Graphene Modified Electrochemical Sensors for Toxic Chemicals

$30.00

Graphene Modified Electrochemical Sensors for Toxic Chemicals

T. Ramya, L. Vidhya, S. Vinodha, D. Anuradha, S. Sivanesan

Electrochemical sensing is a broad analytical field related to the generation of useful analytical information through electroactive species with a conductive surface or a functional group. Electrochemical sensors have several advantages such as cost effectiveness, high sensitivity and selectivity, applicability to a vast range of chemicals, ease of handling, functionalization and rich nature. Two key units are present in a chemical sensor, one is a receptor and another one is a transducer. An electrochemical sensor generally consists of three electrodes, namely working electrode, reference electrode and counter electrode which are associated with a potentiostat /galvanostat. The working electrode acts as receptor and is a component of the transducer as well. Electrochemical sensing is a predicting analytical area and it is known for its importance in various fields such as energy, pharmaceutical industry, environment and food. Chemical sensor leaves the analytical information about a particular quantity of certain chemical species in the surrounding environment. In this chapter we mainly focus on graphene modified electrochemical sensors for toxic chemical sensing. Also, we have focused on the graphene modified electrochemical sensors for the electrochemical detection of toxic chemicals. Graphene modified electrochemical sensors are selected based on their superior nature as compared with other sensors and also these sensors support sensing of very toxic chemical pollutants.

Keywords
Nitroaromatics, Cadmium, Bisphenol A, Organoposphate, Nanomaterials

Published online 8/30/2020, 24 pages

Citation: T. Ramya, L. Vidhya, S. Vinodha, D. Anuradha, S. Sivanesan, Graphene Modified Electrochemical Sensors for Toxic Chemicals, Materials Research Foundations, Vol. 82, pp 1-24, 2020

DOI: https://doi.org/10.21741/9781644900956-1

Part of the book on Graphene-Based Electrochemical Sensors for Toxic Chemicals

References
[1] D. A. C. Brownson, E. Banks, The electrochemistry of CVD graphene: progress and prospects, Phys. Chem. Chem. Phys. 14 (2012) 8264-8281. https://doi.org/10.1039/c2cp40225d
[2] R. G. Compton, C. E. Banks, Understanding voltammetry, world scientific, Singapore, 2007. https://doi.org/10.1142/6430
[3] E. S. Reich, Nobel document triggers debate. Nature, 468 (2010) 486-486. https://doi.org/10.1038/468486a
[4] D. A. C. Brownson, D. K. Kampouris, C. E. Banks, An overview of graphene in energy production and storage applications, J. Power Sources, 196 (2011) 4873-4885. https://doi.org/10.1016/j.jpowsour.2011.02.022
[5] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 10451-10453. https://doi.org/10.1073/pnas.0502848102
[6] D. A. C. Brownson, C. E. Banks, Graphene electrochemistry: an overview of potential applications, Analyst, 135 (2010) 2768-2778. https://doi.org/10.1039/c0an00590h
[7] Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay,Y. Lin, Graphene based electrochemical sensors and biosensors: A review, Electroanalysis (N. Y.). 22 (2010) 1027-1036. https://doi.org/10.1002/elan.200900571
[8] K. R. Ratinac, W. Yang, J. J. Gooding, P. Thordarson, F. Braet, Graphene and related materials in electrochemical sensing, Electroanalysis (N. Y.). 23 (2011) 803-826. https://doi.org/10.1002/elan.201000545
