Bamboo Derived Materials for Energy Storage

$30.00

Bamboo Derived Materials for Energy Storage

Sivagaami Sundari Gunasekaran, Thileep Kumar Kumaresan, Shanmugaraj Andikaddu Masilamanai, Kalaivani Raman, Raghu Subash Chandra Bose

Natural bamboo is an eco-friendly, widely distributed and multifunctional plant which has fast growth rate, short maturation cycle and high production yield. Recycling the bamboo wastes can make the process cost-effective and environment friendly. Added, the bamboo waste can be carbonized yielding low-cost carbon material which can be employed as electrode materials for energy storage devices like supercapacitors, batteries and fuel cells. Bamboo-based materials have been chosen for the electrode fabrication by virtue of its unique fibrous structure and due to the larger inner surface area provided by its tubular architecture. Compared to reported activated carbon, carbons derived from bamboo wastes have shown great promises for energy related applications. In this chapter, the physico-chemical characteristics of activated carbons derived from bamboo wastes for the supercapacitor application is discussed.

Keywords
Activated Carbon, Bamboo Stick, Supercapacitor, Specific Capacitance, Electrode

Published online 6/20/2020, 13 pages

Citation: Sivagaami Sundari Gunasekaran, Thileep Kumar Kumaresan, Shanmugaraj Andikaddu Masilamanai, Kalaivani Raman, Raghu Subash Chandra Bose, Bamboo Derived Materials for Energy Storage, Materials Research Foundations, Vol. 78, pp 111-123, 2020

