A Brief History of Conducting Polymers Applied in Lithium-ion Batteries

$30.00

A Brief History of Conducting Polymers Applied in Lithium-ion Batteries

Suzhe Liang, Yonggao Xia, Peter Müller-Buschbaum, Ya-Jun Cheng

As the most important portable power source at present, lithium-ion batteries still suffer from several problems due to lack of perfect electrode materials. Conducting polymers, owning both good electrical and physical properties, not only can composite with conventional electrode materials to improve their electrochemical performance but also are able to separately used as electrodes. In this chapter, the related studies of conducting polymer applied in electrodes will be reviewed by a chronological approach. With the unique perspective, this chapter will shed light on the future trends of the studies on applications of conducting polymers in lithium-ion batteries.

Keywords
Conducting Polymer, Brief History, Cathode, Anode, Lithium-Ion Battery

Published online 7/25/2020, 35 pages

Citation: Suzhe Liang, Yonggao Xia, Peter Müller-Buschbaum, Ya-Jun Cheng, A Brief History of Conducting Polymers Applied in Lithium-ion Batteries, Materials Research Foundations, Vol. 80, pp 28-62, 2020

DOI: https://doi.org/10.21741/9781644900918-2

Part of the book on Lithium-ion Batteries

References
[1] T. Nagaura, K. Tozawa, Lithium ion rechargeable battery, Prog. Batteries Solar Cells 9 (1990) 79-104.
[2] B. Scrosati, Lithium rocking chair batteries: an old concept?, J. Electrochem. Soc. 139 (1992) 2776-2781. https://doi.org/10.1149/1.2068978
[3] A. Yoshino, The Birth of the Lithium B9 (1992) 2776-278. Chem. Int. Ed. 51 (2012) 5798-5800. https://doi.org/10.1002/anie.201105006
[4] M. Winter, B. Barnett, K. Xu, Before Li ion batteries, Chem. Rev. 118 (2018) 11433-11456. https://doi.org/10.1021/acs.chemrev.8b00422
[5] B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science 334 (2011) 928-935. https://doi.org/10.1126/science.1212741
[6] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, Energy Environ. Sci. 4 (2011) 3243-3262. https://doi.org/10.1039/c1ee01598b
[7] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Materials for sustainable energy: A collection of peer-reviewed research and review articles from nature publishing group, World Scientific2011, pp. 171-179. https://doi.org/10.1142/9789814317665_0024
[8] M.V. Reddy, G.V. Subba Rao, B.V. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries, Chem. Rev. 113 (2013) 5364-5457. https://doi.org/10.1021/cr3001884
[9] H.D. Lee, G.J. Jung, H.S. Lee, T. Kim, J.D. Byun, K.S. Suh, Improved Stability of Lithium-Ion Battery Cathodes Using Conducting Polymer Binders, Sci. Adv. Mater. 8 (2016) 84-88. https://doi.org/10.1166/sam.2016.2606
[10] Z.Q. Tong, S.K. Liu, X.G. Li, Y.B. Ding, J.P. Zhao, Y. Li, Facile and controllable construction of vanadium pentoxide@conducting polymer core/shell nanostructures and their thickness-dependent synergistic energy storage properties, Electrochimi. Acta 222 (2016) 194-202. https://doi.org/10.1016/j.electacta.2016.09.098
[11] B. Xiao, X. Sun, Surface and subsurface reactions of lithium transition metal oxide cathode materials: An overview of the fundamental origins and remedying approaches, Adv. Energy Mater. 8 (2018) 1802057. https://doi.org/10.1002/aenm.201802057
[12] M.N. Obrovac, V.L. Chevrier, Alloy negative electrodes for Li-ion batteries, Chem. Rev. 114 (2014) 11444-11502. https://doi.org/10.1021/cr500207g
[13] D. Liu, Z.J. Liu, X. Li, W. Xie, Q. Wang, Q. Liu, Y. Fu, D. He, Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes as negative electrodes for full-cell lithium-ion batteries, Small 13 (2017) 1702000. https://doi.org/10.1002/smll.201702000
[14] X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, Silicon based lithium-ion battery anodes: A chronicle perspective review, Nano Energy 31 (2017) 113-143. https://doi.org/10.1016/j.nanoen.2016.11.013
[15] D. Chen, Z. Lou, K. Jiang, G.Z. Shen, Device configurations and future prospects of flexible/stretchable lithium-ion batteries, Adv. Funct. Mater. 28 (2018) 1805596. https://doi.org/10.1002/adfm.201805596
[16] Q.J. Huang, Y. Zhu, Printing Conductive Nanomaterials for Flexible and Stretchable Electronics: A Review of Materials, Processes, and Applications, Adv. Mater. Technol. 4 (2019) 1800546. https://doi.org/10.1002/admt.201800546
[17] Y.N. Jia, X.X. Liu, Y. Lu, Y.F. Su, R.J. Chen, F. Wu, Flexible electrode assembled from different microstructures, Progress Chem. 31 (2019) 464-474.
