. Innov. 19(1), (2015), 73–80. https://doi.org/10.1179/1433075X14Y.0000000217
[29] Kapilashrami, M., Zhang, Y., Liu, Y.-S., Hagfeldt, A., Guo, J.: Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem. Rev. 114 (19), (2014), 9662–9707. https://doi.org/10.1021/cr5000893
[30] Ghosh, S., Das, A.: Modified titanium oxide (TiO2) nanocomposites and its array of applications: a review. Toxicol. Environ. Chem. 97(5), (2015), 491–514. https://doi.org/10.1080/02772248.2015.1052204
[31] Liu, J., Song, K., van Aken, P.A., Maier, J., Yu, Y.: Self-supported Li4Ti5O12–C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. Nano Lett. 14(5), (2014), 2597–2603. https://doi.org/10.1021/nl5004174
[32] Madian, M., Giebeler, L., Klose, M., Jaumann, T., Uhlemann, M., Gebert, A., Oswald, S., Ismail, N., Eychmuller, A., Eckert, J.: Self-organized TiO2/CoO nanotubes as potential anode materials for lithium ion batteries. ACS Sustain. Chem. Eng. 3(5), (2015), 909–919. https://doi.org/10.1021/acssuschemeng.5b00026
[33] Kim, S.-J., Cho, Y.K., Seok, J., Lee, N.-S., Son, B., Lee, J.W., Baik, J.M., Lee, C., Lee, Y., Kim, M.H.: Highly branched RuO2 nanoneedles on electrospun TiO2 nanofibers as an efficient electrocatalytic platform. ACS Appl. Mater. Interfaces. 7(28), (2015), 15321–15330. https://doi.org/10.1021/acsami.5b03178
[34] Ahmad, K., Mohammad, A., Rajak, R., Mobin, S.M.: Construction of TiO2 nanosheets modified glassy carbon electrode (GCE/TiO2) for the detection of hydrazine. Mater. Res. Express 3(7), (2016), 074005. https://doi.org/10.1088/2053-1591/3/7/074005
[35] Zhang, Y., Bai, X., Wang, X., Shiu, K.-K., Zhu, Y., Jiang, H.: Highly sensitive graphene–Pt nanocomposites amperometric biosensor and its application in living cell H2O2 detection. Anal. Chem. 86(19), (2014), 9459–9465. https://doi.org/10.1021/ac5009699
[36] Leonardi, S.G., Aloisio, D., Donato, N., Russo, P.A., Ferro, M.C., Pinna, N., Neri, G.: Amperometric sensing of H2O2 using Pt–TiO2/reduced graphene oxide nanocomposites. ChemElectroChem 1(3), (2014), 617–624. https://doi.org/10.1002/celc.201300106
[37] Hong, J., Zhao, Y.-X., Xiao, B.-L., Moosavi-Movahedi, A.A., Ghourchian, H., Sheibani, N.: Direct electrochemistry of hemoglobin immobilized on a functionalized multi-walled carbon nanotubes and gold nanoparticles nanocomplex-modified glassy carbon electrode. Sensors 13(7), (2013), 8595–8611. https://doi.org/10.3390/s130708595
[38] Zhu, J., Liu, X., Wang, X., Huo, X., Yan, R.: Preparation of polyaniline–TiO2 nanotube composite for the development of electrochemical biosensors. Sens. Actuators B Chem. 221, (2015), 450–457. https://doi.org/10.1016/j.snb.2015.06.131
[39] Wang, J.T.-W., Ball, J.M., Barea, E.M., Abate, A., Alexander-Webber, J.A., Huang, J., Saliba, M., Mora-Sero, I., Bisquert, J., Snaith, H.J.: Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14(2), (2013), 724–730. https://doi.org/10.1021/nl403997a
[40] Huang, K.-J., Wang, L., Li, J., Gan, T., Liu, Y.-M.: Glassy carbon electrode modified with glucose oxidase–graphene–nano-copper composite film for glucose sensing. Measurement 46(1), (2013), 378–383. https://doi.org/10.1016/j.measurement.2012.07.012
