Recent Advances in Nanomaterials for Li-ion Batteries
K. Chandra Babu Naidu, N. Suresh Kumar, Rajender Boddula, S. Ramesh, Ramyakrishna Pothu, Prasun Banerjee, M.S.S.R.K.N. Sarma, H. Manjunatha, B. Kishore
This chapter provides the information about different materials for the fabrication of Li-ion batteries. Further, the basic structure of Li-ion batteries is discussed. Subsequently, the electrochemical energy storage efficiency of various Li-ion batteries is described as a function of distinct electrochemical parameters.
Keywords
Li-ion Batteries, Electrochemical Properties, Advanced Materials, Specific Capacitance
Published online 7/25/2020, 13 pages
Citation: K. Chandra Babu Naidu, N. Suresh Kumar, Rajender Boddula, S. Ramesh, Ramyakrishna Pothu, Prasun Banerjee, M.S.S.R.K.N. Sarma, H. Manjunatha, B. Kishore, Recent Advances in Nanomaterials for Li-ion Batteries, Materials Research Foundations, Vol. 80, pp 148-160, 2020
DOI: https://doi.org/10.21741/9781644900918-6
Part of the book on Lithium-ion Batteries
References
[1] Q. Zhaoxiang, G. M. Koenig Jr., Review Article: Flow battery systems with solid electroactive materials, J. Vac. Sci. Technol. B 35 (2017) 040801. https://doi.org/10.1116/1.4983210
[2] E. Ali, Lithium-ion batteries with high rate capabilities, ACS Sustain. Chem. Eng. 5 (2017) 2799–2816. https://doi.org/10.1021/acssuschemeng.7b00046
[3] J.W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources 195 (2010) 4554–4569. https://doi.org/10.1016/j.jpowsour.2010.01.076
[4] J. Munson, Simple calibration circuit maximizes accuracy in Li-Ion battery management systems, Analog Circuit Design Volume 3: Design Note Collection (2015) 419- 420. https://doi.org/10.1016/B978-0-12-800001-4.00197-6
[5] L.H.J. Raijmakers, D.L. Danilov, R.A. Eichel, P.H.L. Notten, A review on various temperature-indication methods for Li-ion batteries, Appl. Energy 240 (2019) 918–945. https://doi.org/10.1016/j.apenergy.2019.02.078
[6] Y. Guan, J. Shen, X. Wei, High-rate performance of a three-dimensional LiFePO4/graphene composite as cathode material for Li-ion batteries, Appl. Surf. Sci.481 (2019) 1459-1465. https://doi.org/10.1016/j.apsusc.2019.03.213
[7] C. Deng, Y. Jiang, Z. Fan, S. Zhao, D. Ouyang, J. Tan, Y. Ding, Sepiolite-based separator for advanced Li-ion batteries, Appl. Surf. Sci. 484 (2019) 446-452. https://doi.org/10.1016/j.apsusc.2019.04.141
[8] J. Zhang, G. Liu, H. Hu, L. Wu, Q. Wang, X. Xin,P. Lu, Graphene-like carbon-nitrogen materials as anode materials for Li-ion and mg-ion batteries, Appl. Surf. Sci.487 (2019) 1026-1032. https://doi.org/10.1016/j.apsusc.2019.05.155
[9] F. Khan, M. Oh, &J. H. Kim, N-functionalized graphene quantum dots: charge transporting layer for high-rate and durable Li4Ti5O12–based Li-ion battery, Chem. Eng. J. 369 (2019) 1024- 1033. https://doi.org/10.1016/j.cej.2019.03.161
[10] H. Li, B. Zhang, Q. Zhou, J. Zhang, W. Yu, Z. Ding, A.M. Tsiamtsouri, J. Zheng and H. Tong, Dual-carbon confined SnO2 as ultralong-life anode for Li-ion batteries, Ceram. Int. 45 (2019) 7830-7838. https://doi.org/10.1016/j.ceramint.2019.01.090