DOI: https://doi.org/10.21741/9781644900871-5

Part of the book on Biomass Based Energy Storage Materials

References
[1] Gunasekaran, S. Sundari, S.K. Elumalali, T.K. Kumaresan, R. Meganathan, A. Ashok, V. Pawar, K. Vediappan, Partially graphitic nanoporous activated carbon prepared from biomass for supercapacitor application, Mater. Lett. 218 (2018) 165-168. https://doi.org/10.1016/j.matlet.2018.01.172
[2] Kumar, K. Thileep, G.S. Sundari, E.S. Kumar, A. Ashwini, M. Ramya, P. Varsha, R. Kalaivani, Synthesis of nanoporous carbon with new activating agent for high-performance supercapacitor, Mater. Lett. 218 (2018) 181-184. https://doi.org/10.1016/j.matlet.2018.02.017
[3] E.V. Senthilkumar, B. Sivasankar, R. Kohakade, K. Thileepkumar, M. Ramya, G.S. Sundari, S. Raghu, R.A. Kalaivani, Synthesis of nanoporous graphene and their electrochemical performance in a symmetric supercapacitor, Appl. Surface Sci. 460 (2018) 17-24. https://doi.org/10.1016/j.apsusc.2017.10.221
[4] S.S. Gunasekaran, R.S. Bose, K. Raman, Electrochemical capacitive performance of zncl2 activated carbon derived from bamboo bagasse in aqueous and organic electrolyte, Orient J. Chem. 35 (2019) 350136. https://doi.org/10.13005/ojc/350136
[5] Tian, Weiqian, Q. Gao, Y. Tan, K. Yang, L. Zhu, C. Yang, H. Zhang, Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material, J. Mater. Chem. A 3 (2015) 5656-5664. https://doi.org/10.1039/C4TA06620K
[6] Tang, Wangjia, Y. Zhang, Y. Zhong, T. Shen, X. Wang, X. Xia, J. Tu, Natural biomass-derived carbons for electrochemical energy storage, Mater. Res. Bull. 88 (2017) 234-241. https://doi.org/10.1016/j.materresbull.2016.12.025
[7] S. Yongming, R.B. Sills, X. Hu, Z.W. Seh, X. Xiao, H. Xu, W. Luo, A bamboo-inspired nanostructure design for flexible, foldable, and twistable energy storage devices, Nano Lett. 15 (2015) 3899-3906. https://doi.org/10.1021/acs.nanolett.5b00738
[8] Z. Camila, C.K. Ranaweera, Z. Wang, S. Singh, P. Tripathi, O.N. Srivastava, B.K. Gupta, High per formance and flexible supercapacitors based on carbonized bamboo fibers for wide temperature applications, Sci. Rep. 6 (2016) 31704. https://doi.org/10.1038/srep31704
[9] W. Yuxiang, T. Qin, Z. Wang, X. Jiang, S. Peng, J. Zhang, J. Hou, F. Huang, D. He, G.Cao, Self-supported binder-free carbon fibers/MnO2electrodes derived from disposable bamboo chopsticks for high-performance supercapacitors, J. Alloys Compd. 699 (2017) 126-135. https://doi.org/10.1016/j.jallcom.2016.12.330
[10] C. Hao, D. Liu, Z. Shen, B. Bao, S. Zhao, L. Wu, Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials, Electrochim. Acta 180 (2015) 241-251. https://doi.org/10.1016/j.electacta.2015.08.133
[11] L. Yuanyuan, L. Wang, B. Gao, X.Li, Q. Cai, Q. Li, X. Peng, K. Huo, P.K. Chu, Hierarchical porous carbon materials derived from self-template bamboo leaves for lithium–sulfur batteries, Electrochim. Acta 229 (2017) 352-360. https://doi.org/10.1016/j.electacta.2017.01.166
[12] H. Wei, S. Deng, B. Hu, Z. Chen, B. Wang, J. Huang, G. Yu, Granular bamboo‐derived activated carbon for high CO2 adsorption: the dominant role of narrow micropores, ChemSusChem 12 (2012) 2354-2360. https://doi.org/10.1002/cssc.201200570
[13] J. Jiang, J. Zhu, W. Ai, Z. Fan, X. Shen, C. Zou, J. Liu, H. Zhang, T. Yu, Evolution of disposable bamboo chopsticks into uniform carbon fibers: a smart strategy to fabricate sustainable anodes for Li-ion batteries, Energy Environ. Sci. 8 (2014) 2670-2679. https://doi.org/10.1039/C4EE00602J
[14] Z. Guoxiang, H. Chen, W. Liu, D. Wang, Y. Wang, Bamboo chopsticks-derived porous carbon microtubes/flakes composites for supercapacitor electrodes, Mater. Lett. 185 (2016) 359-362. https://doi.org/10.1016/j.matlet.2016.09.045
[15] G.Y. Ping, Z.B. Zhai, K.J. Huang, Y.Y. Zhang, Energy storage applications of biomass-derived carbon materials: Batteries and supercapacitors, New J. Chem. 41 (2017) 11456-11470. https://doi.org/10.1039/C7NJ02580G
[16] Y. Yinglin, M. Shi, Y. Wei, C. Zhao, M. Carnie, R. Yang, Y. Xu, Process optimization for producing hierarchical porous bamboo-derived carbon materials with ultrahigh specific surface area for lithium-sulfur batteries, J. Alloys Compd. 738 (2018) 16-24. https://doi.org/10.1016/j.jallcom.2017.11.212
[17] L.Q. Chao, T. Liu, D.P. Liu, Z.J. Li, X.B. Zhang, Y. Zhang, A flexible and wearable lithium–oxygen battery with record energy density achieved by the interlaced architecture inspired by bamboo slips, Adv. Mater. 28 (2016) 8413-8418. https://doi.org/10.1002/adma.201602800
[18] C. Xiufang, J. Zhang, B. Zhang, S. Dong, X. Guo, X. Mu, B. Fei, A novel hierarchical porous nitrogen-doped carbon derived from bamboo shoot for high performance supercapacitor, Sci. Rep. 7 (2017) 7362. https://doi.org/10.1038/s41598-017-06730-x
[19] C. Dengyu, D. Liu, H. Zhang, Y. Chen, Q. Li, Bamboo pyrolysis using TG–FTIR and a lab-scale reactor: Analysis of pyrolysis behavior, product properties, and carbon and energy yields, Fuel 148 (2015) 79-86. https://doi.org/10.1016/j.fuel.2015.01.092