[41] Yang, N., Liu, Y., Wen, H., Tang, Z., Zhao, H., Li, Y., Wang, D.: Photocatalytic properties of graphdiyne and graphene modified TiO2: from theory to experiment. ACS Nano 7(2), (2013), 1504–1512. https://doi.org/10.1021/nn305288z
[42] Feng, C., Xu, G., Liu, H., Lv, J., Zheng, Z., Wu, Y.: Facile fabrication of Pt/graphene/TiO2 NTAs based enzyme sensor for glucose detection. J. Electro chem. Soc. 161(1), (2014), B1–B8. https://doi.org/10.1149/2.025401jes
[43] Iqbal, A., Iqbal, K., Li, B., Gong, D., Qin, W.: Recent advances in iron nanoparticles: preparation, properties, biological and environmental application. J. Nanosci. Nanotechnol. 17(7), (2017), 4386–4409. https://doi.org/10.1166/jnn.2017.14196
[44] Chatterjee, K., Sarkar, S., Rao, K.J., Paria, S.: Core/shell nanoparticles in biomedical applications. Adv. Colloid Interfaces Sci. 209, (2014) 8–39. https://doi.org/10.1016/j.cis.2013.12.008
[45] Yang, C., Bian, X., Qin, J., Zhao, X., Zhang, K., Bai, Y.: An investigation of a viscosity-magnetic field hysteretic effect in nano-ferrofluid. J. Mol. Liq. 196, (2014), 357–362. https://doi.org/10.1016/j.molliq.2014.04.021
[46] Zhao, L., Gao, M., Yue, W., Jiang, Y., Wang, Y., Ren, Y., Hu, F.: Sandwich-structured graphene–Fe3O4@Carbon nanocomposites for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 7(18), (2015), 9709–9715. https://doi.org/10.1021/acsami.5b01503
[47] Yadav, R.S., Sharma, V., Kuanr, B.K.: Magnetic nanoparticles; synthesis, characterization and application as contrast agent in magnetic resonance imaging (MRI). Adv. Sci. Lett. 20(7–9), (2014), 1548–1550. https://doi.org/10.1166/asl.2014.5562
[48] Gan, Q., Zhu, J., Yuan, Y., Liu, C.: pH-responsive Fe3O4 nanoparticles-capped mesoporous silica supports for protein delivery. J. Nanosci. Nanotechnol. 16(6), (2016), 5470–5479. https://doi.org/10.1166/jnn.2016.11744
[49] Shen, M., Wu, C., Lin, C., Fan, G., Jin, Y., Zhang, Z., Li, C., Jia, W.: Facile solvothermal synthesis of mesostructured chitosan-coated Fe3O4 nanoparticles and its further modification with folic acid for improving targeted drug delivery. NANO 9(7), (2014), 1450081. https://doi.org/10.1142/S1793292014500817
[50] Nasrollahzadeh, M., Sajadi, S.M., Rostami-Vartooni, A., Khalaj, M.: Green synthesis of Pd/Fe3O4 nanoparticles using Euphorbia condylocarpa M. bieb root extract and their catalytic applications as magnetically recoverable and stable recyclable catalysts for the phosphine-free Sonogashira and Suzuki coupling reactions. J. Mol. Catal. A Chem. 396, (2015), 31–39. https://doi.org/10.1016/j.molcata.2014.09.029
[51] Gu, T., Wang, J., Xia, H., Wang, S., Yu, X.: Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in a DNA/chitosan–Fe3O4 magnetic nanoparticle bio-complex film. Materials 7(2), (2014), 1069–1083. https://doi.org/10.3390/ma7021069
