Silicon Materials for Lithium-ion Battery Applications
Sarigamala Karthik Kiran, Martha Ramesh, Shobha Shukla and Sumit Saxena
Silicon, a hard brittle crystalline solid is tetravalent metalloid and prominently well known in the semiconductor community. Although silicon has been a material of choice for energy generation in silicon solar cells, its high theoretical lithium storage capacity makes it one of the most promising anode materials for development of high performance Li-ion batteries. Unfortunately, silicon exhibits large volume expansion leading to severe problems associated with structural integrity of the electrode and capacity retention. Several silicon nanostructures have been explored to mitigate shortfalls of using bulk silicon as electrode material. In this chapter, we discuss various promising designs, utilizing various nanostructures as a possibility to mitigate the issues related to the use of silicon in Li-ion batteries. The formation of axial heterojunctions, and core/shell nanostructures is discussed. Processes such as etching based metal assisted electrochemical, co-precipitation, magnesiothermic reduction, and chemical vapour deposition techniques are briefly discussed. The structural, electrical and electro-chemical properties of different nanostructures grown by these methods are also summarized.
Keywords
Silicon Anode, Li-ion Battery, Nanostructures, Core Shells, Capacity, Stability
Published online 7/25/2020, 42 pages
Citation: Sarigamala Karthik Kiran, Martha Ramesh, Shobha Shukla and Sumit Saxena, Silicon Materials for Lithium-ion Battery Applications, Materials Research Foundations, Vol. 80, pp 161-202, 2020
DOI: https://doi.org/10.21741/9781644900918-7
Part of the book on Lithium-ion Batteries
References
[1] B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science. 334 (2011) 928-935. https://doi.org/10.1126/science.1212741
[2] N. Kittner, F. Lill, D.M. Kammen, Energy storage deployment and innovation for the clean energy transition, Nat. Energy. 2 (2017) 17125. https://doi.org/10.1038/nenergy.2017.125
[3]A. Yoshino, The birth of the lithium-ion battery, Angew. Chemie Int. Ed. 51 (2012) 5798-5800. https://doi.org/10.1002/anie.201105006
[4] G. Assat, J.M. Tarascon, Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries, Nat. Energy. 3 (2018) 373-386. https://doi.org/10.1038/s41560-018-0097-0
[5] H.L. Tuller, Solar to fuels conversion technologies: a perspective, Mater. Renew. Sustain. Energy. 6 (2017) 3. https://doi.org/10.1007/s40243-017-0088-2
[6] M. Padmini, S.K. Kiran, N. Lakshminarasimhan, M. Sathish, P. Elumalai, High-performance solid-state hybrid energy-storage device consisting of reduced graphene-oxide anchored with Ni Mn-layered double hydroxide, Electrochim. Acta. 236 (2017) 359-370. https://doi.org/10.1016/j.electacta.2017.03.170
[7] P.A. Owusu, S. Asumadu-Sarkodie, A review of renewable energy sources, sustainability issues and climate change mitigation, Cogent Eng. 3 (2016) 1167990. https://doi.org/10.1080/23311916.2016.1167990
[8] K. K. Sarigamala, S. Shukla, A.Struck, S. Saxena, Rationally engineered 3D-dendritic cell-like morphologies of LDH nanostructures using graphene based core-shell structures, Microsyst. Nanoeng 5 (2019) 65. https://doi.org/10.1038/s41378-019-0114-x
[9] M. Armand, J.-M. Tarascon, Building better batteries, Nature. 451 (2008) 652-657. https://doi.org/10.1038/451652a
[10] D.W.H. Lambert, J.E. Manders, R.F. Nelson, K. Peters, D.A.J. Rand, M. Stevenson, Strategies for enhancing lead-acid battery production and performance, J. Power Sources. 88 (2000) 130-147. https://doi.org/10.1016/S0378-7753(99)00521-2
[11] U. Köhler, C. Antonius, P. Bäuerlein, Advances in alkaline batteries, J. Power Sources. 127 (2004) 45-52. https://doi.org/10.1016/j.jpowsour.2003.09.006
[12] M. Li, J. Lu, Z. Chen, K. Amine, 30 Years of lithium-ion batteries, Adv. Mater. 30 (2018) 1800561. https://doi.org/10.1002/adma.201800561
[13] X. Yu, A. Manthiram, Electrode-electrolyte interfaces in lithium-based batteries, Energy Environ. Sci. 11 (2018) 527-543. https://doi.org/10.1039/C7EE02555F
[14] Y. Sun, N. Liu, Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries, Nat. Energy. 1 (2016) 16071. https://doi.org/10.1038/nenergy.2016.71
[15] M.S. Whittingham, Electrical Energy Storage and Intercalation Chemistry, Science 192 (1976) 1126-1127. https://doi.org/10.1126/science.192.4244.1126