[18] C.Y. Wang, K.L. Xia, H.M. Wang, X.P. Liang, Z. Yin, Y.Y. Zhang, Advanced carbon for flexible and wearable electronics, Adv. Mater. 31 (2019) 1801072. https://doi.org/10.1002/adma.201801072
[19] M.E. Abdelhamid, A.P. O’Mullane, G.A. Snook, Storing energy in plastics: A review on conducting polymers & their role in electrochemical energy storage, RSC Adv. 5 (2015) 11611-11626. https://doi.org/10.1039/C4RA15947K
[20] P. Sengodu, A.D. Deshmukh, Conducting polymers and their inorganic composites for advanced Li-ion batteries: A review, RSC Adv. 5 (2015) 42109-42130. https://doi.org/10.1039/C4RA17254J
[21] P.T. Xiao, F.X. Bu, G.H. Yang, Y. Zhang, Y.X. Xu, Integration of graphene, nano sulfur, and conducting polymer into compact, flexible lithium-sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices, Adv. Mater. 29 (2017) 1073324. https://doi.org/10.1002/adma.201703324
[22] Z. Song, H. Zhou, Towards sustainable and versatile energy storage devices: an overview of organic electrode materials, Energy Environ. Sci. 6 (2013) 2280-2301. https://doi.org/10.1039/c3ee40709h
[23] S. Lee, G. Kwon, K. Ku, K. Yoon, S.K. Jung, H.D. Lim, K. Kang, Recent progress in organic electrodes for Li and Na rechargeable batteries, Adv. Mater. 30 (2018) 1704682. https://doi.org/10.1002/adma.201704682
[24] G. Milczarek, O. Inganäs, Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks, Science 335 (2012) 1468-1471. https://doi.org/10.1126/science.1215159
[25] J. Heinze, Electrochemistry of conducting polymers, Synth. Met. 43 (1991) 2805-2823. https://doi.org/10.1016/0379-6779(91)91183-B
[26] X.C. Li, Y.S. Jiao, S.J. Li, The synthesis, properties and application of new conducting polymers, Eur. Polym. J. 27 (1991) 1345-1351. https://doi.org/10.1016/0014-3057(91)90233-E
[27] A.J. Heeger, Semiconducting and metallic polymers: the fourth generation of polymeric materials, ACS Publications, 2001. https://doi.org/10.1557/mrs2001.232
[28] H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene,(CH)x, J. Chem. Soc., Chem. Commun. (1977) 578-580. https://doi.org/10.1039/c39770000578
[29] C. Chiang, M. Druy, S. Gau, A. Heeger, E. Louis, A.G. MacDiarmid, Y. Park, H. Shirakawa, Synthesis of highly conducting films of derivatives of polyacetylene,(CH)x, J. Am. Chem. Soc. 100 (1978) 1013-1015. https://doi.org/10.1021/ja00471a081
[30] Applications of Conducting Polymers, Conducting Polymers: A New Era in Electrochemistry 2008, pp. 225-263.
[31] L.J. Pan, H. Qiu, C.M. Dou, Y. Li, L. Pu, J.B. Xu, Y. Shi, Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage, Int. J. Mol. Sci. 11 (2010) 2636-2657. https://doi.org/10.3390/ijms11072636
[32] X.F. Lu, W.J. Zhang, C. Wang, T.C. Wen, Y. Wei, One-dimensional conducting polymer nanocomposites: Synthesis, properties and applications, Prog. Polym. Sci. 36 (2011) 671-712. https://doi.org/10.1016/j.progpolymsci.2010.07.010
[33] T.K. Das, S. Prusty, Review on Conducting Polymers and Their Applications, Polym. Plast. Technol. 51 (2012) 1487-1500. https://doi.org/10.1080/03602559.2012.710697
[34] Y. Shi, L.L. Peng, G.H. Yu, Nanostructured conducting polymer hydrogels for energy storage applications, Nanoscale 7 (2015) 12796-12806. https://doi.org/10.1039/C5NR03403E
[35] M.H. Naveen, N.G. Gurudatt, Y.B. Shim, Applications of conducting polymer composites to electrochemical sensors: A review, App. Mater. Today 9 (2017) 419-433. https://doi.org/10.1016/j.apmt.2017.09.001
[36] M.E. Bhosale, S. Chae, J.M. Kim, J.Y. Choi, Organic small molecules and polymers as an electrode material for rechargeable lithium ion batteries, J. Mater. Chem. A 6 (2018) 19885-19911. https://doi.org/10.1039/C8TA04906H
[37] S. Ghosh, T. Maiyalagan, R.N. Basu, Nanostructured conducting polymers for energy applications: towards a sustainable platform, Nanoscale 8 (2016) 6921-6947. https://doi.org/10.1039/C5NR08803H
[38] P.J. Nigrey, D. MacInnes, D.P. Nairns, A.G. MacDiarmid, A.J. Heeger, Lightweight Rechargeable Storage Batteries Using Polyacetylene,(CH)x as the Cathode-Active Material, J. Electrochem. Soc. 128 (1981) 1651-1654. https://doi.org/10.1149/1.2127704
[39] K. Kaneto, K. Yoshino, Y. Inuishi, Characteristics of polythiophene battery, JPN. J. App. Phys. 22 (1983) L567-L572. https://doi.org/10.1143/JJAP.22.L567
[40] N. Mermilliod, J. Tanguy, F. Petiot, A study of chemically synthesized polypyrrole as electrode material for battery applications, J. Electrochem. Soc. 133 (1986) 1073-1079. https://doi.org/10.1149/1.2108788
[41] R. Bittihn, G. Ely, F. Woeffler, H. Münstedt, H. Naarmann, D. Naegele, Polypyrrole as an electrode material for secondary lithium cells, Makromolekulare Chemie. Macromolecular Symposia, Wiley Online Library, 1987, pp. 51-59. https://doi.org/10.1002/masy.19870080106
[42] L.S. Yang, Z.Q. Shan, Y.D. Liu, Performance of polyaniline positive in a lithium battery, J. Power Sources 34 (1991) 141-145. https://doi.org/10.1016/0378-7753(91)85033-S
[43] A.P. Chattaraj, I.N. Basumallick, Improved conducting polymer cathodes for lithium batteries, J. Power Sources 45 (1993) 237-242. https://doi.org/10.1016/0378-7753(93)87013-S
[44] T. Osaka, T. Momma, Impedance analysis of electropolymerized conducting polymers for polymer battery cathodes, Electrochim. Acta 38 (1993) 2011-2014. https://doi.org/10.1016/0013-4686(93)80333-U
[45] T. Osaka, T. Momma, K. Shiota, S. Nakamura, Electrochemical evaluation of a polyanline/polupyrrole dual-layer for rechargeable lithium battery cathode, Denki Kagaku 61 (1993) 1361-1365. https://doi.org/10.5796/electrochemistry.61.1361
[46] T. Boinowitz, G. tom Suden, U. Tormin, H. Krohn, F. Beck, A metal-free polypyrrole/graphite secondary battery with an anion shuttle mechanism, J. Power Sources 56 (1995) 179-187. https://doi.org/10.1016/0378-7753(95)80031-B
[47] M.K. Song, W.I. Jung, H.W. Rhee, Flexible Polymer Battery with Conducting Polymer As a Cathode, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, Mol. Cryst. Liq. Cryst. 316 (1998) 337-340. https://doi.org/10.1080/10587259808044523
[48] S. Kuwabata, T. Idzu, S. Masui, H. Yoneyama, Use of conducting polymers as conducting matrix and binder for preparation of positive electrodes of metal oxide particles in lithium secondary batteries, 1999.
