Nature Inspired Materials for Energy Storage

$30.00

Nature Inspired Materials for Energy Storage

Nelson Pynadathu Rumjit , Paul Thomas, Shivani Garg, Chin Wei Lai, Mohd Rafie Bin Johan

In our present society, energy depository devices are of great demand. Prevailing energy storing systems are facing challenges in achieving a long-life cycle, higher energy density, biocompatibility and eco-friendliness. Nowadays, nature-derived carbon materials are gaining much research interest in energy repository applications due to their fabrication suitability, economic feasibility and sustainability of many carbons produced from natural precursors which include fruits, plants, microbes and animals. In comparison to human-made carbon nanostructured materials such as carbon nanotubes, graphene and fullerene, nature-derived carbons showed higher capacitance, performance rate and steadiness in supercapacitor applications due to their highly ordered structures and intrinsic nature of nanoporous materials. However, some obstacles persist in the preparation methods to obtain nature-derived carbons with greater carbon yield capacity, energy density and controlled graphite microframeworks. This book chapter is aimed to summarise elemental, chemical compositions and structural-inter relationship charateristics of various nature inspiring materials towards supercapacitor applications. The process for chemical initiation in the enhancement of highly nanostructured nature-derived carbons have been discussed. Additionally, this book chapter discusses future insights for the betterment of nature inspiring carbons for supercapacitor applications.

Keywords
Nature Procured Carbons, Natural Precursors, Consituents, Initiation Methods, Structural-Characteristics Interrelationship, Supercapacitor

Published online 6/20/2020, 29 pages

Citation: Nelson Pynadathu Rumjit , Paul Thomas, Shivani Garg, Chin Wei Lai, Mohd Rafie Bin Johan, Nature Inspired Materials for Energy Storage, Materials Research Foundations, Vol. 78, pp 21-49, 2020

DOI: https://doi.org/10.21741/9781644900871-2

Part of the book on Biomass Based Energy Storage Materials

References
[1] N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: Present and future, Mater. Today 18 (2015) 252–264. https://doi.org/10.1016/j.mattod.2014.10.040
[2] L. Peng, Y. Zhu, D. Chen, R.S. Ruoff, G. Yu, Two-dimensional materials for beyond-lithium-ion batteries, Adv. Energy Mater. 6 (2016) 1600025. https://doi.org/10.1002/aenm.201600025
[3] Y. Zhang, Y. Zhao, J. Ren, W. Weng, H. Peng, Advances in wearable fiber-shaped lithium-ion batteries, Adv. Mater. 28 (2016) 4524–4531. https://doi.org/10.1002/adma.201503891
[4] W. Weng, Q. Sun, Y. Zhang, S. He, Q. Wu, J. Deng, X. Fang, G. Guan, J. Ren, H. Peng, A gum-like lithium-ion battery based on a novel arched structure, Adv. Mater. 27 (2015) 1363–1369. https://doi.org/10.1002/adma.201405127
[5] D. Larcher, J.-M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nature Chem. 7 (2015) 19–29. https://doi.org/10.1038/nchem.2085
[6] Y. Ding, G. Yu, A Bio-Inspired, Heavy-Metal-Free, Dual-electrolyte liquid battery towards sustainable energy storage, Angew. Chem. Int. Ed. 55 (2016) 4772–4776. https://doi.org/10.1002/anie.201600705