[9] X. Kang, J. Wang, H. Wu, J. Liu, I. A. Aksay, Y. Lin, A graphene-based electrochemical sensor for sensitive detection of paracetamol, Talanta. 81(2010)754-759. https://doi.org/10.1016/j.talanta.2010.01.009
[10] Richa Sharma, Joon Hyun Baik, Chrisantha J. Perera, and Michael S. Strano, anomalously large reactivity of single graphene layers and edges towards electron transfer chemistries. NanoLett. 10 (2010) 398-405. https://doi.org/10.1021/nl902741x
[11] X. Kang, J. Wang, H. Wu, J. Liu, I. A. Aksay, Y. Lin, Graphene-based electrochemical sensor for sensitive detection of paracetamol, Talanta, 81 (2010)754-759. https://doi.org/10.1016/j.talanta.2010.01.009
[12] S. Park, R. S. Ruoff, Chemical methods for the production of graphenesnat, Nanotechnol. 4 (2009) 217-224. https://doi.org/10.1038/nnano.2009.58
[13] Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, Y. Lin, Graphene based electrochemical sensors and biosensors: A review. Electroanalysis (N. Y.), 22 (2010) 1027-1036. https://doi.org/10.1002/elan.200900571
[14] D. A. C. Brownson, C. E. Banks, Graphene electrochemistry: an overview of potential applications. Analyst, 135(2010) 2768-2778. https://doi.org/10.1039/c0an00590h
[15] R. L. McCreery, Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev, 108 (2008) 2646-2687. https://doi.org/10.1021/cr068076m
[16] C. E. Banks, T. J. Davies, G. G. Wildgoose, R. G. Compton, Investigation of modified basal plane pyrolytic graphite electrodes: Definitive evidence for the electrocatalytic properties of the enhs of carbon nanotubes. Chem. Commun, (2005) 829-841.
[17] X. Ji, C. E. Banks, A. Crossley, R. G. Compton, Oxygenated edge plane sites slow the electron transfer of the ferro-/ferricyanide redox couple at graphite electrodes. Chem. Phys. Chem, 7 (2006) 1337-1344. https://doi.org/10.1002/cphc.200600098
[18] D. A. C. Brownson, L. J. Munro, D. K. Kampouris, C. E. Banks, Electrochemistry of graphene: not such a beneficial electrode material? RSC Adv. 1 (2011) 978-988. https://doi.org/10.1039/c1ra00393c
[19] D. A. C. Brownson, J. P. Metters, D. K. Kampouris and C. E. Banks, Surfactant-exfoliated 2D hexagonal boron nitride (2D-hBN): role of surfactant upon the electrochemical reduction of oxygen and capacitance applications. Electroanalysis (N. Y.), 23 (2011)894-899. https://doi.org/10.1039/C6TA09999H
[20] S. Y. Chee, M. Pumera, Metal-based impurities in graphenes: application for electroanalysis. Analyst, 137 (2012) 2039-2041. https://doi.org/10.1039/c2an00022a
[21] D. A. C. Brownson, C. W. Foster, C. E. Banks, The electrochemical performance of graphene modified electrodes: An analytical perspective. Analyst, 137 (2012) 1815-1823. https://doi.org/10.1039/c2an16279b
[22] D. A. C. Brownson, C. W. Foster, C. E. Banks, The electrochemical performance of graphene modified electrodes: An analytical perspective. Analyst, 137 (2012) 1815-1823. https://doi.org/10.1039/c2an16279b
[23] D. A. C. Brownson, C. W. Foster, C. E. Banks, The electrochemical performance of graphene modified electrodes: An analytical perspective. Analyst, 137 (2012) 1815-1823. https://doi.org/10.1039/c2an16279b
[24] B. Ntsendwana, B. B. Mamba, S. Sampath, O. A. Arotiba, Electrochemical detection of bisphenol A using graphene modified glassy carbon electrode. Int. J. Electrochem. Sci, 7 (2012) 3501-3512.