[49] C. Arbizzani, M. Mastragostino, M. Rossi, Preparation and electrochemical characterization of a polymer Li1.03Mn1.97O4/pEDOT composite electrode, Electrochem. Commun. 4 (2002) 545-549. https://doi.org/10.1016/S1388-2481(02)00368-5
[50] A.K. Cuentas-Gallegos, R. Vijayaraghavan, M. Lira-Cantu, N. Casan-Pastor, P. Gomez-Romero, Hybrid materials based on vanadyl phosphate and conducting polymers as cathodes in rechargeable lithium batteries, Bol. Soc. Esp. Ceram. V. 43 (2004) 429-433. https://doi.org/10.3989/cyv.2004.v43.i2.545
[51] M. Bengoechea, I. Boyano, O. Miguel, I. Cantero, E. Ochoteco, J. Pomposo, H. Grande, Chemical reduction method for industrial application of undoped polypyrrole electrodes in lithium-ion batteries, J. Power Sources 160 (2006) 585-591. https://doi.org/10.1016/j.jpowsour.2006.01.051
[52] H. Tsutsumi, H. Higashiyama, K. Onimura, T. Oishi, Preparation of poly (N-methylpyrrole) modified with pentathiepin rings and its application to pasitive active material for lithium secondary, J. Power Sources 146 (2005) 345-348. https://doi.org/10.1016/j.jpowsour.2005.03.015
[53] J.M. Pope, T. Sato, E. Shoji, N. Oyama, K.C. White, D.A. Buttry, Organosulfur/conducting polymer composite cathodes-II. Spectroscopic determination of the protonation and oxidation states of 2,5-dimercapto-1,3,4-thiadiazole, J. Electrochem. Soc. 149 (2002) A939-A952. https://doi.org/10.1149/1.1482768
[54] C. Arbizzani, A. Balducci, M. Mastragostino, M. Rossi, F. Soavi, Li1.01Mn1.97O4 surface modification by poly (3,4-ethylenedioxythiophene), J. Power Sources 119 (2003) 695-700. https://doi.org/10.1016/S0378-7753(03)00228-3
[55] C. Arbizzani, A. Balducci, M. Mastragostino, M. Rossi, F. Soavi, Characterization and electrochemical performance of Li-rich manganese oxide spinel/poly (3, 4-ethylenedioxythiophene) as the positive electrode for lithium-ion batteries, J. Electroanal. Chem. 553 (2003) 125-133. https://doi.org/10.1016/S0022-0728(03)00305-X
[56] E.C. Venancio, A.J. Motheo, F.A. Amaral, N. Bocchi, Performance of polyaniline electrosynthesized in the presence of trichloroacetic acid as a battery cathode, J. Power Sources 94 (2001) 36-39. https://doi.org/10.1016/S0378-7753(00)00659-5
[57] K.S. Ryu, Y. Lee, K.S. Han, M.G. Kim, The electrochemical performance of polythiophene synthesized by chemical method as the polymer battery electrode, Mater. Chem. Phys. 84 (2004) 380-384. https://doi.org/10.1016/j.matchemphys.2003.12.009
[58] C.C. Chang, L.J. Her, J.L. Hong, Copolymer from electropolymerization of thiophene and 3,4-ethylenedioxythiophene and its use as cathode for lithium ion battery, Electrochim. Acta 50 (2005) 4461-4468. https://doi.org/10.1016/j.electacta.2005.02.008
[59] J. Chen, J. Wang, C. Wang, C. Too, G. Wallace, Lithium–Polymer battery based on polybithiophene as cathode material, J. Power Sources 159 (2006) 708-711. https://doi.org/10.1016/j.jpowsour.2005.10.100
[60] J. Wang, C.O. Too, G.G. Wallace, A highly flexible polymer fibre battery, J. Power Sources 150 (2005) 223-228. https://doi.org/10.1016/j.jpowsour.2005.01.046
[61] J. Wang, C.O. Too, D. Zhou, G.G. Wallace, Novel electrode substrates for rechargeable lithium/polypyrrole batteries, J. Power Sources 140 (2005) 162-167. https://doi.org/10.1016/j.jpowsour.2004.08.040
[62] G.G. Amatucci, N. Pereira, T. Zheng, J.M. Tarascon, Failure Mechanism and Improvement of the Elevated Temperature Cycling of LiMn2O4 Compounds Through the Use of the LiAlxMn2−xO4−zFz Solid Solution, J. Electrochem. Soc. 148 (2001) A171-A182. https://doi.org/10.1149/1.1342168
[63] D.D. MacNeil, T. Hatchard, J.R. Dahn, A Comparison Between the High Temperature Electrode/Electrolyte Reactions of LixCoO2 and LixMn2O4, J. Electrochem. Soc. 148 (2001) A663-A667. https://doi.org/10.1149/1.1375798
[64] Y. Matsuo, R. Kostecki, F. McLarnon, Surface Layer Formation on Thin-Film LiMn2O4 Electrodes at Elevated Temperatures, J. Electrochem. Soc.148 (2001) A687-A692. https://doi.org/10.1149/1.1373658
[65] F.Y. Cheng, W. Tang, C.S. Li, J. Chen, H.K. Liu, P.W. Shen, S.X. Dou, Conducting poly(aniline) nanotubes and nanofibers: Controlled synthesis and application in lithium/poly(aniline) rechargeable batteries, Chem-Eur. J. 12 (2006) 3082-3088. https://doi.org/10.1002/chem.200500883
[66] M. Park, X. Zhang, M. Chung, G.B. Less, A.M. Sastry, A review of conduction phenomena in Li-ion batteries, J. Power Sources 195 (2010) 7904-7929. https://doi.org/10.1016/j.jpowsour.2010.06.060
[67] P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed. 47 (2008) 2930-2946. https://doi.org/10.1002/anie.200702505
[68] Y.H. Huang, K.S. Park, J.B. Goodenough, Improving lithium batteries by tethering carbon-coated LiFePO4 to polypyrrole, J. Electrochem. Soc. 153 (2006) A2282-A2286. https://doi.org/10.1149/1.2360769