[16] Bottled lightning: superbatteries, electric cars, and the new lithium economy, Choice Rev. Online. 49 (2011) 49-1488. https://doi.org/10.5860/CHOICE.49-1488
[17] B. Lung-Hao Hu, F.-Y. Wu, C.-T. Lin, A.N. Khlobystov, L.-J. Li, Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity, Nat. Commun. 4 (2013) 1687. https://doi.org/10.1038/ncomms2705
[18] B. Scrosati, J. Garche, Lithium batteries: Status, prospects and future, J. Power Sources. 195 (2010) 2419-2430. https://doi.org/10.1016/j.jpowsour.2009.11.048
[19] P.L. Taberna, S. Mitra, P. Poizot, P. Simon, J.M. Tarascon, High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications, Nat. Mater. 5 (2006) 567-573. https://doi.org/10.1038/nmat1672
[20] M. Gauthier, T.J. Carney, A. Grimaud, L. Giordano, N. Pour, H.-H. Chang, D.P. Fenning, S.F. Lux, O. Paschos, C. Bauer, F. Maglia, S. Lupart, P. Lamp, Y. Shao-Horn, Electrode-electrolyte interface in Li-ion batteries: Current understanding and new insights, J. Phys. Chem. Lett. 6 (2015) 4653-4672. https://doi.org/10.1021/acs.jpclett.5b01727
[21] X.-L. Gou, J. Chen, P.-W. Shen, Synthesis, characterization and application of SnSx (x=1,2) nanoparticles, Mater. Chem. Phys. 93 (2005) 557-563. https://doi.org/10.1016/j.matchemphys.2005.04.008
[22] P. Suresh, A.K. Shukla, N. Munichandraiah, Electrochemical properties of LiMn1−xMxO2 (M=Ni, Al, Mg) as cathode materials in lithium-ion cells, J. Electrochem. Soc. 152 (2005) A2273. https://doi.org/10.1149/1.2073067
[23]Z. Lu, D.D. MacNeil, J.R. Dahn, Layered LiNixCo1−2xMnxO2 cathode materials for lithium-ion batteries, Electrochem. Solid-State Lett. 4 (2001) A200. https://doi.org/10.1149/1.1413182
[24] M.R. Mancini, L. Petrucci, F. Ronci, P.P. Prosini, S. Passerini, Long cycle life Li-Mn-O defective spinel electrodes, J. Power Sources. 76 (1998) 91. https://doi.org/10.1016/S0378-7753(98)00144-X
[25] S.-H. Wu, K.-M. Hsiao, W.-R. Liu, The preparation and characterization of olivine LiFePO4 by a solution method, J. Power Sources. 146 (2005) 550-554. https://doi.org/10.1016/j.jpowsour.2005.03.128
[26] S. S. Anish, S. Saxena, P. Shrivastava, S. Shukla,Looking beyond single electron extraction in cathode materials for lithium ion batteries, J. Power Sources 279 (2015) 563-566. https://doi.org/10.1016/j.jpowsour.2015.01.061
[27] Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, H.-M. Cheng, Graphene/metal oxide composite electrode materials for energy storage, Nano Energy. 1 (2012) 107-131. https://doi.org/10.1016/j.nanoen.2011.11.001
[28] D. Zhang, Graphene enhanced LiFeBO3/C composites as cathodes for Li- ion batteries, Int. J. Electrochem. Sci. (2018) 1744-1753. https://doi.org/10.20964/2018.02.52
[29] H. Bin Wu, J.S. Chen, H.H. Hng, X. Wen (David) Lou, Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries, Nanoscale. 4 (2012) 2526. https://doi.org/10.1039/c2nr11966h
[30] Z.-L. Xu, X. Liu, Y. Luo, L. Zhou, J.-K. Kim, Nanosilicon anodes for high performance rechargeable batteries, Prog. Mater. Sci. 90 (2017) 1-44. https://doi.org/10.1016/j.pmatsci.2017.07.003
[31] N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Mater. Today. 18 (2015) 252-264. https://doi.org/10.1016/j.mattod.2014.10.040
[32]B. Fuchsbichler, C. Stangl, H. Kren, F. Uhlig, S. Koller, High capacity graphite-silicon composite anode material for lithium-ion batteries, J. Power Sources. 196 (2011) 2889-2892. https://doi.org/10.1016/j.jpowsour.2010.10.081
[33] B. Sun, Z. Chen, H.S. Kim, H. Ahn, G. Wang, MnO/C core-shell nanorods as high capacity anode materials for lithium-ion batteries, J. Power Sources. 196 (2011) 3346-3349. https://doi.org/10.1016/j.jpowsour.2010.11.090
[34] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries, J. Power Sources. 257 (2014) 421-443. https://doi.org/10.1016/j.jpowsour.2013.11.103
[35] S. Yin, Q. Ji, X. Zuo, S. Xie, K. Fang, Y. Xia, J. Li, B. Qiu, M. Wang, J. Ban, X. Wang, Y. Zhang, Y. Xiao, L. Zheng, S. Liang, Z. Liu, C. Wang, Y.-J. Cheng, Silicon lithium-ion battery anode with enhanced performance: Multiple effects of silver nanoparticles, J. Mater. Sci. Technol. 34 (2018) 1902-1911. https://doi.org/10.1016/j.jmst.2018.02.004