[7] K. Jost, D.P. Durkin, L.M. Haverhals, E. Kathryn Brown, M. Langenstein, H.C. De Long, P.C. Trulove, Y. Gogotsi, G. Dion, K. Jost, M. Langenstein, Y.A. Gogotsi J Drexel, G. Dion, D.P. Durkin, E.K. Brown, P.C. Trulove, L.M. Haverhals, H.C. De Long, Natural fiber welded electrode yarns for knittable textile supercapacitors, Adv. Energy Mater. 5 (2015) 1401286. https://doi.org/10.1002/aenm.201401286
[8] J.-H. Lee, J.H. Lee, Y.J. Lee, K.T. Nam, Protein/peptide based nanomaterials for energy application, Curr. Opin. Biotechnol. 24 (2013) 599–605. https://doi.org/10.1016/j.copbio.2013.02.004
[9] P. Hu, H. Wang, Y. Yang, J. Yang, J. Lin, L. Guo, Renewable-biomolecule-based full lithium-ion batteries, Adv. Mater. 28 (2016) 3486–3492. https://doi.org/10.1002/adma.201505917
[10] P. Poizot, F. Dolhem, Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices, Energy Environ. Sci. 4 (2011) 2003. https://doi.org/10.1039/c0ee00731e
[11] Y. Yang, H. Wang, R. Hao, L. Guo, Transition-metal-free biomolecule-based flexible asymmetric supercapacitors, Small 12 (2016) 4683–4689. https://doi.org/10.1002/smll.201503924
[12] K. Mensah-darkwa, C. Zequine, P.K. Kahol, R.K. Gupta, Supercapacitor energy storage device using biowastes : A sustainable approach to green energy, Sustainability 11 (2019) 414. https://doi.org/10.3390/su11020414
[13] Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage, Adv. Mater. 23 (2011) 4828–4850. https://doi.org/10.1002/adma.201100984
[14] F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Supercapacitors: Carbons and electrolytes for advanced supercapacitors, Adv. Mater. 26 (2014) 2283–2283. https://doi.org/10.1002/adma.201470093
[15] X. Zhao, B.M. Sánchez, P.J. Dobson, P.S. Grant, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices, Nanoscale 3 (2011) 839. https://doi.org/10.1039/c0nr00594k
[16] D.P. Dubal, P. Gomez-Romero, All nanocarbon Li-Ion capacitor with high energy and high power density, Mater. Today Energy 8 (2018) 109–117. https://doi.org/10.1016/j.mtener.2018.03.005
[17] S.N. Beznosov, P.S. Veluri, M.G. Pyatibratov, A. Chatterjee, D.R. MacFarlane, O. V Fedorov, S. Mitra, Flagellar filament bio-templated inorganic oxide materials – towards an efficient lithium battery anode, Sci. Rep. 5 (2015) 7736. https://doi.org/10.1038/srep07736
[18] S. De, A.M. Balu, J.C. van der Waal, R. Luque, Biomass-derived porous carbon materials: synthesis and catalytic applications, ChemCatChem. 7 (2015) 1608–1629. https://doi.org/10.1002/cctc.201500081
[19] S. Jung, Y. Myung, B.N. Kim, I.G. Kim, I.-K. You, T. Kim, Activated biomass-derived graphene-based carbons for supercapacitors with high energy and power density, Sci. Rep. 8 (2018) 1915. https://doi.org/10.1038/s41598-018-20096-8
[20] Y. Liu, J. Chen, B. Cui, P. Yin, C. Zhang, Design and Preparation of Biomass-Derived Carbon Materials for Supercapacitors: A Review, C. J. Carbon Res. 4 (2018) 53. https://doi.org/10.3390/c4040053
[21] P. Simon, Y. Gogotsi, Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368 (2010) 3457–3467. https://doi.org/10.1098/rsta.2010.0109
[22] A. Mahmoud, J. Olivier, J. Vaxelaire, A.F.A. Hoadley, Electrical field: A historical review of its application and contributions in wastewater sludge dewatering, Water Res. 44 (2010) 2381–2407. https://doi.org/10.1016/j.watres.2010.01.033