[69] S.Y. Chew, C. Feng, S.H. Ng, J. Wang, Z. Guo, H. Liu, Low-temperature synthesis of polypyrrole-coated LiV3O8 composite with enhanced electrochemical properties, J. Electrochem. Soc. 154 (2007) A633-A637. https://doi.org/10.1149/1.2734778
[70] C.V.S. Reddy, J. Wei, Z. Quan-Yao, D. Zhi-Rong, C. Wen, S. Mho, R.R. Kalluru, Cathodic performance of (V2O5+PEG) nanobelts for Li ion rechargeable battery, J. Power Sources 166 (2007) 244-249. https://doi.org/10.1016/j.jpowsour.2007.01.010
[71] A.V. Murugan, T. Muraliganth, A. Manthiram, Rapid microwave-solvothermal synthesis of phospho-olivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries, Electrochem. Commun. 10 (2008) 903-906. https://doi.org/10.1016/j.elecom.2008.04.004
[72] H.C. Dinh, I.H. Yeo, W.I. Cho, S.I. Mho, Characteristics of Conducting Polymer-Coated Nanosized LiFePO4 Cathode in the Li+ Batteries, in: X. Zhang, D. Chu, P.S. Fedkiw, C. Wang (Eds.) Adv. Org. Inorg. Mater. Electrochem. Power Sources 2010, pp. 167-175. https://doi.org/10.1149/1.3490696
[73] G.C. Li, C.Q. Zhang, H.R. Peng, K.Z. Chen, One-Dimensional V2O5@Polyaniline Core/Shell Nanobelts Synthesized by an In situ Polymerization Method, Macromol. Rapid Comm. 30 (2009) 1841-1845. https://doi.org/10.1002/marc.200900322
[74] S.R. Sivakkumar, P.C. Howlett, B. Winther-Jensen, M. Forsyth, D.R. MacFarlane, Polyterthiophene/CNT composite as a cathode material for lithium batteries employing an ionic liquid electrolyte, Electrochim. Acta 54 (2009) 6844-6849. https://doi.org/10.1016/j.electacta.2009.06.091
[75] A. Fedorková, A. Nacher-Alejos, P. Gómez-Romero, R. Oriňáková, D. Kaniansky, Structural and electrochemical studies of PPy/PEG-LiFePO4 cathode material for Li-ion batteries, Electrochim. Acta 55 (2010) 943-947. https://doi.org/10.1016/j.electacta.2009.09.060
[76] A. Fedorková, R. Oriňáková, A. Oriňák, H.-D. Wiemhöfer, D. Kaniansky, M. Winter, Surface treatment of LiFePO4 cathode material with PPy/PEG conductive layer, J. Solid State Electr. 14 (2010) 2173-2178. https://doi.org/10.1007/s10008-009-0967-2
[77] H.C. Dinh, S.i. Mho, I.H. Yeo, Electrochemical Analysis of Conductive Polymer-Coated LiFePO4 Nanocrystalline Cathodes with Controlled Morphology, Electroanal. 23 (2011) 2079-2086. https://doi.org/10.1002/elan.201100222
[78] D. Lepage, C. Michot, G.X. Liang, M. Gauthier, S.B. Schougaard, A Soft Chemistry Approach to Coating of LiFePO4 with a Conducting Polymer, Angew. Chem. Int. Ed. 50 (2011) 6884-6887. https://doi.org/10.1002/anie.201101661
[79] P. Zhang, L. Zhang, X. Ren, Q. Yuan, J. Liu, Q. Zhang, Preparation and electrochemical properties of LiNi1/3Co1/3Mn1/3O2–PPy composites cathode materials for lithium-ion battery, Synth. Met. 161 (2011) 1092-1097. https://doi.org/10.1016/j.synthmet.2011.03.021
[80] R. Orinakova, A. Fedorkova, A. Orinak, Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries, Chem. Pap. 67 (2013) 860-875. https://doi.org/10.2478/s11696-013-0350-8
[81] D. Cintora-Juarez, C. Perez-Vicente, S. Ahmad, J.L. Tirado, Improving the cycling performance of LiFePO4 cathode material by poly(3,4-ethylenedioxythiopene) coating, RSC Adv. 4 (2014) 26108-26114. https://doi.org/10.1039/C4RA05286B
[82] J.M. Kim, H.S. Park, J.H. Park, T.H. Kim, H.K. Song, S.Y. Lee, Conducting polymer-skinned electroactive materials of lithium-ion batteries: ready for monocomponent electrodes without additional binders and conductive agents, ACS Appl. Mater. Interfaces 6 (2014) 12789-12797. https://doi.org/10.1021/am502736m
[83] H.Y. Yan, W.X. Chen, X.M. Wu, Y.F. Li, Conducting polyaniline-wrapped lithium vanadium phosphate nanocomposite as high-rate and cycling stability cathode for lithium-ion batteries, Electrochim. Acta 146 (2014) 295-300. https://doi.org/10.1016/j.electacta.2014.09.040
[84] J. Cao, G. Hu, Z. Peng, K. Du, Y. Cao, Polypyrrole-coated LiCoO2 nanocomposite with enhanced electrochemical properties at high voltage for lithium-ion batteries, J. Power Sources 281 (2015) 49-55. https://doi.org/10.1016/j.jpowsour.2015.01.174
[85] J. Lee, W. Choi, Surface modification of over-lithiated layered oxides with PEDOT:PSS conducting polymer in lithium-ion batteries, J. Electrochem. Soc. 162 (2015) A743-A748. https://doi.org/10.1149/2.0801504jes
[86] H.Y. Yan, X.M. Wu, Y.F. Li, Preparation and characterization of conducting polyaniline-coated LiVPO4F nanocrystals with core-shell structure and its application in lithium-ion batteries, Electrochim. Acta 182 (2015) 437-444. https://doi.org/10.1016/j.electacta.2015.09.141
[87] F. Wu, J. Liu, L. Li, X. Zhang, R. Luo, Y. Ye, R. Chen, Surface modification of li-rich cathode materials for lithium-ion batteries with a PEDOT:PSS conducting polymer, ACS Appl. Mater. Interfaces 8 (2016) 23095-23104. https://doi.org/10.1021/acsami.6b07431