[52] Zhu, S., Guo, J., Dong, J., Cui, Z., Lu, T., Zhu, C., Zhang, D., Ma, J.: Sonochemical fabrication of Fe3O4 nanoparticles on reduced graphene oxide for biosensors. Ultrason. Sonochem. 20(3), (2013), 872–880. https://doi.org/10.1016/j.ultsonch.2012.12.001
[53] Zhou, K., Zhu, Y., Yang, X., Li, C.: Preparation and application of mediator-free H2O2 biosensors of graphene–Fe3O4 composites. Electroanalysis 23(4), (2011), 862–869. https://doi.org/10.1002/elan.201000629
[54] Hsieh, C.-T., Lin, J.-Y., Mo, C.-Y.: Improved storage capacity and rate capability of Fe3O4–graphene anodes for lithium-ion batteries. Electrochim. Acta 58, (2011), 119–124. https://doi.org/10.1016/j.electacta.2011.09.008
[55] Wang, Y., Wei, W., Zeng, J., Liu, X., Zeng, X.: Fabrication of a copper nanoparticle/chitosan/carbon nanotube-modified glassy carbon electrode for electrochemical sensing of hydrogen peroxide and glucose. Microchim. Acta 160 (1–2), (2008), 253–260. https://doi.org/10.1007/s00604-007-0844-6
[56] Chen, Q., Zhang, L., Chen, G.: Facile preparation of graphene-copper nanoparticle composite by in situ chemical reduction for electrochemical sensing of carbohydrates. Anal. Chem. 84(1), (2012), 171–178. https://doi.org/10.1021/ac2022772
[57] Baccar, H., Ktari, T., Abdelghani, A.: Functionalized palladium nanoparticles for hydrogen peroxide biosensor. Int. J. Electrochem. 6, 4, (2011). https://doi.org/10.4061/2011/603257
[58] Rahman, M.M., Ahammad, A., Jin, J.-H., Ahn, S.J., Lee, J.-J.: A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10(5), 4855–4886 (2010). https://doi.org/10.3390/s100504855
[59] Nancy, T.E.M., Kumary, V.A.: Synergistic electrocatalytic effect of graphene/nickel hydroxide composite for the simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Electrochim. Acta 133, 233–240 (2014). https://doi.org/10.1016/j.electacta.2014.04.027
[60] Sun, W., Gong, S., Deng, Y., Li, T., Cheng, Y., Wang, W., Wang, L.: Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myoglobin biosensor. Thin Solid Films 562, 653–658 (2014). https://doi.org/10.1016/j.tsf.2014.05.002
[58] Zeng, Q., Cheng, J.-S., Liu, X.-F., Bai, H.-T., Jiang, J.-H.: Palladium nanoparticle/chitosan-grafted graphene nanocomposites for construction of a glucose biosensor. Biosens. Bioelectron. 26(8), (2011), 3456–3463. https://doi.org/10.1016/j.bios.2011.01.024
[59] C. Kotlowski, M. Larisika, P. M. Guerin, C. Kleber, T. Krober, R. Mastrogiacomo, C. Nowak, P. Pelosi, S. Sch¨utz, A. Schwaighofer and W. Knoll, Fine Discrimination of Volatile Compounds by Graphene- Immobilized Odorant-Binding Proteins, Sens. Actuators, B,2018, 256, 564–572. https://doi.org/10.1016/j.snb.2017.10.093
[60] S.-J. Choi, S.-J. Kim and I.-D. Kim, Ultrafast Optical Reduction of Graphene Oxide Sheets on Colorless Polyimide Film for Wearable Chemical Sensors, NPG Asia Mater., 2016, 8, e315. https://doi.org/10.1038/am.2016.150
[61] M. H. M. Facure, L. A. Mercante, L. H. C. Mattoso and D. S. Correa, Detection of Trace Levels of Organophosphate Pesticides Using an Electronic Tongue Based on Graphene Hybrid Nanocomposites, Talanta, 2017, 167, 59–66. https://doi.org/10.1016/j.talanta.2017.02.005