[23] W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Human hair-derived carbon flakes for electrochemical supercapacitors, Energy Environ. Sci. 7 (2014) 379–386. https://doi.org/10.1039/C3EE43111H
[24] C. Chen, D. Yu, G. Zhao, B. Du, W. Tang, L. Sun, Y. Sun, F. Besenbacher, M. Yu, Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors, Nano Energy 27 (2016) 377–389. https://doi.org/10.1016/j.nanoen.2016.07.020
[25] C.K. Ranaweera, P.K. Kahol, M. Ghimire, S.R. Mishra, R.K. Gupta, C.K. Ranaweera, P.K. Kahol, M. Ghimire, S.R. Mishra, R.K. Gupta, Orange-peel-derived carbon: designing sustainable and high-performance supercapacitor electrodes, C. J. Carbon Res. 3 (2017) 25. https://doi.org/10.3390/c3030025
[26] Y.Q. Dang, S.Z. Ren, G. Liu, J. Cai, Y. Zhang, J. Qiu, Y.Q. Dang, S.Z. Ren, G. Liu, J. Cai, Y. Zhang, J. Qiu, Electrochemical and capacitive properties of carbon dots/reduced graphene oxide supercapacitors, Nanomaterials 6 (2016) 212. https://doi.org/10.3390/nano6110212
[27] J.R. McDonough, J.W. Choi, Y. Yang, F. La Mantia, Y. Zhang, Y. Cui, Carbon nanofiber supercapacitors with large areal capacitances, Appl. Phys. Lett. 95 (2009) 243109. https://doi.org/10.1063/1.3273864
[28] J. Yoon, J. Lee, J. Hur, J. Yoon, J. Lee, J. Hur, Stretchable Supercapacitors based on carbon nanotubes-deposited rubber polymer nanofibers electrodes with high tolerance against strain, Nanomaterials 8 (2018) 541. https://doi.org/10.3390/nano8070541
[29] Z. Ling, Z. Wang, M. Zhang, C. Yu, G. Wang, Y. Dong, S. Liu, Y. Wang, J. Qiu, Sustainable Synthesis and Assembly of Biomass-derived B/N Co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors, Adv. Funct. Mater. 26 (2016) 111–119. https://doi.org/10.1002/adfm.201504004
[30] Z. Li, L. Zhang, B.S. Amirkhiz, X. Tan, Z. Xu, H. Wang, B.C. Olsen, C.M.B. Holt, D. Mitlin, Carbonized Chicken Eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors, Adv. Energy Mater. 2 (2012) 431–437. https://doi.org/10.1002/aenm.201100548
[31] B. Duan, X. Gao, X. Yao, Y. Fang, L. Huang, J. Zhou, L. Zhang, Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors, Nano Energy 27 (2016) 482–491. https://doi.org/10.1016/j.nanoen.2016.07.034
[32] C. Long, X. Chen, L. Jiang, L. Zhi, Z. Fan, Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors, Nano Energy 12 (2015) 141–151. https://doi.org/10.1016/j.nanoen.2014.12.014
[33] S. Gao, X. Li, L. Li, X. Wei, A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation, Nano Energy 33 (2017) 334–342. https://doi.org/10.1016/j.nanoen.2017.01.045
[34] Y. Li, G. Wang, T. Wei, Z. Fan, P. Yan, Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors, Nano Energy 19 (2016) 165–175. https://doi.org/10.1016/j.nanoen.2015.10.038
[35] B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, M. Cai, Activated carbon from biomass transfer for high-energy density lithium-ion supercapacitors, Adv. Energy Mater. 6 (2016) 1600802. https://doi.org/10.1002/aenm.201600802
[36] L. Zhu, F. Shen, R.L. Smith, L. Yan, L. Li, X. Qi, Black liquor-derived porous carbons from rice straw for high-performance supercapacitors, Chem. Eng. J. 316 (2017) 770–777. https://doi.org/10.1016/j.cej.2017.02.034