[88] H. Yan, G. Zhang, Y. Li, Synthesis and characterization of advanced Li3V2(PO4)3 nanocrystals@conducting polymer PEDOT for high energy lithium-ion batteries, App. Surf. Sci. 393 (2017) 30-36. https://doi.org/10.1016/j.apsusc.2016.09.156
[89] Q. Gan, N. Qin, Y. Zhu, Z. Huang, F. Zhang, S. Gu, J. Xie, K. Zhang, L. Lu, Z. Lu, Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-Rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium-ion batteries, ACS Appl. Mater. Interfaces 11 (2019) 12594-12604. https://doi.org/10.1021/acsami.9b04050
[90] N.D. Trinh, M. Saulnier, D. Lepage, S.B. Schougaard, Conductive polymer film supporting LiFePO4 as composite cathode for lithium ion batteries, J. Power Sources 221 (2013) 284-289. https://doi.org/10.1016/j.jpowsour.2012.08.006
[91] Y.J. Zhao, Z. Lv, Y. Wang, T. Xu, Combination of Fe-Mn based Li-rich cathode materials and conducting-polymer polypyrrole nanowires with high rate capability, Ionics 24 (2018) 51-60. https://doi.org/10.1007/s11581-017-2166-y
[92] H. Kim, J. Hong, K.Y. Park, H. Kim, S.W. Kim, K. Kang, Aqueous rechargeable Li and Na ion batteries, Chem. Rev. 114 (2014) 11788-11827. https://doi.org/10.1021/cr500232y
[93] H.P. Wong, Synthesis and characterization of polypyrrole/vanadium pentoxide nanocomposite aerogels, J. Mater. Chem. 8 (1998) 1019-1027. https://doi.org/10.1039/a706614g
[94] Z. Tong, H. Yang, L. Na, H. Qu, X. Zhang, J. Zhao, Y. Li, Versatile displays based on a 3-dimensionally ordered macroporous vanadium oxide film for advanced electrochromic devices, J. Mater. Chem. C 3 (2015) 3159-3166. https://doi.org/10.1039/C5TC00029G
[95] H. Zhu, L. Gao, M. Li, H. Yin, D. Wang, Fabrication of free-standing conductive polymer films through dynamic three-phase interline electropolymerization, Electrochem. Commun. 13 (2011) 1479-1483. https://doi.org/10.1016/j.elecom.2011.09.029
[96] K.S. Park, S.B. Schougaard, J.B. Goodenough, Conducting-polymer/iron-redox-couple composite cathodes for lithium secondary batteries, Adv. Mater. 19 (2007) 848-851. https://doi.org/10.1002/adma.200600369
[97] Y.Z. Su, W. Dong, H.H. Zhang, J.H. Song, Y.H. Zhang, K.C. Gong, Poly bis(2-aminophenyloxy)disulfide : A polyaniline derivative containing disulfide bonds as a cathode material for lithium battery, Polymer 48 (2007) 165-173. https://doi.org/10.1016/j.polymer.2006.10.044
[98] G.G. Rodriguez-Calero, M.A. Lowe, S.E. Burkhardt, H.D. Abruna, Electrocatalysis of 2,5-dimercapto-1,3,5-thiadiazole by 3,4-ethylenedioxy-substituted conducting polymers, Langmuir 27 (2011) 13904-13909. https://doi.org/10.1021/la202706s
[99] M. Zhou, J.F. Qian, X.P. Ai, H.X. Yang, Redox-Active Fe(CN)64–doped conducting polymers with greatly enhanced capacity as cathode materials for Li-Ion batteries, Adv. Mater. 23 (2011) 4913-4917. https://doi.org/10.1002/adma.201102867
[100] P. Sharma, D. Damien, K. Nagarajan, M.M. Shaijumon, M. Hariharan, Perylene-polyimide-based organic electrode materials for rechargeable lithium batteries, J. Phys. Chem. Lett. 4 (2013) 3192-3197. https://doi.org/10.1021/jz4017359
[101] J. Kim, H.S. Park, T.H. Kim, S.Y. Kim, H.K. Song, An inter-tangled network of redox-active and conducting polymers as a cathode for ultrafast rechargeable batteries, Phys. Chem. Chem. Phys. 16 (2014) 5295-5300. https://doi.org/10.1039/c3cp54624a
[102] S.N. Eliseeva, E.V. Alekseeva, A.A. Vereshchagin, A.I. Volkov, P.S. Vlasov, A.S. Konev, O.V. Levin, Nickel-salen type polymers as cathode materials for rechargeable lithium batteries, Macromol. Chem. Phys. 218 (2017) 1700361. https://doi.org/10.1002/macp.201700361
[103] C. O’Meara, M.P. Karushev, I.A. Polozhentceva, S. Dharmasena, H.N. Cho, B.J. Yurkovich, S. Kogan, J.H. Kim, Nickel-salen-type polymer as conducting agent and binder for carbon-free cathodes in lithium-ion batteries, ACS Appl. Mater. Interfaces 11 (2019) 525-533. https://doi.org/10.1021/acsami.8b13742
[104] Y. Kiya, J.C. Henderson, H.D. Abruña, 4-Amino-4H-1, 2, 4-triazole-3, 5-dithiol a modifiable organosulfur compound as a high-energy cathode for lithium-ion rechargeable batteries, J. Electrochem. Soc. 154 (2007) A844-A848. https://doi.org/10.1149/1.2752025
[105] S.R. Deng, L.B. Kong, G.Q. Hu, T. Wu, D. Li, Y.-H. Zhou, Z.-Y. Li, Benzene-based polyorganodisulfide cathode materials for secondary lithium batteries, Electrochim. acta 51 (2006) 2589-2593. https://doi.org/10.1016/j.electacta.2005.07.045
[106] H. Uemachi, Y. Iwasa, T. Mitani, Poly (1, 4-phenylene-1, 2, 4-dithiazol-3, 5′-yl): the new redox system for lithium secondary batteries, Electrochim. acta 46 (2001) 2305-2312. https://doi.org/10.1016/S0013-4686(01)00436-4
[107] G. Yan, J. Li, Y. Zhang, F. Gao, F. Kang, Electrochemical polymerization and energy storage for poly [Ni (salen)] as supercapacitor electrode material, J. Phys. Chem. C 118 (2014) 9911-9917. https://doi.org/10.1021/jp500249t