[20] S. Daniel, M. Escala, K. Supawittayayothin, N. Tippayawong, Characterization of biochar from hydrothermal carbonization of bamboo, Int. J. Energy Environ. 2 (2011): 647-652.
[21] W. Huanlei, Q. Gao, J. Hu, High hydrogen storage capacity of porous carbons prepared by using activated carbon, J. Am. Chem. Soc.131 (2009) 7016-7022. https://doi.org/10.1021/ja8083225
[22] O. Toshiro, R. Tanibata, M. Itoh, Production and adsorption characteristics of MAXSORB: high-surface-area active carbon, Gas Sep. Purif. 7 (1993) 241-245. https://doi.org/10.1016/0950-4214(93)80024-Q
[23] R. Pinero, E.P. Azais, T. Cacciaguerra, D. Cazorla-Amorós, A. Linares-Solano, F. Béguin, KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation, Carbon 43 (2005) 786-795. https://doi.org/10.1016/j.carbon.2004.11.005
[24] Q. Wenming, S.H. Yoon, I. Mochida, KOH activation of needle coke to develop activated carbons for high-performance EDLC, Energy Fuels 20 (2006) 1680-1684. https://doi.org/10.1021/ef050313l
[25] L. Castello, J.M. Calo, D. Cazorla-Amoros, A. Linares-Solano, Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen, Carbon 45 (2007) 2529-2536. https://doi.org/10.1016/j.carbon.2007.08.021
[26] V. Subramanian, C. Luo, A.M. Stephan, K.S. Nahm, S. Thomas, B. Wei, Supercapacitors from activated carbon derived from banana fibers, J. Phy. Chem. C 111 (2007) 7527-7531. https://doi.org/10.1021/jp067009t
[27] C. Lulu, P. Guo, R. Wang, L. Ming, F. Leng, H. Li, X.S. Zhao, Electrocapacitive properties of supercapacitors based on hierarchical porous carbons from chestnut shell, Colloids Surf. A Physicochem. Eng. Asp. 446 (2014) 127-133. https://doi.org/10.1016/j.colsurfa.2014.01.057
[28] Z. Dengyun, H. Du, B. Li, Y. Zhu, F. Kang, Porous graphitic carbons prepared by combining chemical activation with catalytic graphitization, Carbon 49 (2011) 725-729. https://doi.org/10.1016/j.carbon.2010.09.057
[29] H. Jianhua, C. Cao, F. Idrees, X. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors, ACS Nano 9 (2015) 2556-2564. https://doi.org/10.1021/nn506394r
[30] S. Li, C. Tian, M. Li, X. Meng, L. Wang, R. Wang, J. Yin, H. Fu, From coconut shell to porous graphene-like nanosheets for high-power supercapacitors, J. Mater. Chem.A 21 (2013) 6462-6470. https://doi.org/10.1039/c3ta10897j
[31] R.E. Thomas, D. Hulicova-Jurcakova, Erika Fiset, Zhonghua Zhu,Gao Qing Lu, Double-layer capacitance of waste coffee ground activated carbons in an organic electrolyte, Electrochem. Commun. 11 (2009) 974-977. https://doi.org/10.1016/j.elecom.2009.02.038
[32] T.E. Rufford, D.H. Jurcakova, Z. Zhu, G.Q. Lu, Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors, Electrochem. Commun. 10 (2008) 1594-1597. https://doi.org/10.1016/j.elecom.2008.08.022
[33] T.E. Rufford, D.H. Jurcakova, K. Khosla, Z. Zhu, G.Q. Lu, Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse, J. Power Sources 195 (2010) 912-918. https://doi.org/10.1016/j.jpowsour.2009.08.048
[34] L. Zichao, K. Zhai, G. Wang, Q. Li, P. Guo, Preparation and electrocapacitive properties of hierarchical porous carbons based on loofah sponge, Materials 9 (2016) 912. https://doi.org/10.3390/ma9110912
[35] W. Xianjun, X. Jiang, J. Wei, S. Gao, Functional groups and pore size distribution do matter to hierarchically porous carbons as high-rate-performance supercapacitors, Chem. Mater. 28 (2016) 445-458. https://doi.org/10.1021/acs.chemmater.5b02336
[36] C. Haiqun, M.B. Müller, K.J. Gilmore, G.G. Wallace, D. Li, Mechanically strong, electrically conductive, and biocompatible graphene paper, Adv. Mater. 20 (2008) 3557-3561. https://doi.org/10.1002/adma.200800757
[37] W. Huanlei, Z. Li, D. Mitlin, Tailoring biomass‐derived carbon nanoarchitectures for high‐performance supercapacitors, ChemElectroChem 1 (2014) 332-337. https://doi.org/10.1002/celc.201300127
[38] L. Zhi, L. Zhang, B.S. Amirkhiz, X. Tan, Z. Xu, H. Wang, B.C. Olsen, C.M.B. Holt, D. Mitlin, Carbonized chicken eggshell membranes with 3D architectures as high‐performance electrode materials for supercapacitors, Adv. Energy Mater. 2 (2012) 431-437. https://doi.org/10.1002/aenm.201100548
[39] S. Marta, A.B. Fuertes, The production of carbon materials by hydrothermal carbonization of cellulose, Carbon 47 (2009) 2281-2289. https://doi.org/10.1016/j.carbon.2009.04.026
[40] T. M. Maria, A. Thomas, S.H. Yu, J.O. Müller, M. Antonietti, A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization, Chem. Mater. 19 (2007) 4205-4212. https://doi.org/10.1021/cm0707408
[41] Y.S. Hong, X.J. Cui, L.L. Li, K. Li, B. Yu, M. Antonietti, H. Cölfen, From starch to metal/carbon hybrid nanostructures: Hydrothermal metal‐catalyzed carbonization, Adv. Mater. 16 (2004) 1636-1640. https://doi.org/10.1002/adma.200400522
[42] M.A. Lillo-Ródenas, D.C. Amorós, A.L. Solano, Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism, Carbon 41 (2003) 267-275. https://doi.org/10.1016/S0008-6223(02)00279-8
[43] S.G. Badie, A.A. Attia, N.A. Fathy, Modification in adsorption characteristics of activated carbon produced by H3PO4 under flowing gases, Colloids Surf. A Physicochem. Eng. Asp. 299 (2007) 79-87. https://doi.org/10.1016/j.colsurfa.2006.11.024