[11] H. Raj, A. Sil, N.V. Pulagara, MnO anchored reduced graphene oxide nanocomposite for high energy applications of Li-ion batteries: The insight of charge-discharge process, Ceram. Int. 45 (2019) 14829–14841. https://doi.org/10.1016/j.ceramint.2019.04.214
[12] A. Sawas, G.S. Babu, N.K. Thangavel, L.M.R. Arava, Electrocatalysis driven high energy density Li-Ion polysulfide battery, Electrochim. Acta 307 (2019) 253- 259. https://doi.org/10.1016/j.electacta.2019.03.191
[13] H. Luo, C. Xu, B. Wang, F. Jin, L. Wang, T. Liu,D. Wang, Highly conductive graphene-modified TiO2 hierarchical film electrode for flexible Li-ion battery anode,Electrochim.Acta 313 (2019) 10-19. https://doi.org/10.1016/j.electacta.2019.05.018
[14] M. D. Bhatt, J. Y. Lee, High capacity conversion anodes in Li-ion batteries: A review, Int. J. HydrogenEnergy44 (2019) 10852-10905. https://doi.org/10.1016/j.ijhydene.2019.02.015
[15] K.O. Ogunniran, G. Murugadoss, R. Thangamuthu, S.T. Nishanthi, Nanostructured CeO2/FeO3/Mn-rGO composite as anode material in Li-ion battery, J. AlloysCompd. 786 (2019) 873–883. https://doi.org/10.1016/j.jallcom.2019.02.024
[16] C. Wang, X. Yang, M. Zheng, Y. Xu, Synthesis of β-FeOOH nanorods adhered to pine-biomass carbon as a low-cost anode material for Li-ion batteries, J. AlloysCompd. 794(2019)569-575. https://doi.org/10.1016/j.jallcom.2019.04.074
[17] K. Wang, B. Xue, Y. Tan, J. Sun, Q. Li, S. Shi, P. Li, Recycling of micron-sized Sipowder waste from diamond wire cutting and its application in Li-ion battery anodes, J. Clean.Prod. 239 (2019) 117997. https://doi.org/10.1016/j.jclepro.2019.117997
[18] X. Zhou, J. Ding, J. Tang, J. Yang, H. Wang, M. Jia, Tailored MoO3-encapsulated FeF30.33H2O composites as high performance cathodes for Li-ion batteries, J.Electroanal. Chem.847 (2019) 113227. https://doi.org/10.1016/j.jelechem.2019.113227
[19] C. Heubner, A. Nickol, J. Seeba, S. Reuber, N. Junker, M. Wolter, M. Schneider, A. Michaelis, Understanding thickness and porosity effects on the electrochemical lperformance of LiNi0.6Co0.2Mn0.2O2-based cathodes for high energy Li-ion batteries, J. Power Sources 419 (2019) 119–126. https://doi.org/10.1016/j.jpowsour.2019.02.060
[20] T. Kozawa, Lattice deformation of LiNi0.5Mn1.5O4 spinel cathode for Li-ion batteries by ball milling, J. Power Sources 419 (2019) 52–57. https://doi.org/10.1016/j.jpowsour.2019.02.063
[21] B. Huang, S. Zhong, J. Luo, Z. Huang,C. Wang, Highly dense perovskite electrolyte with a high Li+ conductivity for Li–ion batteries, J. Power Sources 429 (2019) 75–79. https://doi.org/10.1016/j.jpowsour.2019.04.117
[22] J. Park, H. Yoo, J. Choi, 3D ant-nest network of α-Fe2O3 on stainless steel for all-in-one anode for Li-ion battery, J. Power Sources 431(2019) 25–30. https://doi.org/10.1016/j.jpowsour.2019.05.054
[23] P.M. Ette, D. B. Babu, M. L. Roy, K. Ramesha, Mo3Nb2O14: A high-rate intercalation electrode material for Li-ion batteries with liquid and garnet based hybrid solid electrolytes, J. Power Sources 436 (2019) 226850. https://doi.org/10.1016/j.jpowsour.2019.226850