[108] E.V. Alekseeva, I.A. Chepurnaya, V.V. Malev, A.M. Timonov, O.V. Levin, Polymeric nickel complexes with salen-type ligands for modification of supercapacitor electrodes: impedance studies of charge transfer and storage properties, Electrochim. Acta 225 (2017) 378-391. https://doi.org/10.1016/j.electacta.2016.12.135
[109] E. Dmitrieva, M. Rosenkranz, J.S. Danilova, E.A. Smirnova, M.P. Karushev, I.A. Chepurnaya, A.M. Timonov, Radical formation in polymeric nickel complexes with N2O2 Schiff base ligands: An in situ ESR and UV–vis–NIR spectroelectrochemical study, Electrochim. Acta 283 (2018) 1742-1752. https://doi.org/10.1016/j.electacta.2018.07.131
[110] P.R. Das, L. Komsiyska, O. Osters, G. Wittstock, PEDOT: PSS as a Functional Binder for Cathodes in Lithium Ion Batteries, J. Electrochem. Soc. 162 (2015) A674-A678. https://doi.org/10.1149/2.0581504jes
[111] S.N. Eliseeva, O.V. Levin, E.G. Tolstopyatova, E.V. Alekseeva, V.V. Kondratiev, Effect of addition of a conducting polymer on the properties of the LiFePO4-based cathode material for lithium-ion batteries, Russ. J. App. Chem. 88 (2015) 1146-1149. https://doi.org/10.1134/S1070427215070071
[112] H. Zhong, A. He, J. Lu, M. Sun, J. He, L. Zhang, Carboxymethyl chitosan/conducting polymer as water-soluble composite binder for LiFePO4 cathode in lithium ion batteries, J. Power Sources 336 (2016) 107-114. https://doi.org/10.1016/j.jpowsour.2016.10.041
[113] X. Ma, S. Zou, A. Tang, L. Chen, Z. Deng, B.G. Pollet, S. Ji, Three-dimensional hierarchical walnut kernel shape conducting polymer as water soluble binder for lithium-ion battery, Electrochimica Acta 269 (2018) 571-579. https://doi.org/10.1016/j.electacta.2018.03.031
[114] K.A. Vorobeva, S.N. Eliseeva, R.V. Apraksin, M.A. Kamenskii, E.G. Tolstopjatova, V.V. Kondratiev, Improved electrochemical properties of cathode material LiMn2O4 with conducting polymer binder, J. Alloy Compd. 766 (2018) 33-44. https://doi.org/10.1016/j.jallcom.2018.06.324
[115] L. Shacklette, J. Toth, N. Murthy, R. Baughman, Polyacetylene and polyphenylene as anode materials for nonaqueous secondary batteries, J. Electrochem. Soc. 132 (1985) 1529-1535. https://doi.org/10.1149/1.2114159
[116] B. Coffey, P.V. Madsen, T.O. Poehler, P.C. Searson, High charge-density conducting polymer graphite fiber-composite electrodes for battery applications, J. Electrochem. Soc. 142 (1995) 321-325. https://doi.org/10.1149/1.2043991
[117] M. Endo, C. Kim, T. Hiraoka, T. Karaki, M. Matthews, S. Brown, M. Dresselhaus, Li storage behavior in polyparaphenylene (PPP)-based disordered carbon as a negative electrode for Li ion batteries, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Mol. Cryst. Liq. Cryst. 310 (1998) 353-358. https://doi.org/10.1080/10587259808045361
[118] X.M. He, J.G. Ren, L. Wang, W.H. Pu, C.Y. Jiang, C.R. Wan, Synthesis of PAN/SnCl2 composite as Li-ion battery anode material, Ionics 12 (2006) 323-326. https://doi.org/10.1007/s11581-006-0051-1
[119] J. Chen, Y. Liu, A.I. Minett, C. Lynam, J. Wang, G.G. Wallace, Flexible, aligned carbon nanotube/conducting polymer electrodes for a lithium-ion battery, Chem. Mater. 19 (2007) 3595-3597. https://doi.org/10.1021/cm070991g
[120] C. Reynaud, C. Boiziau, C. Juret, S. Leroy, J. Perreau, G. Lecayon, Valence electronic structure of a thin film of polyacrylonitrile and its pyrolized derivatives, Synth. Met. 11 (1985) 159-165. https://doi.org/10.1016/0379-6779(85)90061-X
[121] W. Lee, E. Choi, A. Ovchinnikov, Y. Park, K. Liou, D. Kim, K. Chung, Electrical transport of the pyrolyzed materials; polyacenic and polyacrylonitrile, Synth. Met. 57 (1993) 5075-5080. https://doi.org/10.1016/0379-6779(93)90865-T
[122] S. Ng, J. Wang, Z. Guo, J. Chen, G. Wang, H. Liu, Single wall carbon nanotube paper as anode for lithium-ion battery, Electrochim. Acta 51 (2005) 23-28. https://doi.org/10.1016/j.electacta.2005.04.045
[123] Y. Lu, L. Yu, X.W.D. Lou, Nanostructured conversion-type anode materials for advanced lithium-ion batteries, Chem 4 (2018) 972-996. https://doi.org/10.1016/j.chempr.2018.01.003
[124] C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol. 3 (2008) 31. https://doi.org/10.1038/nnano.2007.411
[125] Y. Xiao, X. Wang, Y. Xia, Y. Yao, E. Metwalli, Q. Zhang, R. Liu, B. Qiu, M. Rasool, Z. Liu, J.Q. Meng, L.D. Sun, C.H. Yan, P. Muller-Buschbaum, Y.J. Cheng, Green facile scalable synthesis of titania/carbon nanocomposites: New use of old dental resins, ACS Appl. Mater. Interfaces 6 (2014) 18461-18468. https://doi.org/10.1021/am506114p
[126] X. Wang, J.Q. Meng, M. Wang, Y. Xiao, R. Liu, Y. Xia, Y. Yao, E. Metwalli, Q. Zhang, B. Qiu, Z. Liu, J. Pan, L.D. Sun, C.H. Yan, P. Muller-Buschbaum, Y.J. Cheng, Facile scalable synthesis of TiO2/carbon nanohybrids with ultrasmall TiO2 nanoparticles homogeneously embedded in carbon matrix, ACS Appl. Mater. Interfaces 7 (2015) 24247-24255. https://doi.org/10.1021/acsami.5b07784