[62] K. S. Kim, J.-r. Jang, W.-S. Choe and P. J. Yoo, Electrochemical Detection of Bisphenol A with High Sensitivity and Selectivity Using Recombinant Protein- Immobilized Graphene Electrodes, Biosens. Bioelectron., 2015, 71, 214–221. https://doi.org/10.1016/j.bios.2015.04.042
[63] S. Gupta and R. Wood, Development of FRET Biosensor Based on Aptamer/Functionalized Graphene for Ultrasensitive Detection of Bisphenol A and Discrimination from Analogs, Nano-Struct. Nano-Objects, 2017, 10, 131–140. https://doi.org/10.1016/j.nanoso.2017.03.013
[64] S. Myung, A. Solanki, C. Kim, J. Park, K. S. Kim and K.-B. Lee, Graphene-Encapsulated Nanoparticle-Based Biosensor for the Selective Detection of Cancer Biomarkers, Adv. Mater., 2011, 23, 2221–2225. https://doi.org/10.1002/adma.201100014
[65] D. Khatayevich, T. Page, C. Gresswell, Y. Hayamizu, W. Grady and M. Sarikaya, Selective Detection of Target Proteins by Peptide-Enabled Graphene Biosensor, Small, 2014, 10, 1505–1513. https://doi.org/10.1002/smll.201302188
[66] S. Tomita, S. Ishihara and R. Kurita, A Multi-Fluorescent DNA/Graphene Oxide Conjugate Sensor for Signature- Based Protein Discrimination, Sensors, 2017, 17, E2194. https://doi.org/10.3390/s17102194
[67] P. Si, H. Chen, P. Kannan and D.-H. Kim, Selective and Sensitive Determination of Dopamine by Composites of Polypyrrole and Graphene Modified Electrodes, Analyst, 136, 2011, 5134–5138. https://doi.org/10.1039/c1an15772h
[68] S. Hou, M. L. Kasner, S. Su, K. Patel and R. Cuellari, Highly Sensitive and Selective Dopamine Biosensor Fabricated with Silanized Graphene, J. Phys. Chem. C, 114, 2010,14915–14921. https://doi.org/10.1021/jp1020593
[69] S. Dong, Q. Bi, C. Qiao, Y. Sun, X. Zhang, X. Lu and L. Zhao, Electrochemical Sensor for Discrimination Tyrosine Enantiomers Using Graphene Quantum Dots and BCyclodextrins Composites, Talanta, 173, 2017, 94–100. https://doi.org/10.1016/j.talanta.2017.05.045
[70] Siva Kumar Krishnan, Eric Singh, Pragya Singh, Meyya Meyyappan and Hari Singh Nalwa, A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors, Reviews, Royal Society of Chemistry, 9, 2019. https://doi.org/10.1039/C8RA09577A
[71] Sitko, R., Turek, E., Zawisza, B., Malicka, E., Talik, E., Heimann, J., et al., Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans. 42, (2013). https://doi.org/10.1039/c3dt33097d
[72] Zhao, G., Ren, X., Gao, X., Tan, X., Li, J., Chen, C., et al., Removal of Pb (II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans. 40, (2011). https://doi.org/10.1039/c1dt11005e
[73] Wang Z, Wang H, Zhang Z, Yang X, Liu G. Sensitive electrochemical determination of trace cadmium on astannum film/poly(p-aminobenzene sulfonic acid)/electrochemically reduced graphene composite modified electrode. Electrochimica Acta, 120, 2014. https://doi.org/10.1016/j.electacta.2013.12.068
[74] H. Bagheri, A. Afkhami, H. Khoshsafar, M. Rezaei, S. J. Sabounchei and M. Sarlakifar, Simultaneous Electrochemical Sensing of Thallium, Lead and Mercury Using a Novel Ionic Liquid/Graphene Modified Electrode, Anal. Chim. Acta, 870, 2015, 56–66. https://doi.org/10.1016/j.aca.2015.03.004