[36] M.J. Loveridge, M.J. Lain, I.D. Johnson, A. Roberts, S.D. Beattie, R. Dashwood, J.A. Darr, R. Bhagat, Towards high capacity Li-ion batteries based on silicon-graphene composite anodes and sub-micron V-doped LiFePO4 cathodes, Sci. Rep. 6 (2016) 37787. https://doi.org/10.1038/srep37787
[37] C. Liu, Z.G. Neale, G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries, Mater. Today. 19 (2016) 109-123. https://doi.org/10.1016/j.mattod.2015.10.009
[38] J. Wen, Y. Yu, C. Chen, A Review on Lithium-ion batteries safety issues: Existing problems and possible solutions, Mater. Express. 2 (2012) 197-212. https://doi.org/10.1166/mex.2012.1075
[39]J.Y. Li, Q. Xu, G. Li, Y.X. Yin, L.J. Wan, Y.G. Guo, Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries, Mater. Chem. Front. 1 (2017) 1691-1708. https://doi.org/10.1039/C6QM00302H
[40] N. Nitta, G. Yushin, High-capacity anode materials for lithium-ion batteries: Choice of elements and structures for active particles, Part. Part. Syst. Charact. 31 (2014) 317-336. https://doi.org/10.1002/ppsc.201300231
[41] A. Bordes, E. De Vito, C. Haon, A. Boulineau, A. Montani, P. Marcus, Multiscale investigation of silicon anode Li insertion mechanisms by time-of-flight secondary ion mass spectrometer imaging performed on an in situ focused ion beam cross section, Chem. Mater. 28 (2016) 1566-1573. https://doi.org/10.1021/acs.chemmater.6b00155
[42] M.T. McDowell, S.W. Lee, J.T. Harris, B.A. Korgel, C. Wang, W.D. Nix, Y. Cui, In situ TEM of two-phase lithiation of amorphous silicon nanospheres, Nano Lett. 13 (2013) 758-764. https://doi.org/10.1021/nl3044508
[43] H. Wu, Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today. 7 (2012) 414-429. https://doi.org/10.1016/j.nantod.2012.08.004
[44] S.W. Lee, M.T. McDowell, L.A. Berla, W.D. Nix, Y. Cui, Fracture of crystalline silicon nanopillars during electrochemical lithium insertion, Proc. Natl. Acad. Sci. 109 (2012) 4080-4085. https://doi.org/10.1073/pnas.1201088109
[45] X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, J.Y. Huang, Size-dependent fracture of silicon nanoparticles during lithiation, ACS Nano. 6 (2012) 1522-1531. https://doi.org/10.1021/nn204476h
[46]P. Verma, P. Maire, P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochim. Acta. 55 (2010) 6332-6341. https://doi.org/10.1016/j.electacta.2010.05.072
[47] A.L. Michan, G. Divitini, A.J. Pell, M. Leskes, C. Ducati, C.P. Grey, Solid electrolyte interphase growth and capacity loss in silicon electrodes, J. Am. Chem. Soc. 138 (2016) 7918-7931. https://doi.org/10.1021/jacs.6b02882
[48] J.P. Yen, C.C. Chang, Y.R. Lin, S.T. Shen, J.L. Hong, Sputtered copper coating on silicon/graphite composite anode for lithium ion batteries, J. Alloys Compd. 598 (2014) 184-190. https://doi.org/10.1016/j.jallcom.2014.01.230
[49] M. Ramesh, H.S. Nagaraja, Effect of current density on morphological, structural and optical properties of porous silicon, Mater. Today Chem. 3 (2017) 10-14. https://doi.org/10.1016/j.mtchem.2016.12.002
[50] M. Thakur, M. Isaacson, S.L. Sinsabaugh, M.S. Wong, S.L. Biswal, Gold-coated porous silicon films as anodes for lithium ion batteries, J. Power Sources. 205 (2012) 426-432. https://doi.org/10.1016/j.jpowsour.2012.01.058
[51] E.M. Lotfabad, P. Kalisvaart, A. Kohandehghan, K. Cui, M. Kupsta, B. Farbod, D. Mitlin, Si nanotubes ALD coated with TiO2, TiN or Al 2 O 3 as high performance lithium ion battery anodes, J. Mater. Chem. A. 2 (2014) 2504-2516. https://doi.org/10.1039/C3TA14302C
[52] M. Ramesh, H.S. Nagaraja, The effect of etching time on structural properties of Porous silicon at the room temperature, Mater. Today Proc. 3 (2016) 2085-2090. https://doi.org/10.1016/j.matpr.2016.04.112
[53]Y. Yao, N. Liu, M.T. McDowell, M. Pasta, Y. Cui, Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings, Energy Environ. Sci. 5 (2012) 7927. https://doi.org/10.1039/c2ee21437g
[54]D. Tang, R. Yi, M.L. Gordin, M. Melnyk, F. Dai, S. Chen, J. Song, D. Wang, Titanium nitride coating to enhance the performance of silicon nanoparticles as a lithium-ion battery anode, J. Mater. Chem. A. 2 (2014) 10375-10378. https://doi.org/10.1039/C4TA01343C
[55] N. Dimov, S. Kugino, M. Yoshio, Carbon-coated silicon as anode material for lithium ion batteries: Advantages and limitations, Electrochim. Acta. 48 (2003) 1579-1587. https://doi.org/10.1016/S0013-4686(03)00030-6
[56] M. Yoshio, H. Wang, K. Fukuda, T. Umeno, N. Dimov, Z. Ogumi, Carbon-coated Si as a lithium-ion battery anode material, J. Electrochem. Soc. 149 (2002) A1598. https://doi.org/10.1149/1.1518988