[127] P.M. Dziewonski, M. Grzeszczuk, Towards TiO2-conducting polymer hybrid materials for lithium ion batteries, Electrochim. Acta 55 (2010) 3336-3347. https://doi.org/10.1016/j.electacta.2010.01.043
[128] X. Shen, D. Mu, S. Chen, B. Wu, F. Wu, Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries, ACS Appl. Mater. Interfaces 5 (2013) 3118-3125. https://doi.org/10.1021/am400020n
[129] N. Li, S. Jin, Q. Liao, C. Wang, ZnO anchored on vertically aligned graphene: binder-free anode materials for lithium-ion batteries, ACS Appl. Mater. Interfaces 6 (2014) 20590-20596. https://doi.org/10.1021/am507046k
[130] G. Zhang, S. Hou, H. Zhang, W. Zeng, F. Yan, C.C. Li, H. Duan, High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum Dots/C core-shell nanorod arrays on a carbon cloth anode, Adv. Mater. 27 (2015) 2400-2405. https://doi.org/10.1002/adma.201405222
[131] G.L. Xu, Y. Li, T. Ma, Y. Ren, H.-H. Wang, L. Wang, J. Wen, D. Miller, K. Amine, Z. Chen, PEDOT-PSS coated ZnO/C hierarchical porous nanorods as ultralong-life anode material for lithium ion batteries, Nano Energy 18 (2015) 253-264. https://doi.org/10.1016/j.nanoen.2015.10.020
[132] L. Zhao, Y.S. Hu, H. Li, Z. Wang, L. Chen, Porous Li4Ti5O12 coated with n-doped carbon from ionic liquids for Li-ion batteries, Adv. Mater. 23 (2011) 1385-1388. https://doi.org/10.1002/adma.201003294
[133] G.N. Zhu, Y.G. Wang, Y.Y. Xia, Ti-based compounds as anode materials for Li-ion batteries, Energy Environ. Sci. 5 (2012) 6652-6667. https://doi.org/10.1039/c2ee03410g
[134] L. Zheng, X. Wang, Y. Xia, S. Xia, E. Metwalli, B. Qiu, Q. Ji, S. Yin, S. Xie, K. Fang, Scalable in situ synthesis of Li4Ti5O12/carbon nanohybrid with supersmall Li4Ti5O12 nanoparticles homogeneously embedded in carbon matrix, ACS Appl. Mater. Interfaces 10 (2018) 2591-2602. https://doi.org/10.1021/acsami.7b16578
[135] H. Zhang, Q. Deng, C. Mou, Z. Huang, Y. Wang, A. Zhou, J. Li, Surface structure and high-rate performance of spinel Li4Ti5O12 coated with N-doped carbon as anode material for lithium-ion batteries, J. Power Sources 239 (2013) 538-545. https://doi.org/10.1016/j.jpowsour.2013.03.013
[136] D. Xu, P.F. Wang, R. Yang, Conducting polythiophene-wrapped Li4Ti5O12 spinel anode material for ultralong cycle-life Li-ion batteries, Ceram. Int. 43 (2017) 4712-4715. https://doi.org/10.1016/j.ceramint.2016.12.116
[137] Z.J. Du, S.C. Zhang, T. Jiang, X.M. Wu, L. Zhang, H. Fang, Facile synthesis of SnO2 nanocrystals coated conducting polymer nanowires for enhanced lithium storage, J. Power Sources 219 (2012) 199-203. https://doi.org/10.1016/j.jpowsour.2012.07.052
[138] Y. Yao, N. Liu, M.T. McDowell, M. Pasta, Y. Cui, Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings, Energy Environ. Sci. 5 (2012) 7927-7930. https://doi.org/10.1039/c2ee21437g
[139] H. Wu, G.H. Yu, L.J. Pan, N.A. Liu, M.T. McDowell, Z.A. Bao, Y. Cui, Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles, Nat. Commun. 4 (2013) 1943. https://doi.org/10.1038/ncomms2941
[140] S. Xun, X. Song, V. Battaglia, G. Liu, Conductive polymer binder-enabled cycling of pure tin nanoparticle composite anode electrodes for a lithium-ion battery, J. Electrochem. Soc. 160 (2013) A849-A855. https://doi.org/10.1149/2.087306jes
[141] D. Shao, H. Zhong, L. Zhang, Water-Soluble Conductive Composite Binder Containing PEDOT:PSS as Conduction Promoting Agent for Si Anode of Lithium-Ion Batteries, ChemElectroChem 1 (2014) 1679-1687. https://doi.org/10.1002/celc.201402210
[142] T.M. Higgins, S.H. Park, P.J. King, C. Zhang, N. MoEvoy, N.C. Berner, D. Daly, A. Shmeliov, U. Khan, G. Duesberg, V. Nicolosi, J.N. Coleman, A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes, ACS Nano 10 (2016) 3702-3713. https://doi.org/10.1021/acsnano.6b00218
[143] E. Park, J. Kim, D.J. Chung, M.-S. Park, H. Kim, J.H. Kim, Si/SiOx-conductive polymer core-shell nanospheres with an improved conducting path preservation for lithium-ion battery, ChemSusChem 9 (2016) 2754-2758. https://doi.org/10.1002/cssc.201600798
[144] H. Zhao, A. Du, M. Ling, V. Battaglia, G. Liu, Conductive polymer binder for nano-silicon/graphite composite electrode in lithium-ion batteries towards a practical application, Electrochim. Acta 209 (2016) 159-162. https://doi.org/10.1016/j.electacta.2016.05.061
[145] H. Zhao, Y. Fu, M. Ling, Z. Jia, X. Song, Z. Chen, J. Lu, K. Amine, G. Liu, Conductive polymer binder-enabled SiO-SnxCoyCz anode for high-energy lithium-ion batteries, ACS Appl. Mater. Interfaces 8 (2016) 13373-13377. https://doi.org/10.1021/acsami.6b00312
[146] H. Chu, K. Lee, S. Lim, T.H. Kim, Enhancing the performance of a silicon anode by using a new conjugated polymer binder prepared by direct arylation, Macromol. Res. 26 (2018) 738-743. https://doi.org/10.1007/s13233-018-6106-0