[75] Li J, Guo S, Zhai Y, Wang E. High-sensitivity determination of lead and cadmium based on the nafion graphene composite film. Analytica Chimica Acta 2009. https://doi.org/10.1016/j.aca.2009.07.030
[76] L. Zhu, L. Xu, B. Huang, N. Jia, L. Tan and S. Yao, Simultaneous Determination of Cd(II) and Pb(II) Using Square Wave Anodic Stripping Voltammetry at a Gold Nanoparticle-Graphene-Cysteine Composite Modified Bismuth Film Electrode, Electrochim. Acta, 2014, 115, 471–477. https://doi.org/10.1016/j.electacta.2013.10.209
[77] Shao Y, Wang J, Wu H, Liu J, Aksay I, Lin Y. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis, 22, 2010, 1027–1036. https://doi.org/10.1002/elan.200900571
[78] H. Zhang, S. Shuang, G. Wang, Y. Guo, X. Tong, P. Yang, A. Chen, C. Dong and Y. Qin, TiO2–Graphene Hybrid Nanostructures by Atomic Layer Deposition With Enhanced Electrochemical Performance for Pb(ii) and Cd(ii) Detection, RSC Adv., 5, 2015, 4343–4349. https://doi.org/10.1039/C4RA09779C
[79] Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., et al. (2006). Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196. https://doi.org/10.1126/science.1125925
[80] S. Palanisamy, R. Madhu, S.-M. Chen and S. K. Ramaraj, A Highly Sensitive and Selective Electrochemical Determination of Hg(II) Based on an Electrochemically Activated Graphite Modified Screen-Printed Carbon Electrode, Anal. Methods, 6, 2014, 8368–8373. https://doi.org/10.1039/C4AY01805B
[81] Ren Y, Yan N, Wen Q, Fan Z, Wei T, Zhang M, Ma J. Graphene/δ-MnO2 composite as adsorbent for the removal of nickel ions from waste water. Chemical Engineering Journal, 175, 2010, 1–7. https://doi.org/10.1016/j.cej.2010.08.010
[82] Chen L, Tang Y, Wang Ke, Liu C, Luo S. Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochemistry Communications 13, 2011, doi:10.1016/j.elecom.2010.11.033, 133–137. https://doi.org/10.1016/j.elecom.2010.11.033
[83] S. Almeida,A. Raposo,M. Almeida-González, and C. Carrascosa, Compr. Rev. Food Sci. Food Saf., 17, (2018), 1503. https://doi.org/10.1111/1541-4337.12388
[84] K. Varmira, M. Saed-Mocheshi, and A. R. Jalalvand, Sens. Bio-Sensing Res., 15, (2017), 17. https://doi.org/10.1016/j.sbsr.2017.07.002
[85] H. Yu, X. Feng, X. X. Chen, J. L. Qiao, X. L. gao, N. Xu, and L. J. Gao, Chinese J.Anal. Chem., 45, (2017), 713. https://doi.org/10.1016/S1872-2040(17)61014-4
[86] B. Su, H. Shao, N. Li, X. Chen, Z. Cai, and X. Chen, Talanta, 166, (2017), 126. https://doi.org/10.1016/j.talanta.2017.01.049
[87] J. Michałowicz, W. Duda, Phenols – Sources and Toxicity, Pol. J. Environ. Stud., 16(3), 2007, 347–362
[88] Guo H, Peng S, Xu J, Zhao Y, Kang X. Highly stable pyridinic nitrogen doped graphene modified electrode in simultaneous determination of hydroquinone and catechol, Sensors and Actuators B: Chemical, 193, 2014;623–629. https://doi.org/10.1016/j.snb.2013.12.018