[57] I. Hasa, J. Hassoun, S. Passerini, Nanostructured Na-ion and Li-ion anodes for battery application: A comparative overview, Nano Res. 10 (2017) 3942-3969. https://doi.org/10.1007/s12274-017-1513-7
[58] X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, Silicon based lithium-ion battery anodes: A chronicle perspective review, Nano Energy. 31 (2017) 113-143. https://doi.org/10.1016/j.nanoen.2016.11.013
[59] X.H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki, L.Q. Zhang, Y. Liu, A. Kushima, W.T. Liang, J.W. Wang, J.-H. Cho, E. Epstein, S.A. Dayeh, S.T. Picraux, T. Zhu, J. Li, J.P. Sullivan, J. Cumings, C. Wang, S.X. Mao, Z.Z. Ye, S. Zhang, J.Y. Huang, Anisotropic swelling and fracture of silicon nanowires during lithiation, Nano Lett. 11 (2011) 3312-3318. https://doi.org/10.1021/nl201684d
[60] L. Goldstein, F. Glas, J.Y. Marzin, M.N. Charasse, G. Le Roux, Growth by molecular beam epitaxy and characterization of InAs/GaAs strainedlayer superlattices, Appl. Phys. Lett. 47 (1985) 1099-1101. https://doi.org/10.1063/1.96342
[61] J. Stangl, V. Holý, G. Bauer, Structural properties of self-organized semiconductor nanostructures, Rev. Mod. Phys. 76 (2004) 725-783. https://doi.org/10.1103/RevModPhys.76.725
[62] C.M. Hessel, E.J. Henderson, J.G.C. Veinot, Hydrogen Silsesquioxane: A molecular precursor for nanocrystalline Si−SiO2 composites and freestanding hydride-surface-terminated silicon nanoparticles, Chem. Mater. 18 (2006) 6139-6146. https://doi.org/10.1021/cm0602803
[63] J. Ryu, D. Hong, M. Shin, S. Park, Multiscale hyperporous silicon flake anodes for high initial Coulombic efficiency and cycle stability, ACS Nano. 10 (2016) 10589-10597. https://doi.org/10.1021/acsnano.6b06828
[64] H. Sohn, D.H. Kim, R. Yi, D. Tang, S.E. Lee, Y.S. Jung, D. Wang, Semimicro-size agglomerate structured silicon-carbon composite as an anode material for high performance lithium-ion batteries, J. Power Sources. 334 (2016) 128-136. https://doi.org/10.1016/j.jpowsour.2016.09.096
[65] L.Wei, Z. Hou, H. Wei, Porous sandwiched graphene/silicon anodes for lithium storage, Electrochim. Acta. 229 (2017) 445-451. https://doi.org/10.1016/j.electacta.2017.01.173
[66] L. Wei, Z. Hou, High performance polymer binders inspired by chemical finishing of textiles for silicon anodes in lithium ion batteries, J. Mater. Chem. A. 5 (2017) 22156-22162. https://doi.org/10.1039/C7TA05195F
[67] N.-W. Li, Y.-X. Yin, S. Xin, J.-Y. Li, Y.-G. Guo, Methods for the stabilization of nanostructured electrode materials for advanced rechargeable batteries, Small Methods. 1 (2017) 1700094. https://doi.org/10.1002/smtd.201700094
[68] N. Liu, H. Wu, M.T. McDowell, Y. Yao, C. Wang, Y. Cui, A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes, Nano Lett. 12 (2012) 3315-3321. https://doi.org/10.1021/nl3014814
[69] Q. Xu, J.-Y. Li, J.-K. Sun, Y.-X. Yin, L.-J. Wan, Y.-G. Guo, Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes, Adv. Energy Mater. 7 (2017) 1601481. https://doi.org/10.1002/aenm.201601481
[70] J. Xie, L. Tong, L. Su, Y. Xu, L. Wang, Y. Wang, Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance, J. Power Sources. 342 (2017) 529-536. https://doi.org/10.1016/j.jpowsour.2016.12.094
[71] D. Hong, J. Ryu, S. Shin, S. Park, Cost-effective approach for structural evolution of Si-based multicomponent for Li-ion battery anodes, J. Mater. Chem. A. 5 (2017) 2095-2101. https://doi.org/10.1039/C6TA08889A
[72] X. Zuo, Y. Xia, Q. Ji, X. Gao, S. Yin, M. Wang, X. Wang, B. Qiu, A. Wei, Z. Sun, Z. Liu, J. Zhu, Y.-J. Cheng, Self-Templating Construction of 3D hierarchical macro-/mesoporous silicon from 0D silica nanoparticles, ACS Nano. 11 (2017) 889-899. https://doi.org/10.1021/acsnano.6b07450
[73] S.J. Lee, H.J. Kim, T.H. Hwang, S. Choi, S.H. Park, E. Deniz, D.S. Jung, J.W. Choi, Delicate structural control of Si-SiOx-C composite via high-speed spray pyrolysis for Li-ion battery anodes, Nano Lett. 17 (2017) 1870-1876. https://doi.org/10.1021/acs.nanolett.6b05191
[74] M. Sohn, H.-I. Park, H. Kim, Foamed silicon particles as a high capacity anode material for lithium-ion batteries, Chem. Commun. 53 (2017) 11897-11900. https://doi.org/10.1039/C7CC06171D