[25] W.J. Lin, C.S. Liao, J.H. Jhang, Y.C. Tsai, Graphenemodofird basal and edge plane pyrolytic graphite electrodes for electrocatalytic oxidation of hydrogen peroxide and b0nicotinamide adenine dinucleotide. Electrochem. Commun, 11(2009) 2153-2156. https://doi.org/10.1016/j.elecom.2009.09.018
[26] X. Kang, J. Wang, H. Wu, J. Liu, I. A. Aksay, Y. Lin, A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta, 81(2010)754-759. https://doi.org/10.1016/j.talanta.2010.01.009
[27] D. A. C. Brownson, L. J. Munro, D. K. Kampouris, C. E. Banks, Electrochemistry of graphene: not such a beneficial electrode material? RSC Adv, 1(2011) 978-988. https://doi.org/10.1039/c1ra00393c
[28] P. Chen, R. L. McCreery, Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Anal. Chem., 68 (1996) 3958-3965. https://doi.org/10.1021/ac960492r
[29] A. G. Guell, N. Ebejer, M. E. Snowden, J. V. Macpherson, P. R. Unwin, Structural correlations in heterogeneous electron transfer at minelayer and multilayer graphene electrodes. J. Am. Chem. Soc, 134 (2012) 7258-7261. https://doi.org/10.1021/ja3014902
[30] D. K. Kampouris, C. E. Banks, Exploring the physicoelectrochemical properties of graphene. Chem. Commun, 46 (2010) 8986-8988. https://doi.org/10.1039/c0cc02860f
[31] C. X. Lim, H. Y. Hoh, P. K. Ang, K. P. Loh, Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: an insight into the role of oxygenated defects. Anal. Chem, 82 (2010) 7387-7393. https://doi.org/10.1021/ac101519v
[32] X. Ji, C. E. Banks, A. Crossley, R. G. Compton, Oxygenated edge plane sites slow the electron transfer of the ferro-/ferricyanide redox couple at graphite electrodes. Chem.Phys.Chem, 7 (2006) 1337-1344. https://doi.org/10.1002/cphc.200600098
[33] G. P. Keeley, A. O. Neill, N. Mc Evoy, N. Peltekis, J. N. Coleman, G. S. Duesberg, Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene. J. Mater. Chem., 20 (2010) 7864-7869. https://doi.org/10.1039/c0jm01527j
[34] A. Ambrosi, A. Bonanni, M. Pumera, Electrochemistry of folded graphene edges. Nanoscale, 3 (2011) 2256-2260. https://doi.org/10.1039/c1nr10136f
[35] C. Tan, J. Rodriguez-Lopez, J. J. Parks, N. L. Ritzert, D. C. Ralph, H. D. Abruna, Reactivity of monolayer chemical vapor deposited graphene imperfections studied using scanning electrochemical microscopy. ACS Nano, 6 (2012) 3070-3079. https://doi.org/10.1021/nn204746n
[36] H. L. Poh, F. Sanek, A. Ambrosi, G. Zhao, Z. Sofer, M. Pumera, Graphenes prepared by staudenmaier, hofmann and hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale, 4 (2012) 3515-3522. https://doi.org/10.1039/c2nr30490b
[37] B. Guo, L. Fang, B. Zhang, J. R. Gong, Co/CoO Nanoparticles assembled on graphene for electrochemical reduction of oxygen. Insciences J, 1 (2011) 80-89. https://doi.org/10.5640/insc.010280
[38] D. A. C. Brownson, J. P. Metters, D. K. Kampouris, C. E. Banks,The electrochemical performance of graphene modified electrodes: An analytical perspective. Electroanalysis (N. Y.), 23 (2011) 894-899. https://doi.org/10.1002/elan.201000708
[39] S. Y. Chee, M. Pumera, Metal-based impurities in graphenes: application for electroanalysis. Analyst, 137 (2012) 2039-2041. https://doi.org/10.1039/c2an00022a
[40] P. M. Hallam, C. E. Banks, A facile approach for quantifying the density of defects (edge plane sites) of carbon nanomaterials and related structures. Phys. Chem. Chem. Phys, 13 (2011) 1210-1213. https://doi.org/10.1039/C0CP01562H