[37] W. Liu, J. Mei, G. Liu, Q. Kou, T. Yi, S. Xiao, Nitrogen-doped hierarchical porous carbon from wheat straw for supercapacitors, ACS Sustain. Chem. Eng. 6 (2018) 11595–11605. https://doi.org/10.1021/acssuschemeng.8b01798
[38] X.L. Su, M.Y. Cheng, L. Fu, J.H. Yang, X.C. Zheng, X.X. Guan, Superior supercapacitive performance of hollow activated carbon nanomesh with hierarchical structure derived from poplar catkins, J. Power Sources 362 (2017) 27–38. https://doi.org/10.1016/j.jpowsour.2017.07.021
[39] C.C. Hu, C.C. Wang, F.C. Wu, R.L. Tseng, Characterization of pistachio shell-derived carbons activated by a combination of KOH and CO2 for electric double-layer capacitors, Electrochim. Acta 52 (2007) 2498–2505. https://doi.org/10.1016/j.electacta.2006.08.061
[40] C. Dai, J. Wan, W. Geng, S. Song, F. Ma, J. Shao, KOH direct treatment of kombucha and in situ activation to prepare hierarchical porous carbon for high-performance supercapacitor electrodes, J. Solid State Electrochem. 21 (2017) 2929–2938. https://doi.org/10.1007/s10008-017-3631-2
[41] F. Li, F. Qin, K. Zhang, J. Fang, Y. Lai, J. Li, Hierarchically porous carbon derived from banana peel for lithium sulfur battery with high areal and gravimetric sulfur loading, J. Power Sources 362 (2017) 160–167. https://doi.org/10.1016/j.jpowsour.2017.07.038
[42] H. Zhu, J. Yin, X. Wang, H. Wang, X. Yang, Microorganism-derived heteroatom-doped carbon materials for oxygen reduction and supercapacitors, Adv. Funct. Mater. 23 (2013) 1305–1312. https://doi.org/10.1002/adfm.201201643
[43] N. Sudhan, K. Subramani, M. Karnan, N. Ilayaraja, M. Sathish, Biomass-derived activated porous carbon from rice straw for a high-energy symmetric supercapacitor in aqueous and non-aqueous electrolytes, Energy & Fuels 31 (2017) 977–985. https://doi.org/10.1021/acs.energyfuels.6b01829
[44] M. Karnan, K. Subramani, P.K. Srividhya, M. Sathish, Electrochemical studies on corncob derived activated porous carbon for supercapacitors application in aqueous and non-aqueous electrolytes, Electrochim. Acta 228 (2017) 586–596. https://doi.org/10.1016/j.electacta.2017.01.095
[45] J. McDonald-Wharry, M. Manley-Harris, K. Pickering, A comparison of the charring and carbonisation of oxygen-rich precursors with the thermal reduction of graphene oxide, Philos. Mag. 95 (2015) 4054–4077. https://doi.org/10.1080/14786435.2015.1108525
[46] R. Hao, H. Lan, C. Kuang, H. Wang, L. Guo, Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers, Carbon 128 (2018) 224–230. https://doi.org/10.1016/j.carbon.2017.11.064
[47] J. Bedia, M. Peñas-Garzón, A. Goméz-Avilés, J.J. Rodríguez, C. Belver, A Review on synthesis and characterization of biomass-derived carbons for adsorption of emerging contaminants from water, C. 4 (2018) 63. https://doi.org/10.3390/c4040063
[48] N.C. Rath, S. Makkar, B. Packialakshmi, A.M. Donoghue, Egg shell membrane improves immunity of post hatch poultry: a paradigm for nutritional immunomodulation, n.d. https://www.ars.usda.gov/alternativestoantibiotics/Symposium2016/includes/Oral Presentations/4 – Immune Related Products/pdfs/3 RathATA symposiumFinal.pdf (accessed February 12, 2019).