[75]R. Zhang, Y. Du, D. Li, D. Shen, J. Yang, Z. Guo, H.K. Liu, A.A. Elzatahry, D. Zhao, Highly reversible and large lithium storage in mesoporous Si/C nanocomposite anodes with silicon nanoparticles embedded in a carbon framework, Adv. Mater. 26 (2014) 6749-6755. https://doi.org/10.1002/adma.201402813
[76]S. Guo, X. Hu, Y. Hou, Z. Wen, Tunable Synthesis of yolk-shell porous silicon@carbon for optimizing Si/C-based anode of lithium-ion batteries, ACS Appl. Mater. Interfaces. 9 (2017) 42084-42092. https://doi.org/10.1021/acsami.7b13035
[77] W. Luo, Y. Wang, L. Wang, W. Jiang, S.-L. Chou, S.X. Dou, H.K. Liu, J. Yang, Silicon/mesoporous Carbon/crystalline TiO2 nanoparticles for highly stable lithium storage, ACS Nano. 10 (2016) 10524-10532. https://doi.org/10.1021/acsnano.6b06517
[78] Y. Jin, S. Li, A. Kushima, X. Zheng, Y. Sun, J. Xie, J. Sun, W. Xue, G. Zhou, J. Wu, F. Shi, R. Zhang, Z. Zhu, K. So, Y. Cui, J. Li, Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%, Energy Environ. Sci. 10 (2017) 580-592. https://doi.org/10.1039/C6EE02685K
[79]L.Y. Yang, H.Z. Li, J. Liu, Z.Q. Sun, S.S. Tang, M. Lei, Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries, Sci. Rep. 5 (2015) 10908. https://doi.org/10.1038/srep10908
[80] Q. Xu, J.-K. Sun, Y.-X. Yin, Y.-G. Guo, Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes, Adv. Funct. Mater. 28 (2018) 1705235. https://doi.org/10.1002/adfm.201705235
[81] T. Jesionowski, Preparation of spherical silica in emulsion systems using the co-precipitation technique, Mater. Chem. Phys. 113 (2009) 839-849. https://doi.org/10.1016/j.matchemphys.2008.08.067
[82] R. Yuvakkumar, V. Elango, V. Rajendran, N. Kannan, High-purity nano silica powder from rice husk using a simple chemical method, J. Exp. Nanosci. 9 (2014) 272-281. https://doi.org/10.1080/17458080.2012.656709
[83] P. Nie, L. Shen, H. Luo, B. Ding, G. Xu, J. Wang, X. Zhang, Prussian blue analogues: a new class of anode materials for lithium ion batteries, J. Mater. Chem. A. 2 (2014) 5852-5857. https://doi.org/10.1039/C4TA00062E
[84]C.D. Wessells, R.A. Huggins, Y. Cui, Copper hexacyanoferrate battery electrodes with long cycle life and high power, Nat. Commun. 2 (2011) 550-554. https://doi.org/10.1038/ncomms1563
[85] J.-H. Lee, G. Ali, D.H. Kim, K.Y. Chung, Metal-organic framework cathodes based on a vanadium hexacyanoferrate Prussian Blue analogue for high-performance aqueous rechargeable batteries, Adv. Energy Mater. 7 (2017) 1601491. https://doi.org/10.1002/aenm.201601491
[86]R. Chen, Y. Huang, M. Xie, Z. Wang, Y. Ye, L. Li, F. Wu, Chemical inhibition method to synthesize highly crystalline Prussian Blue analogs for sodium-ion battery cathodes, ACS Appl. Mater. Interfaces. 8 (2016) 31669-31676. https://doi.org/10.1021/acsami.6b10884
[87] L. Ma, T. Chen, G. Zhu, Y. Hu, H. Lu, R. Chen, J. Liang, Z. Tie, Z. Jin, J. Liu, Pitaya-like microspheres derived from Prussian Blue analogues as ultralong-life anodes for lithium storage, J. Mater. Chem. A. 4 (2016) 15041-15048. https://doi.org/10.1039/C6TA06692E
[88]W. Zhang, Y. Zhao, V. Malgras, Q. Ji, D. Jiang, R. Qi, K. Ariga, Y. Yamauchi, J. Liu, J. Sen Jiang, M. Hu, Synthesis of monocrystalline nanoframes of Prussian Blue analogues by controlled preferential etching, Angew. Chemie – Int. Ed. 55 (2016) 8228-8234. https://doi.org/10.1002/anie.201600661
[89]Y. Lu, L. Wang, J. Cheng, J.B. Goodenough, Prussian Blue: A new framework of electrode materials for sodium batteries, Chem. Commun. 48 (2012) 6544. https://doi.org/10.1039/c2cc31777j
[90] P. Xiong, G. Zeng, L. Zeng, M. Wei, Prussian Blue analogues Mn[Fe(CN)6]0.6667·nH2O cubes as an anode material for lithium-ion batteries, Dalt. Trans. 44 (2015) 16746. https://doi.org/10.1039/C5DT03030G
[91]F. Ma, Q. Li, T. Wang, H. Zhang, G. Wu, Energy storage materials derived from Prussian Blue analogues, Sci. Bull. 62 (2017) 358-368. https://doi.org/10.1016/j.scib.2017.01.030
[92]L. Guo, R. Mo, W. Shi, Y. Huang, Z.Y. Leong, M. Ding, F. Chen, H.Y. Yang, A Prussian Blue anode for high performance electrochemical deionization promoted by the faradaic mechanism, Nanoscale. 9 (2017) 13305-13312. https://doi.org/10.1039/C7NR03579A
[93]F. Wu, H. Wang, J. Shi, Z. Yan, S. Song, B. Peng, X. Zhang, Y. Xiang, Surface modification of silicon nanoparticles by an “ink” layer for advanced lithium ion batteries, ACS Appl. Mater. Interfaces. 10 (2018) 19639. https://doi.org/10.1021/acsami.8b03000