[41] I. Streeter, G. G. Wildgoose, L. Shao and R. G. Compton, Cyclic voltammetry on electode surfaces covered with porous layers an analysis of electron transfer kinetics at single walled carbon nanotube modified electrode. Sens. Actuators. B, 133 (2008) 462-466. https://doi.org/10.1016/j.snb.2008.03.015
[42] S.X. Guo, S.F. Zhao, A. M. Bond and J. Zhang, Simplifying the evaluation of graphene modified electrode performance using rotating disk electrode voltammetry. Langmuir, 28 (2012) 5275-5285. https://doi.org/10.1021/la205013n
[43] D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Rouff, The chemistry of graphene oxide. Chem. Soc. Rev., 39 (2010) 228-240. https://doi.org/10.1039/B917103G
[44] D. A. C. Brownson, A. C. Lacombe, M. Gomez-Mingot, C. E. Banks, Graphene oxide gives rise to unique and intriguing voltammetry. RSC Adv, 2 (2012) 665-668. https://doi.org/10.1039/C1RA00743B
[45] M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, S. Dong, Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem.Eur. J., 15 (2009) 6116-6120. https://doi.org/10.1002/chem.200900596
[46] D. A. C. Brownson, C. E. Banks, CVD graphene electrochemistry: the role of graphitic islands. Phys. Chem. Chem. Phys, 13 (2011)15825-15828. https://doi.org/10.1039/c1cp21978b
[47] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, A. A. Zolotukhin, Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon, 45 (2007) 2017-2021. https://doi.org/10.1016/j.carbon.2007.05.028
[48] A. Guermoune, T. Chari, F. Popescu, S. S. Sabri, J. Guillemette, H. S. Skulason, T. Szkope, M. Siaj, Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon, 49 (2011) 4204-4210. https://doi.org/10.1016/j.carbon.2011.05.054
[49] D. A. C. Brownson, D. K. Kampouris , C. E. Banks, Electrochemistry of graphene: not such a beneficial electrode material? J. Power Sources, 196 (2011) 4873-4885. https://doi.org/10.1016/j.jpowsour.2011.02.022
[50] K. R. Ratinac, W. Yang, J. J. Gooding, P. Thordarson, F. Braet, Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Electroanalysis (N. Y.), 23 (2011) 803-826. doi: 10.1002/anie.200903463. https://doi.org/10.1002/elan.201000545
[51] B. Ntsendwana, B. B. Mamba, S. Sampath, O. A. Arotiba, Electrochemical detection of bisphenol A using graphene-modified glassy carbon electrode. Int. J. Electrochem. Sci., 7 (2012) 3501-3512.
[52] W.J. Lin, C.S. Liao, J.H. Jhang, Y.C. Tsai, Graphene modified basal and edge plane pyrolytic graphite electrodes for electrocatalytic oxidation of hydrogen peroxide abd b-nicotinamide adenine dinucleotide. Electrochem. Commun, 11 (2009) 2153-2156. https://doi.org/10.1016/j.elecom.2009.09.018
[53] Y. Wang, D. Zhang, J. Wu, Determination of kojic acid based on a poly (l-arginine)-electrochemically reduced graphene oxide modified electrodej. Electroanal. Chem, 664 (2012) 111-116. https://doi.org/10.1016/j.jelechem.2011.11.004
[54] X. Kang, J. Wang, H. Wu, J. Liu, I. A. Aksay, Y. Lin, A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta, 81 (2010) 754-759. https://doi.org/10.1016/j.talanta.2010.01.009
[55] D. A. C. Brownson, C. W. Foster, C. E. Banks, The electrochemical performance of graphene modified electrodes: An analytical perspective. Analyst, 137 (2012) 1815-1823. https://doi.org/10.1039/c2an16279b
[56] D. A. C. Brownson, L. J. Munro, D. K. Kampouris, C. E. Banks, The fabrication, characterisation and electrochemical investigation of screen-printed graphene electrodes. RSC Adv, 1 (2011) 978-988. https://doi.org/10.1039/c1ra00393c
[57] D. A. C. Brownson, L. J. Munro, D. K. Kampouris, C. E. Banks, The fabrication, characterisation and electrochemical investigation of screen-printed graphene electrodes. RSC Adv, 1 (2011) 978-988. https://doi.org/10.1039/c1ra00393c