[24] A.S. Kumar, M. Srinivas, A.V.P. Kiran, L. Neelakantan, Structural and electrochemical properties of (SnxCo100-x)50C50 anodes for Li-ion batteries, Mater. Chem. Phys. 236 (2019) 121782. https://doi.org/10.1016/j.matchemphys.2019.121782
[25] X. Michaud, K. Shi, I. Zhitomirsky, Electrophoretic deposition of LiFePO4 for Li-ionbatteries, Mater. Lett.241(2019) 10-13. https://doi.org/10.1016/j.matlet.2019.01.032
[26] D.R. Patil, S.D. Jadhav, A. Mungale, A.S. Kalekar, D.P. Dubal, Fractal granular BiVO4 Microspheres as high performance anode material for Li-ion battery, Mater. Lett. 252 (2019)235-238. https://doi.org/10.1016/j.matlet.2019.05.142
[27] W. Li, X. Li, J. Yu, J. Liao, B. Zhao, L. Huang, A. Abdelhafiz, H. Zhang, J.H. Wang, Z. Guo, M. Liu, A self-healing layered GeP anode for high-performance Li-ionbatteries enabled by low formation energy, Nano Energy 61 (2019)594-603. https://doi.org/10.1016/j.nanoen.2019.04.080
[28] R. Wang, G. Qian, T. Liu, M. Li, J. Liu, B. Zhang, F. Pan, Tuning Li-enrichment in high-Ni layered oxide cathodes to optimize electrochemical performance for Li-ion battery, Nano Energy62 (2019) 709-717. https://doi.org/10.1016/j.nanoen.2019.05.089
[29] R.A. Adams, B. Li, J. Kazmi, T.E. Adams, V. Tomar, V.G. Pol, Dynamicimpact of LiCoO2 electrodes for Li-ion battery aging evaluation, Electrochim.Acta292 (2018)586-593. https://doi.org/10.1016/j.electacta.2018.08.101
[30] S. Ahn, H.S. Kim, S. Yang, J.Y. Do, B.H. Kim, K. Kim, Thermal stability and performance studies of LiCo1/3Ni1/3Mn1/3O2 with phosphazene additives for Li-ion batteries, J. Electroceram. 23 (2008) 289–294. https://doi.org/10.1007/s10832-008-9437-y
[31] G.C. Guo, R.Z. Wang, B.M. Ming, C. Wang, S.W. Luo, C. Lai, M. Zhang,Trap effects on vacancy defect of C3N as anode material in Li-ion battery, Appl. Surf. Sci. 475 (2019) 102–108. https://doi.org/10.1016/j.apsusc.2018.12.275
[32] Y. Hong, J. Yang, J. Xu, W. M. Choi, Template-free synthesis of hierarchical NiO microtubes as high performance anode materials for Li-ion batteries, Curr. Appl. Phys. 19 (2019) 715–720. https://doi.org/10.1016/j.cap.2019.03.019
[33] Y. Jin, Y. Xu, F. Ren,P. Ren,Mg-doped Li1.133Ni0.2Co0.2Mn0.467O2 in Li site as high-performance cathode material for Li-ion batteries, Solid State Ionics 336 (2019) 87–94. https://doi.org/10.1016/j.ssi.2019.03.020
[34] G. Y. Kim, Y. J. Park, Enhanced electrochemical and thermal properties of Sm2O3 coated Li[Li1/6Mn1/2Ni1/6Co1/6]O2 for Li-ion batteries, J. Electroceram. 31 (2013) 199–203. https://doi.org/10.1007/s10832-013-9806-z
[35] J. Li, J. Huang, J. Li, L. Cao, H. Qi, Y. Cheng,N-doped TiO2/rGO hybrids as superior Li-ion battery anodes with enhanced Li-ions storage capacity, J. Alloys Compd. 784 (2019) 165–172. https://doi.org/10.1016/j.jallcom.2019.01.061
[36] Y. Shi, X. Pan, B. Li, M. Zhao, H. Pang, Co3O4 and its composites for high-performance Li-ion batteries, Chem. Eng. J.343 (2018) 427 – 446. https://doi.org/10.1016/j.cej.2018.03.024