[94] R. Martha, N. H.S., Effect of current density and electrochemical cycling on physical properties of silicon nanowires as anode for lithium ion battery, Mater. Charact. 129 (2017) 24-30. https://doi.org/10.1016/j.matchar.2017.04.001
[95]N. Wang, Y. Cai, R.Q. Zhang, Growth of nanowires, Mater. Sci. Eng. R Reports. 60 (2008) 1-51. https://doi.org/10.1016/j.mser.2008.01.001
[96] V. Schmidt, J. V. Wittemann, S. Senz, U. Gösele, Silicon Nanowires: A Review on aspects of their growth and their electrical properties, Adv. Mater. 21 (2009) 2681-2702. https://doi.org/10.1002/adma.200803754
[97] N. Fukata, Impurity doping in silicon nanowires, Adv. Mater. 21 (2009) 2829-2832. https://doi.org/10.1002/adma.200900376
[98]J. Shi, X. Wang, Functional semiconductor nanowires via vapor deposition, J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 29 (2011) 060801. https://doi.org/10.1116/1.3641913
[99] H. Schift, Nanoimprint lithography: An old story in modern times A review, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26 (2008) 458. https://doi.org/10.1116/1.2890972
[100] K. Peng, Y. Yan, S. Gao, J. Zhu, Dendrite-assisted growth of silicon nanowires in electroless metal deposition, Adv. Funct. Mater. 13 (2003) 127-132. https://doi.org/10.1002/adfm.200390018
[101] Z. Huang, N. Geyer, P. Werner, J. De Boor, U. Gösele, Metal-assisted chemical etching of silicon: A review, Adv. Mater. 23 (2011) 285. https://doi.org/10.1002/adma.201001784
[102] W. McSweeney, H. Geaney, C. O’Dwyer, Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes, Nano Res. 8 (2015) 1395-1442. https://doi.org/10.1007/s12274-014-0659-9
[103] A. Stafiniak, J. Prażmowska, W. Macherzyński, R. Paszkiewicz, Nanostructuring of Si substrates by a metal-assisted chemical etching and dewetting process, RSC Adv. 8 (2018) 31224-31230. https://doi.org/10.1039/C8RA03711F
[104] Q. Wee, J.-W. Ho, S.-J. Chua, Optimized silicon nanostructures formed by one-step metal-assisted chemical etching of Si(111) wafers for GaN deposition, ECS J. Solid State Sci. Technol. 3 (2014) P192-P197. https://doi.org/10.1149/2.009406jss
[105] W.F. Cai, K.B. Pu, Q. Ma, Y.H. Wang, Insight into the fabrication and perspective of dendritic ag nanostructures, J. Exp. Nanosci. 12 (2017) 319-337. https://doi.org/10.1080/17458080.2017.1335890
[106] K. Rajkumar, R. Pandian, A. Sankarakumar, R.T. Rajendra Kumar, Engineering silicon to porous silicon and silicon nanowires by metal-assisted chemical etching: Role of Ag size and electron-scavenging rate on morphology control and mechanism, ACS Omega. 2 (2017) 4540-4547. https://doi.org/10.1021/acsomega.7b00584
[107] J.M. Weisse, C.H. Lee, D.R. Kim, L. Cai, P.M. Rao, X. Zheng, Electroassisted transfer of vertical silicon wire arrays using a sacrificial porous silicon layer, Nano Lett. 13 (2013) 4362-4368. https://doi.org/10.1021/nl4021705
[108] Z. Huang, T. Shimizu, S. Senz, Z. Zhang, X. Zhang, W. Lee, N. Geyer, U. Gösele, Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions, Nano Lett. 9 (2009) 2519-2525. https://doi.org/10.1021/nl803558n
[109]S.-W. Chang, V.P. Chuang, S.T. Boles, C.A. Ross, C. V. Thompson, Densely packed arrays of ultra-high-aspect-ratio silicon nanowires fabricated using block-copolymer lithography and metal-assisted etching, Adv. Funct. Mater. 19 (2009) 2495-2500. https://doi.org/10.1002/adfm.200900181
[110] K.Q. Peng, J.J. Hu, Y.J. Yan, Y. Wu, H. Fang, Y. Xu, S.T. Lee, J. Zhu, Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles, Adv. Funct. Mater. 16 (2006) 387-394. https://doi.org/10.1002/adfm.200500392
[111]Y. Harada, X. Li, P.W. Bohn, R.G. Nuzzo, Catalytic amplification of the soft lithographic patterning of Si. nonelectrochemical orthogonal fabrication of photoluminescent porous Si pixel arrays, J. Am. Chem. Soc. 123 (2001) 8709-8717. https://doi.org/10.1021/ja010367j
[112] L. Ji, H. Zheng, A. Ismach, Z. Tan, S. Xun, E. Lin, V. Battaglia, V. Srinivasan, Y. Zhang, Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells, Nano Energy. 1 (2012) 164-171. https://doi.org/10.1016/j.nanoen.2011.08.003
[113] A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater. 9 (2010) 353-358. https://doi.org/10.1038/nmat2725
[114] C.-Y. Wu, C.-C. Chang, J.-G. Duh, Silicon nitride coated silicon thin film on three dimensions current collector for lithium ion battery anode, J. Power Sources. 325 (2016) 64-70. https://doi.org/10.1016/j.jpowsour.2016.06.025