[58] D. A. C. Brownson, A. C. Lacombe, D. K. Kampouris, C. E. Banks, Grapheneelectroanalysis: Inhibitory effects in the stripping voltammetry of cadmium with surfactant free graphene. Analyst, 137(2012) 420-423. https://doi.org/10.1039/C1AN15967D
[59] D. A. C. Brownson, A. C. Lacombe, D. K. Kampouris, C. E. Banks, Grapheneelectroanalysis: Inhibitory effects in the stripping voltammetry of cadmium with surfactant free graphene. Analyst, 137 (2012) 420-423. https://doi.org/10.1039/C1AN15967D
[60] D. A. C. Brownson, L. J. Munro, D. K. Kampouris, C. E. Banks, In situ electrochemical characterisation of graphene and various carbon-based electrode materials: an internal standard approach. RSC Adv, 1(2011) 978-988. https://doi.org/10.1039/c5ra03049h.
[61] D. A. C. Brownson, J. P. Metters, D. K. Kampouris, C. E. Banks, Graphene electrochemistry: surfactants inherent to graphene can dramatically effect electrochemical processes. Electroanalysis (N. Y.), 23 (2011) 894-899. https://doi.org/10.1002/elan.201000708
[62] M. S. Goh, M. Pumera, Number of grapheneLyers exhibiting an influence on oxidation of DNA bases: analytical parameters. Anal. Chem,82(2010) 8367-8370. https://doi.org/10.1021/ac101996m
[63] M. S. Goh, M. Pumera, Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphenenanoribbons and graphite microparticles. Anal. Bioanal. Chem, 399 (2011) 127-131. https://doi.org/10.1007/s00216-010-4338-8
[64] D. A. C. Brownson, L. J. Munro, D. K. Kampouris, C. E. Banks, Electrochemistry of graphene: not such a beneficial electrode material? RSC Adv, 1(2011) 978-988. https://doi.org/10.1039/c1ra00393c
[65] D. A. C. Brownson, M. Gomez-Mingot, C. E. Banks, CVD graphene electrochemistry: biologically relevant molecules. Phys. Chem. Chem. Phys, 13 (2011) 20284-20288. https://doi.org/10.1039/c1cp22648g
[66] D. A. C. Brownson, C. W. Foster, C. E. Banks, The electrochemical performance of graphene modified electrodes: An analytical perspective. Analyst, 137 (2012) 1815-1823. https://doi.org/10.1039/c2an16279b
[67] D. A. C. Brownson, R. V. Gorbachev, S. J. Haigh, C. E. Banks, CVD graphenevs. highly ordered pyrolytic graphite for use in electroanalytical sensing. Analyst, 137 (2012) 833-839. https://doi.org/10.1039/C2AN16049H
[68] D. A. C. Brownson, C. E. Banks, The electrochemistry of CVD graphene: progress and prospects. Phys. Chem. Chem. Phys, 14 (2012) 8264-8281. https://doi.org/10.1039/c2cp40225d
[69] M. Pumera, Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev, 39 (2010) 4146-4157. https://doi.org/10.1039/c002690p
[70] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, A. A. Zolotukhin, Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon, 45 (2007) 2017-2021. https://doi.org/10.1016/j.carbon.2007.05.028
[71] J. Premkumar, S. B. Khoo, electrocatalytic oxidations of biological molecules (ascorbic acid and uric acids) at highly oxidized electrodes. J. Electroanal. Chem, 576 (2005) 105-112. https://doi.org/10.1016/j.jelechem.2004.09.030
[72] D. A. C. Brownson, M. Gomez-Mingot, C. E. Banks, CVD graphene electrochemistry: biologically relevant molecules. Phys. Chem. Chem. Phys, 13 (2011) 20284-20288. https://doi.org/10.1039/c1cp22648g
[73] D. A. C. Brownson, R. V. Gorbachev, S. J. Haigh, C. E. Banks, Graphene oxide electrochemistry: the electrochemistry of graphene oxide modified electrodes reveals coverage dependent beneficial electrocatalysis. Analyst, 137 (2012) 833-839. https://doi.org/10.1098/rsos.171128.