[89] Song D, Xia J, Zhang F, Bi S, Xiang W, Wang Z, Xia L, Xia Y, Li Y, Xia L. Multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-graphene hybrid composite film for simultaneous determination of catechol and hydroquinone. Sensors and Actuators B: Chemical 206, 2015. https://doi.org/10.1016/j.snb.2014.08.084
[90] Lai T, Cai W, Dai W, Ye J. Easy processing laser reduced graphene: A green and fast sensing platform for hydroquinone and catechol simultaneous determination. Electrochemica Acta 138:48–55. https://doi.org/10.1016/j.electacta.2014.06.070
[91] Kang X, Wang J, Wu H, Liu J, Aksay I, Lin Y. A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta, 81. https://doi.org/10.1016/j.talanta.2010.01.009
[92] Zhu W, Huang H, Gao X, Ma H. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films. Materials Science and Engineering: C, 2014, 45:21–28. https://doi.org/10.1016/j.msec.2014.08.067
[93] Adhikari B, Govindhan M, Chen A. Sensitive detection of acetaminophen with graphene-based electrochemical sensor. Electrochimica Acta. DOI:10.1016/j.electacta. 2014.10.028
[94] Liu G, Chen H, Lin G, Ye P, Wang X, Jiao Y, Guo X, Wen Y, Yang H. One-step electrodeposition of graphene loaded nickel oxides nanoparticles for acetaminophen detection. Biosensors and Bioelectronics, 56:26–32. 2014, 001-005 145, (2019), 242. https://doi.org/10.1016/j.bios.2014.01.005
[95] D. Gunnell, M. Eddleston, M. R. Phillips and F. Konradsen, The Global Distribution of Fatal Pesticide Self-Poisoning: Systematic Review, BMC Public Health, 2007, 7, 357. https://doi.org/10.1186/1471-2458-7-357
[96] J. A. Hondred, J. C. Breger, N. J. Alves, S. A. Trammell, S. A. Walper, I. L. Medintz and J. C. Claussen, Printed Graphene Electrochemical Biosensors Fabricated by Inkjet Maskless Lithography for Rapid and Sensitive Detection of Organophosphates, ACS Appl. Mater. Interfaces, 10, 2018, 25–11134. https://doi.org/10.1021/acsami.7b19763
[97] L. Yang, G. Wang and Y. Liu, An Acetylcholinesterase Biosensor Based on Platinum Nanoparticles–Carboxylic Graphene–Nafion-Modified Electrode for Detection of Pesticides, Anal. Biochem., 2013, 437, 144–149. https://doi.org/10.1016/j.ab.2013.03.004
[98] L. Yang, G. Wang, Y. Liu and M. Wang, Development of a Biosensor Based on Immobilization of Acetylcholinesterase on NiO Nanoparticles–Carboxylic Graphene–Nafion Modified Electrode for Detection of Pesticides, Talanta, 2013, 113, 135–141. https://doi.org/10.1016/j.talanta.2013.03.025
[99] Q. Zhou, L. Yang, G. Wang and Y. Yang, Acetylcholinesterase Biosensor Based on SnO2 Nanoparticles–Carboxylic Graphene–Nafion Modified Electrode for Detection of Pesticides, Biosens. Bioelectron., 2013, 49, 25–31. https://doi.org/10.1016/j.bios.2013.04.037
[100] X. Tan, Q. Hu, J. Wu, X. Li, P. Li, H. Yu, X. Li and F. Lei, Electrochemical Sensor Based on Molecularly Imprinted Polymer Reduced Graphene Oxide and Gold Nanoparticles Modified Electrode for Detection of Carbofuran, Sens. Actuators, B, 2015, 220, 216–221. https://doi.org/10.1016/j.snb.2015.05.048