[115] Y. Fan, K. Huang, Q. Zhang, Q. Xiao, X. Wang, X. Chen, Novel silicon-nickel cone arrays for high performance LIB anodes, J. Mater. Chem. 22 (2012) 20870. https://doi.org/10.1039/c2jm34337a
[116] Z. Lu, J. Zhu, D. Sim, W. Zhou, W. Shi, H.H. Hng, Q. Yan, Synthesis of ultrathin silicon nanosheets by using graphene oxide as template, Chem. Mater. 23 (2011) 5293-5295. https://doi.org/10.1021/cm202891p
[117] W.-S. Kim, Y. Hwa, J.-H. Shin, M. Yang, H.-J. Sohn, S.-H. Hong, Scalable synthesis of silicon nanosheets from sand as an anode for Li-ion batteries, Nanoscale. 6 (2014) 4297. https://doi.org/10.1039/c3nr05354g
[118] J. Ryu, D. Hong, S. Choi, S. Park, Synthesis of Ultrathin Si Nanosheets from natural clays for lithium-ion battery anodes, ACS Nano. 10 (2016) 2843-2851. https://doi.org/10.1021/acsnano.5b07977
[119] T.H. Hwang, Y.M. Lee, B.-S. Kong, J.-S. Seo, J.W. Choi, Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes, Nano Lett. 12 (2012) 802-807. https://doi.org/10.1021/nl203817r
[120] P.P. Wang, Y.X. Zhang, X.Y. Fan, J.X. Zhong, K. Huang, Synthesis of Si nanosheets by using sodium chloride as template for high-performance lithium-ion battery anode material, J. Power Sources. 379 (2018) 20-25. https://doi.org/10.1016/j.jpowsour.2018.01.030
[121] S.-H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z.-P. Guo, H.-K. Liu, Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries, Angew. Chemie Int. Ed. 45 (2006) 6896-6899. https://doi.org/10.1002/anie.200601676
[122] H. Kim, J. Cho, Superior lithium electroactive mesoporous Si@Carbon core−shell nanowires for lithium battery anode material, Nano Lett. 8 (2008) 3688-3691. https://doi.org/10.1021/nl801853x
[123]H. Wu, G. Yu, L. Pan, N. Liu, M.T. McDowell, Z. Bao, Y. Cui, Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles, Nat. Commun. 4 (2013) 1943. https://doi.org/10.1038/ncomms2941
[124]S.H. Ng, J. Wang, D. Wexler, S.Y. Chew, H.K. Liu, Amorphous Carbon-Coated Silicon Nanocomposites: A low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries, J. Phys. Chem. C. 111 (2007) 11131-11138. https://doi.org/10.1021/jp072778d
[125]N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.-W. Lee, W. Zhao, Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes, Nat. Nanotechnol. 9 (2014) 187-192. https://doi.org/10.1038/nnano.2014.6
[126] Y. Li, K. Yan, H.-W. Lee, Z. Lu, N. Liu, Y. Cui, Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes, Nat. Energy. 1 (2016) 15029. https://doi.org/10.1038/nenergy.2016.17
[127] X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X.B. Zhao, H.J. Fan, High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage, ACS Nano. 6 (2012) 5531. https://doi.org/10.1021/nn301454q
[128] J. Wang, Q. Zhang, X. Li, B. Zhang, L. Mai, K. Zhang, Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage, Nano Energy. 12 (2015) 437-446. https://doi.org/10.1016/j.nanoen.2015.01.003
[129] C. Zhang, T.H. Kang, J.S. Yu, Three-dimensional spongy nanographene-functionalized silicon anodes for lithium ion batteries with superior cycling stability, Nano Res. 11 (2018) 233-245. https://doi.org/10.1007/s12274-017-1624-1
[130]D. Su, M. Cortie, G. Wang, Fabrication of N-doped graphene-carbon nanotube hybrids from Prussian Blue for lithium-sulfur batteries, Adv. Energy Mater. 7 (2017) 1602014. https://doi.org/10.1002/aenm.201602014
[131]L.-F. Chen, S.-X. Ma, S. Lu, Y. Feng, J. Zhang, S. Xin, S.-H. Yu, Biotemplated synthesis of three-dimensional porous MnO/C-N nanocomposites from renewable rapeseed pollen: An anode material for lithium-ion batteries, Nano Res. 10 (2017) 1-11. https://doi.org/10.1007/s12274-016-1283-7
[132]N. Geyer, B. Fuhrmann, H.S. Leipner, P. Werner, Ag-mediated charge transport during metal-assisted chemical etching of silicon nanowires, ACS Appl. Mater. Interfaces. 5 (2013) 4302-4308. https://doi.org/10.1021/am400510f
[133] H.D. Um, N. Kim, K. Lee, I. Hwang, J. Hoon Seo, Y.J. Yu, P. Duane, M. Wober, K. Seo, Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications, Sci. Rep. 5 (2015) 11277. https://doi.org/10.1038/srep11277
[134]A.T. Tesfaye, R. Gonzalez-Rodriguez, J.L. Coffer, T. Djenizian, Self-supported silicon nanotube arrays as an anode electrode for Li-ion batteries, ECS Trans. 77 (2017) 349-350. https://doi.org/10.1149/07711.0349ecst