[49] T. Yang, T. Qian, M. Wang, X. Shen, N. Xu, Z. Sun, C. Yan, A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries, Adv. Mater. 28 (2016) 539–545. https://doi.org/10.1002/adma.201503221
[50] R. Berenguer, F.J. García-Mateos, R. Ruiz-Rosas, D. Cazorla-Amorós, E. Morallón, J. Rodríguez-Mirasol, T. Cordero, Biomass-derived binderless fibrous carbon electrodes for ultrafast energy storage, Green Chem. 18 (2016) 1506–1515. https://doi.org/10.1039/C5GC02409A
[51] B. Cagnon, X. Py, A. Guillot, F. Stoeckli, G. Chambat, Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors, Bioresour. Technol. 100 (2009) 292–298. https://doi.org/10.1016/j.biortech.2008.06.009
[52] D.W. Rutherford, R.L. Wershaw, L.G. Cox, Changes in composition and porosity occurring during the thermal degradation of wood and wood components, Reston, VA, USA, 2004. https://www.usgs.gov/ (accessed February 13, 2019). https://doi.org/10.3133/sir20045292
[53] X. Cao, K.S. Ro, J.A. Libra, C.I. Kammann, I. Lima, N. Berge, L. Li, Y. Li, N. Chen, J. Yang, B. Deng, J. Mao, Effects of biomass types and carbonization conditions on the chemical characteristics of hydrochars, J. Agric. Food Chem. 61 (2013) 9401–9411. https://doi.org/10.1021/jf402345k
[54] J. Zhang, Y.S. Choi, C.G. Yoo, T.H. Kim, R.C. Brown, B.H. Shanks, Cellulose–hemicellulose and cellulose–lignin interactions during fast pyrolysis, ACS Sustain. Chem. Eng. 3 (2015) 293–301. https://doi.org/10.1021/sc500664h
[55] K. Yu, J. Wang, K. Song, X. Wang, C. Liang, Y. Dou, K. Yu, J. Wang, K. Song, X. Wang, C. Liang, Y. Dou, Hydrothermal synthesis of cellulose-derived carbon nanospheres from corn straw as anode materials for lithium ion batteries, Nanomaterials 9 (2019) 93. https://doi.org/10.3390/nano9010093
[56] D.R. Morais, E.M. Rotta, S.C. Sargi, E.G. Bonafe, R.M. Suzuki, N.E. Souza, M. Matsushita, J. V Visentainer, Proximate composition, mineral contents and fatty acid composition of the different parts and dried peels of tropical fruits cultivated in brazil, Artic. J. Braz. Chem. Soc. 28 (2017) 308–318. https://doi.org/10.5935/0103-5053.20160178
[57] F. Dibanda Romelle, R.P. Ashwini, R.S. Manohar, Chemical composition of some selected fruit peels, European Am. J. (2016) 12-21.
[58] R. Sánchez Orozco, P. Balderas Hernández, G. Roa Morales, F. Ureña Núñez, J. Orozco Villafuerte, V. Lugo Lugo, N. Flores Ramírez, C.E. Barrera Díaz, P. Cajero Vázquez, Characterization of lignocellulosic fruit waste as an alternative feedstock for bioethanol production, Bio. Resources. 9 (2014) 1873–1885. https://doi.org/10.15376/biores.9.2.1873-1885
[59] X.M. Wang, J. Zhang, L.H. Wu, Y.L. Zhao, T. Li, J.Q. Li, Y.Z. Wang, H.-G. Liu, A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China, Food Chem. 151 (2014) 279–285. https://doi.org/10.1016/j.foodchem.2013.11.062
[60] J. Arroyo, V. Farkaš, A.B. Sanz, E. Cabib, ‘Strengthening the fungal cell wall through chitin-glucan cross-links: effects on morphogenesis and cell integrity, Cell. Microbiol. 18 (2016) 1239–1250. https://doi.org/10.1111/cmi.12615
[61] M. Chen, L. Wang, J. Hou, S. Yang, X. Zheng, L. Chen, X. Li, M. Chen, L. Wang, J. Hou, S. Yang, X. Zheng, L. Chen, X. Li, Mycoextraction: Rapid cadmium removal by macrofungi-based technology from alkaline soil, Minerals 8 (2018) 589. https://doi.org/10.3390/min8120589
[62] C. Sales-Campos, L.M. Araujo, M.T. de A. Minhoni, M.C.N. de Andrade, Physiochemical analysis and centesimal composition of Pleurotus ostreatus mushroom grown in residues from the Amazon, Ciência e Tecnol. Aliment 31 (2011) 456–461. https://doi.org/10.1590/S0101-20612011000200027
[63] W. Arbia, L. Arbia, L. Adour, A. Amrane, Chitin extraction from crustacean shells using biological methods – A review, Food Technol. Biotechnol. 51 (2012) 12–25.