[147] B. Liu, P. Soares, C. Checkles, Y. Zhao, G. Yu, Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes, Nano Lett 13 (2013) 3414-3419. https://doi.org/10.1021/nl401880v
[148] Z. Chen, J.W.F. To, C. Wang, Z.D. Lu, N. Liu, A. Chortos, L.J. Pan, F. Wei, Y. Cui, Z.N. Bao, A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery Electrodes, Adv. Energy Mater. 4 (2014). https://doi.org/10.1002/aenm.201400207
[149] W.F. Ren, J.T. Li, Z.G. Huang, L. Deng, Y. Zhou, L. Huang, S.G. Sun, Fabrication of Si nanoparticles@conductive carbon framework@polymer composite as high-areal-capacity anode of lithium-ion batteries, ChemElectroChem 5 (2018) 3258-3265. https://doi.org/10.1002/celc.201800834
[150] G. Liu, S. Xun, N. Vukmirovic, X. Song, P. Olaldeosite as high-areal-capacity anode of lithium-ion battlexible berfh tailored electronic structure for high capacity lithium battery electrodes, Adv. Mater. 23 (2011) 4679-4683. https://doi.org/10.1002/adma.201102421
[151] I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, A major constituent of brown algae for use in high-capacity Li-ion batteries, Science 334 (2011) 75-79. https://doi.org/10.1126/science.1209150
[152] J. Wu, X. Rui, G. Long, W. Chen, Q. Yan, Q. Zhang, Pushing up lithium storage through nanostructured polyazaacene analogues as anode, Angew. Chem. Int. Ed. 54 (2015) 7354-7358. https://doi.org/10.1002/anie.201503072
[153] J. Wu, X. Rui, C. Wang, W.B. Pei, R. Lau, Q. Yan, Q. Zhang, Nanostructured conjugated ladder polymers for stable and fast lithium storage anodes with high-capacity, Adv. Energy Mater. 5 (2015) 1402189. https://doi.org/10.1002/aenm.201402189
[154] J. Xie, X. Rui, P. Gu, J. Wu, Z.J. Xu, Q. Yan, Q. Zhang, Novel conjugated ladder-structured oligomer anode with high lithium storage and long cycling capability, ACS Appl. Mater. Interfaces 8 (2016) 16932-16938. https://doi.org/10.1021/acsami.6b04277
[155] J. Hu, F.F. Jia, Y.F. Song, Engineering high-performance polyoxometalate/PANI/MWNTs nanocomposite anode materials for lithium ion batteries, Chem. Eng. J. 326 (2017) 273-280. https://doi.org/10.1016/j.cej.2017.05.153
[156] Q.S. Liao, H.Y. Hou, J.X. Duan, S. Liu, Y. Yao, Z.P. Dai, C.Y. Yu, D.D. Li, Composite sodium rho-toluene sulfonate-polypyrrole-iron anode for a lithium-ion battery, J. App. Polym. Sci. 134 (2017) 44935. https://doi.org/10.1002/app.44935
[157] G. Sandu, B. Ernould, J. Rolland, N. Cheminet, J. Brassinne, P.R. Das, Y. Filinchuk, L.H. Cheng, L. Komsiyska, P. Dubois, S. Melinte, J.F. Gohy, R. Lazzaroni, A. Vlad, Mechanochemical synthesis of PEDOT:PSS hydrogels for aqueous formulation of Li-ion battery electrodes, ACS Appl. Mater. Interfaces 9 (2017) 34865-34874. https://doi.org/10.1021/acsami.7b08937
[158] A.D. Schlüter, Ladder polymers: The new generation, Adv. Mater. 3 (1991) 282-291. https://doi.org/10.1002/adma.19910030603
[159] F. Arnold, R. Van Deusen, Unusual film-forming properties of aromatic heterocyclic ladder polymers, J. App. Polym. Sci. 15 (1971) 2035-2047. https://doi.org/10.1002/app.1971.070150820
[160] P. Bornoz, M.S. Prévot, X. Yu, N.s. Guijarro, K. Sivula, Direct light-driven water oxidation by a ladder-type conjugated polymer photoanode, J. Am. Chem. Soc. 137 (2015) 15338-15341. https://doi.org/10.1021/jacs.5b05724
[161] Z.X. Cai, M.A. Awais, N. Zhang, L.P. Yu, Exploration of Syntheses and Functions of Higher Ladder-type pi-Conjugated Heteroacenes, Chem. 4 (2018) 2538-2570. https://doi.org/10.1016/j.chempr.2018.08.017
[162] M.H. Hoang, G.E. Park, D.L. Phan, T.T. Ngo, T.V. Nguyen, C.G. Park, M.J. Cho, D.H. Choi, Synthesis of conjugated wide-bandgap copolymers bearing ladder-type donating units and their application to non-fullerene polymer solar cells, Macromol. Res. 26 (2018) 844-850. https://doi.org/10.1007/s13233-018-6128-7
[163] Y.L. Yin, S.Y. Zhang, D.Y. Chen, F.Y. Guo, G. Yu, L.C. Zhao, Y. Zhang, Synthesis of an indacenodithiophene-based fully conjugated ladder polymer and its optical and electronic properties, Polym. Chem. 9 (2018) 2227-2231. https://doi.org/10.1039/C8PY00351C
[164] J.R. Cheng, B. Li, X.J. Ren, F. Liu, H.C. Zhao, H.J. Wang, Y.G. Wu, W.P. Chen, X.W. Ba, Highly twisted ladder-type backbone bearing perylene diimides for non-fullerene acceptors in organic solar cells, Dyes Pigments 161 (2019) 221-226. https://doi.org/10.1016/j.dyepig.2018.09.042
[165] F.E. Arnold, R. Van Deusen, Preparation and properties of high molecular weight, soluble oxobenz [de] imidazobenzimidazoisoquinoline ladder polymer, Macromolecules 2 (1969) 497-502. https://doi.org/10.1021/ma60011a009
[166] F. Dawans, C. Marvel, Polymers from ortho aromatic tetraamines and aromatic dianhydrides, J. Polym. Sci. Pol. Chem. 3 (1965) 3549-3571. https://doi.org/10.1002/pol.1965.100031019