[135]O. Pérez-Díaz, E. Quiroga-González, N.R. Silva-González, Silicon microstructures through the production of silicon nanowires by metal-assisted chemical etching, used as sacrificial material, J. Mater. Sci. 54 (2019) 2351-2357. https://doi.org/10.1007/s10853-018-3003-z
[136]X. Chen, Q. Bi, M. Sajjad, X. Wang, Y. Ren, X. Zhou, W. Xu, Z. Liu, One-dimensional porous silicon nanowires with large surface area for fast charge-discharge lithium-ion batteries, Nanomaterials. 8 (2018) 285. https://doi.org/10.3390/nano8050285
[137] F. Sun, K. Huang, X. Qi, T. Gao, Y. Liu, X. Zou, X. Wei, J. Zhong, A rationally designed composite of alternating strata of Si nanoparticles and graphene: A high-performance lithium-ion battery anode, Nanoscale. 5 (2013) 8586. https://doi.org/10.1039/c3nr02435k
[138] S. Karthik Kiran, S. Shukla, A. Struck, S. Saxena, Surface engineering of graphene oxide shells using lamellar LDH nanostructures, ACS Appl. Mater. Interfaces. 11 (2019) 20232-20240. https://doi.org/10.1021/acsami.8b21265
[139]T. Wang, J. Zhu, Y. Chen, H. Yang, Y. Qin, F. Li, Q. Cheng, X. Yu, Z. Xu, B. Lu, Large-scale production of silicon nanoparticles@graphene embedded in nanotubes as ultra-robust battery anodes, J. Mater. Chem. A. 5 (2017) 4809-4817. https://doi.org/10.1039/C6TA10631E
[140] S. Karthik Kiran, S. Shukla, A. Struck, S. Saxena, Surface enhanced 3D rGO hybrids and porous rGO nano-networks as high performance supercapacitor electrodes for integrated energy storage devices, Carbon 158 (2019) 527-535. https://doi.org/10.1016/j.carbon.2019.11.021
[141]Z. Lu, N. Liu, H.-W. Lee, J. Zhao, W. Li, Y. Li, Y. Cui, Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes, ACS Nano. 9 (2015) 2540-2547. https://doi.org/10.1021/nn505410q
[142] X. Tang, G. Wen, Y. Zhang, D. Wang, Y. Song, Novel silicon nanoparticles with nitrogen-doped carbon shell dispersed in nitrogen-doped graphene and CNTs hybrid electrode for lithium ion battery, Appl. Surf. Sci. 425 (2017) 742-749. https://doi.org/10.1016/j.apsusc.2017.07.058
[143] K.G. Gallagher, S.E. Trask, C. Bauer, T. Woehrle, S.F. Lux, M. Tschech, P. Lamp, B.J. Polzin, S. Ha, B. Long, Q. Wu, W. Lu, D.W. Dees, A.N. Jansen, Optimizing areal capacities through understanding the limitations of lithium-ion electrodes, J. Electrochem. Soc. 163 (2016) A138-A149. https://doi.org/10.1149/2.0321602jes
[144] N. Lin, Y. Han, L. Wang, J. Zhou, J. Zhou, Y. Zhu, Y. Qian, Preparation of nanocrystalline silicon from SiCl4 at 200 °C in molten salt for high-performance anodes for lithium ion batteries, Angew. Chemie Int. Ed. 54 (2015) 3822-3825. https://doi.org/10.1002/anie.201411830
[145] J.-K. Yoo, J. Kim, H. Lee, J. Choi, M.-J. Choi, D.M. Sim, Y.S. Jung, K. Kang, Porous silicon nanowires for lithium rechargeable batteries, Nanotechnology. 24 (2013) 424008. https://doi.org/10.1088/0957-4484/24/42/424008
[146] B. Gattu, R. Epur, P.H. Jampani, R. Kuruba, M.K. Datta, P.N. Kumta, Silicon-carbon core-shell hollow nanotubular configuration high-performance lithium-ion anodes, J. Phys. Chem. C. 121 (2017) 9662-9671. https://doi.org/10.1021/acs.jpcc.7b00057
[147]D. Jia, X. Li, J. Huang, Bio-inspired sandwich-structured carbon/silicon/titanium-oxide nanofibers composite as an anode material for lithium-ion batteries, Compos. Part A Appl. Sci. Manuf. 101 (2017) 273-282. https://doi.org/10.1016/j.compositesa.2017.06.028
[148] S. Chen, Z. Chen, X. Xu, C. Cao, M. Xia, Y. Luo, Scalable 2D mesoporous silicon nanosheets for high-performance lithium-ion battery anode, Small. 14 (2018) 1703361. https://doi.org/10.1002/smll.201703361
[149] L. Yan, J. Liu, Q. Wang, M. Sun, Z. Jiang, C. Liang, F. Pan, Z. Lin, In Situ wrapping Si nanoparticles with 2D carbon nanosheets as high-areal-capacity anode for lithium-ion batteries, ACS Appl. Mater. Interfaces. 9 (2017) 38159-38164. https://doi.org/10.1021/acsami.7b10873
[150] P. Gao, H. Tang, A. Xing, Z. Bao, Porous silicon from the magnesiothermic reaction as a high-performance anode material for lithium ion battery applications, Electrochim. Acta. 228 (2017) 545-552. https://doi.org/10.1016/j.electacta.2017.01.119
[151] K. Zhang, Y. Xia, Z. Yang, R. Fu, C. Shen, Z. Liu, Structure-preserved 3D porous silicon/reduced graphene oxide materials as anodes for Li-ion batteries, RSC Adv. 7 (2017) 24305-24311. https://doi.org/10.1039/C7RA02240A