[64] J. Majtán, K. Bíliková, O. Markovič, J. Gróf, G. Kogan, J. Šimúth, Isolation and characterization of chitin from bumblebee (Bombus terrestris), Int. J. Biol. Macromol. 40 (2007) 237–241. https://doi.org/10.1016/j.ijbiomac.2006.07.010
[65] M. Kaya, E. Lelešius, R. Nagrockaitė, I. Sargin, G. Arslan, A. Mol, T. Baran, E. Can, B. Bitim, Differentiations of chitin content and surface morphologies of chitins extracted from male and female grasshopper species, PLoS One 10 (2015) e0115531. https://doi.org/10.1371/journal.pone.0115531
[66] E. Kovaleva, A. Pestov, D. Stepanova, L. Molochnikov, Characterization of chitin and its complexes extracted from natural raw sources, in: AIP Conf. Proc., AIP Publishing LLC, 2016: p. 050007. https://doi.org/10.1063/1.4964577
[67] J.-P. Latgé, The cell wall: a carbohydrate armour for the fungal cell, Mol. Microbiol. 66 (2007) 279–290. https://doi.org/10.1111/j.1365-2958.2007.05872.x
[68] H. Schwarz, B. Moussian, Electron-microscopic and genetic dissection of arthropod cuticle differentiation, Modern Research and Educational Topics in Microscopy (227) 316-325.
[69] J. McKittrick, P.-Y. Chen, S.G. Bodde, W. Yang, E.E. Novitskaya, M.A. Meyers, The structure, functions, and mechanical properties of keratin, JOM 64 (2012) 449–468. https://doi.org/10.1007/s11837-012-0302-8
[70] C.R. Robbins, Chemical composition of different hair types, in: Chem. Phys. Behav. Hum. Hair, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012: pp. 105–176. https://doi.org/10.1007/978-3-642-25611-0_2
[71] Y. Lv, F. Zhang, Y. Dou, Y. Zhai, J. Wang, H. Liu, Y. Xia, B. Tu, D. Zhao, A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application, J. Mater. Chem. 22 (2012) 93–99. https://doi.org/10.1039/C1JM12742J
[72] J. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage, J. Mater. Chem. 22 (2012) 23710. https://doi.org/10.1039/c2jm34066f
[73] J. Ajuria, E. Redondo, M. Arnaiz, R. Mysyk, T. Rojo, E. Goikolea, Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits, J. Power Sources 359 (2017) 17–26. https://doi.org/10.1016/j.jpowsour.2017.04.107
[74] H. Zhu, X. Wang, F. Yang, X. Yang, Promising carbons for supercapacitors derived from fungi, Adv. Mater. 23 (2011) 2745–2748. https://doi.org/10.1002/adma.201100901
[75] W. Liu, J. Mei, G. Liu, Q. Kou, T. Yi, S. Xiao, Nitrogen-doped hierarchical porous carbon from wheat straw for supercapacitors, ACS Sustain. Chem. Eng. 6 (2018) 11595–11605. https://doi.org/10.1021/acssuschemeng.8b01798
[76] S. Yang, K. Zhang, S. Yang, K. Zhang, Converting corncob to activated porous carbon for supercapacitor application, Nanomaterials 8 (2018) 181. https://doi.org/10.3390/nano8040181
[77] Y. Liu, X. Zhang, S. Poyraz, C. Zhang, J.H. Xin, One-step synthesis of multifunctional zinc-iron-oxide hybrid carbon nanowires by chemical fusion for supercapacitors and interfacial water marbles, ChemNanoMat 4 (2018) 546–556. https://doi.org/10.1002/cnma.201800075
[78] S.N. Talapaneni, J.H. Lee, S.H. Je, O. Buyukcakir, T. Kwon, K. Polychronopoulou, J.W. Choi, A. Coskun, Chemical blowing approach for ultramicroporous carbon nitride frameworks and their applications in gas and energy storage, Adv. Funct. Mater. 27 (2017) 1604658. https://doi.org/10.1002/adfm.201604658