[101] T.Jeyapragasam, R. Saraswathi, S.-M. Chen and T.-W. Chen, Acetylcholinesterase Biosensor for the Detection of Methyl Parathion at an Electrochemically Reduced Graphene Oxide-Nafion Modified Glassy Carbon Electrode, Int. J. Electrochem. Sci., 2017, 12, 4768–4781. https://doi.org/10.20964/2017.06.77
[102] M. Chao and M. Chen, Electrochemical Determination of Phoxim in Food Samples Employing a Graphene-Modified Glassy Carbon Electrode, Food Anal. Methods, 2014, 7, 1729–1736. https://doi.org/10.1007/s12161-014-9813-y
[103] Y. Liu, G. Wang, C. Li, Q. Zhou, M. Wang and L. Yang, A Novel Acetylcholinesterase Biosensor Based on Carboxylic Graphene Coated with Silver Nanoparticles for Pesticide Detection, Mater. Sci. Eng., C, 2014, 35, 253–258. https://doi.org/10.1016/j.msec.2013.10.036
[104] Y. Zheng, Z. Liu, Y. Jing, J. Li and H. Zhan, An Acetylcholinesterase Biosensor Based on Ionic Liquid Functionalized Graphene–Gelatin-Modied Electrode for and Their Applications in Detection of Organophosphorus Pesticides in the Environment, Arch. Toxicol., 2017, 91, 109–130. Detection of Organophosphorus Pesticides in the Environment, Arch. Toxicol., 2017, 91, 109-130.
[105] Y. Yang, A. M. Asiri, D. Du and Y. Lin, Acetylcholinesterase Biosensor Based on a Gold Nanoparticle–Polypyrrole– Reduced Graphene Oxide Nanocomposite Modified Electrode for the Amperometric Detection Of Organophosphorus Pesticides, Analyst, 2014, 139, 3055– 3060. https://doi.org/10.1039/c4an00068d
[106] S. Mozneb, J.C.K. Lai, S.W. Leung, Cyanide detection by highly modified Sol-Gel biocomposite sensor, in Proceeding of the NSTI Nanotechnology Conference & Expo, Diagnostics & Imaging, Washington, D.C., 3 (3) (2015) 155-158.
[107] S. Dutta, C. Ray, S. Mallick, S. Sarkar, A. Roy, T. Pal, AAu@Pd core-shell nanoparticles- decorated reduced graphene oxide a highly sensitive and selective platform for electrochemical detection of hydrazine , Royal Society of Chemistry Advances, 5 (64) (2015) 51690-51700. https://doi.org/10.1039/C5RA04817F
[108] K. Chelladurai, K. Muthupandi, S.M. Chen, M. Ajmal Ali, P. Selvakumar, A. Rajan, P. Prakash, Green synthesized silver nanoparticles decorated on reduced graphene oxide for enhanced electrochemical sensing of nitrobenzene in waste water samples, Royal Society of Chemistry Advances, (2013), 1-3.
[109] Nurul Izrini Ikhsan, Perumal Rameshkumar, Nay Ming Huang, Controlled synthesis of reduced graphene oxide supported silver nanoparticles for selective and sensitive electrochemical detection of 4-nitrophenol. Electrochimica Acta 192, (2016), 392–399. https://doi.org/10.1016/j.electacta.2016.02.005
[110] Perumal Rameshkumar, Norazriena Yusoff, Huang Nay Ming, Mohd Shaiful Sajab, Microwave synthesis of reduced graphene oxide decorated with silver nanoparticles for electrochemical determination of 4-nitrophenol. Ceramics International 42, (2016), 18813–18820. https://doi.org/10.1016/j.ceramint.2016.09.026
[111] L. Zhu, L. Xu, B. Huang, N. Jia, L. Tan and S. Yao, Simultaneous Determination of Cd(II) and Pb(II) Using Square Wave Anodic Stripping Voltammetry at a Gold Nanoparticle-Graphene-Cysteine Composite Modified Bismuth Film Electrode, Electrochim. Acta, 2014, 115, 471– 477. https://doi.org/10.1016/j.electacta.2013.10.209