[74] D. A. C. Brownson, R. V. Gorbachev, S. J. Haigh, C. E. Banks, In situ electrochemical characterisation of graphene and various carbon-based electrode materials: an internal standard approach. Analyst, 137 (2012) 833-839.
[75] P. Raghu, B.E.K. Swamy, T. M .Reddy, B. N. Chandresekhar, K. Rrddaiah, Sol gel immobilized biosensor for the detection of organo phosphorous pesticides a voltammetric method. Bioelectrochem, 83(2011) 19- 25. https://doi.org/10.1016/j.bioelechem.2011.08.002
[76] Y. Zhang, T.F. Kang, Y.W. Wan, S.Y. Chen,Gold nanoparticles-carbon nanotubes modified sensor for electrochemical determination of organophosphate pesticides. Micro chimicaActa, 165(2009) 307-311. https://doi.org/10.1007/s00604-008-0134-y
[77] P. Reddy Prasad, A.E. Ofamaja, C.N. Reddy, E.B. Naidoo, Square Wave Volta mmetric Detection of Dimethyl vinphos and Naftalofos in Food and Environmental Samples Using RGO/CS modified Glassy Carbon Electrode. Int. J. Electro chem. Sci, 11(2016) 65-79.
[78] J. Zhang, A. Luo, P. Liu, S. Wei, G. Wang, S. Wei, Detection of organo phosphorus pesticides using potentiometric enzymatic membrane biosensor based on methylcellulose immobilization. Analytical Science, 24 (2011) 511-693.
[79] R. Sinha, M. Ganesana, S. Andreescu, L. Stanciu, AChE biosensor based on zinc oxide sol-gel for the detection of pesticides. Anal. Chim. Acta, 195 (2010) 661-675. https://doi.org/10.1016/j.aca.2009.12.020
[80] J.L.Marty, N. Mionetto, T. Noguer, F. Ortega, C. Roux, Enzyme sensors for the detection of pesticides. Biosens. Bio electron, 8 (1993)273-298. https://doi.org/10.1016/0956-5663(93)85007-B
[81] D. Du, S. Chen, J. Cai, A. Zhang, Electro chemical pesticide sensitivity test using acetyl cholinesterase biosensor based on colloidal gold nanoparticle modified sol-gel interface. Talanta, 74 (2008)766-798. https://doi.org/10.1016/j.talanta.2007.07.014
[82] R. Sinha, M. Ganesana, S. Andreescu, L. Stanciu, AChE biosensor based on zinc oxide sol-gel for the detection of pesticides. Anal. Chim. Acta, 195 (2010) 661-675. https://doi.org/10.1016/j.aca.2009.12.020
[83] J.L.Marty, N. Mionetto, T. Noguer, F. Ortega, C. Roux, Enzyme sensors for the detection of pesticides. Biosens. Bio electron, 8 (1993)273-298. https://doi.org/10.1016/0956-5663(93)85007-B
[84] D. Du, S. Chen, J. Cai, A. Zhang, Electro chemical pesticide sensitivity test using acetyl cholinesterase biosensor based on colloidal gold nanoparticle modified sol-gel interface. Talanta, 74 (2008)766-798. https://doi.org/10.1016/j.talanta.2007.07.014