[112] H. Zhu, Y. Xu, A. Liu, N. Kong, F. Shan, W. Yang, C. J. Barrow and J. Liu, Graphene Nanodots-Encaged Porous Gold Electrode Fabricated via Ion Beam Sputtering Deposition for Electrochemical Analysis of Heavy Metal Ions, Sens. Actuators, B, 2015, 206, 592–600. https://doi.org/10.1016/j.snb.2014.10.009
[113] T. Priya, N. Dhanalakshmi and N. Thinakaran, Electrochemical Behavior of Pb (II) on a Heparin Modified Chitosan/Graphene Nanocomposite Film Coated Glassy Carbon Electrode and its Sensitive Detection, Int. J. Biol. Macromol., 2017, 104, 672–680. https://doi.org/10.1016/j.ijbiomac.2017.06.082
[114] Y. Zhang, G. M. Zeng, L. Tang, J. Chen, Y. Zhu, X. X. He and Y. He, Electrochemical Sensor Based on Electrodeposited Graphene-Au Modified Electrode and Nano Au Carrier Amplified Signal Strategy for Attomolar Mercury Detection, Anal. Chem., 2015, 87, 989–996. https://doi.org/10.1021/ac503472p
[115] L. Yang, G. Wang and Y. Liu, An Acetylcholinesterase Biosensor Based on Platinum Nanoparticles–Carboxylic Graphene–Nafion-Modified Electrode for Detection of Pesticides, Anal. Biochem., 2013, 437, 144–149. https://doi.org/10.1016/j.ab.2013.03.004
[116] Q. Zhou, L. Yang, G. Wang and Y. Yang, Acetylcholinesterase Biosensor Based on SnO2 Nanoparticles–Carboxylic Graphene–Nafion Modified Electrode for Detection of Pesticides, Biosens. Bioelectron., 2013, 49, 25–31. https://doi.org/10.1016/j.bios.2013.04.037
[117] Y. Liu, G. Wang, C. Li, Q. Zhou, M. Wang and L. Yang, A Novel Acetylcholinesterase Biosensor Based on Carboxylic Graphene Coated with Silver Nanoparticles for Pesticide Detection, Mater. Sci. Eng., C, 2014, 35, 253–258. https://doi.org/10.1016/j.msec.2013.10.036
[118] Hu S, Wang Y, Wang X, Xu L, Xiang J, Sun W. Electrochemical detection of hydroquinone with a gold nanoparticle and graphene modified carbon ionic liquid electrode. Sensors and Actuators B 2012;168:27–33. https://doi.org/10.1016/j.snb.2011.12.108
[119] Noor An’amt Mohamed, Shahid Muhammad Mehmood, Rameshkumar Perumal, Huang Nay Ming, A glassy carbon electrode modified with graphene oxide and silver nanoparticles for amperometric determination of hydrogen peroxide. Microchimica Acta 183, (2016), 911–916. https://doi.org/10.1007/s00604-015-1679-1
[120] Nurul Izrini Ikhsan, Perumal Rameshkumar, Alagarsamy Pandikumar, Muhammad Mehmood Shahid, Nay Ming Huang, Swadi Vijay Kumar, Hong Ngee Lim, Facile synthesis of graphene oxide-silver nanocomposite and its modified electrode for enhanced electrochemical detection of nitrite ions. Talanta144, (2015), 908–914. https://doi.org/10.1016/j.talanta.2015.07.050
[121] Norazriena Yusoff, Perumal Rameshkumar, Muhammad Shahid Mehmood, Alagarsamy Pandikumar, Hing Wah Lee, Nay Ming Huang, Ternary nanohybrid of reduced grapheme oxide-Nafion @ silver nanoparticles for boosting the sensor performance in non-enzymatic amperometric detection of hydrogen peroxide. Biosensors and Bioelectronics 87, (2017), 1020–1028. https://doi.org/10.1016/j.bios.2016.09.045