[79] L. Yin, Y. Chen, D. Li, X. Zhao, B. Hou, B. Cao, 3-Dimensional hierarchical porous activated carbon derived from coconut fibers with high-rate performance for symmetric supercapacitors, Mater. Des. 111 (2016) 44–50. https://doi.org/10.1016/j.matdes.2016.08.070
[80] W.-H. Qu, Y.-Y. Xu, A.-H. Lu, X.-Q. Zhang, W.-C. Li, Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes, Bioresour. Technol. 189 (2015) 285–291. https://doi.org/10.1016/j.biortech.2015.04.005
[81] P. Yu, Z. Zhang, L. Zheng, F. Teng, L. Hu, X. Fang, A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors, Adv. Energy Mater. 6 (2016) 1601111. https://doi.org/10.1002/aenm.201601111
[82] Y. Gong, D. Li, C. Luo, Q. Fu, C. Pan, Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors, Green Chem. 19 (2017) 4132–4140. https://doi.org/10.1039/C7GC01681F
[83] M. Fu, W. Chen, X. Zhu, B. Yang, Q. Liu, Crab shell derived multi-hierarchical carbon materials as a typical recycling of waste for high performance supercapacitors, Carbon 141 (2019) 748–757. https://doi.org/10.1016/j.carbon.2018.10.034
[84] X.L. Su, S.H. Li, S. Jiang, Z.K. Peng, X.X. Guan, X.C. Zheng, Superior capacitive behavior of porous activated carbon tubes derived from biomass waste-cotonier strobili fibers, Adv. Powder Technol. 29 (2018) 2097–2107. https://doi.org/10.1016/j.apt.2018.05.018
[85] M. Zhou, J. Gomez, B. Li, Y.B. Jiang, S. Deng, Oil tea shell derived porous carbon with an extremely large specific surface area and modification with MnO2 for high-performance supercapacitor electrodes, Appl. Mater. Today 7 (2017) 47–54. https://doi.org/10.1016/j.apmt.2017.01.008
[86] H. Ba, W. Wang, S. Pronkin, T. Romero, W. Baaziz, L. Nguyen-Dinh, W. Chu, O. Ersen, C. Pham-Huu, Biosourced foam-like activated carbon materials as high-performance supercapacitors, Adv. Sustain. Syst. 2 (2018) 1700123. https://doi.org/10.1002/adsu.201700123
[87] B. Liu, L. Zhang, P. Qi, M. Zhu, G. Wang, Y. Ma, X. Guo, H. Chen, B. Zhang, Z. Zhao, B. Dai, F. Yu, Nitrogen-doped banana peel–derived porous carbon foam as binder-free electrode for supercapacitors, Nanomaterials 6 (2016) 18. https://doi.org/10.3390/nano6010018
[88] K. Subramani, N. Sudhan, M. Karnan, M. Sathish, Orange peel derived activated carbon for fabrication of high-energy and high-rate supercapacitors, Chemistry Select 2 (2017) 11384–11392. https://doi.org/10.1002/slct.201701857
[89] Q. Yao, H. Wang, C. Wang, C. Jin, Q. Sun, One step construction of nitrogen–carbon derived from bradyrhizobium japonicum for supercapacitor applications with a soybean leaf as a separator, ACS Sustain. Chem. Eng. 6 (2018) 4695–4704. https://doi.org/10.1021/acssuschemeng.7b03777
[90] Q. Zhang, K. Han, S. Li, M. Li, J. Li, K. Ren, Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors, Nanoscale 10 (2018) 2427–2437. https://doi.org/10.1039/C7NR07158B
[91] T. Kesavan, T. Partheeban, M. Vivekanantha, M. Kundu, G. Maduraiveeran, M. Sasidharan, Hierarchical nanoporous activated carbon as potential electrode materials for high performance electrochemical supercapacitor, Microporous Mesoporous Mater. 274 (2019) 236–244. https://doi.org/10.1016/j.micromeso.2018.08.006
[92] S. Ahmed, A. Ahmed, M. Rafat, Nitrogen doped activated carbon from pea skin for high performance supercapacitor, Mater. Res. Express 5 (2018) 045508. https://doi.org/10.1088/2053-1591/aabbe7
[93] A. Mahto, R. Gupta, K.K. Ghara, D.N. Srivastava, P. Maiti, K. D., P.Z. Rivera, R. Meena, S.K. Nataraj, Development of high-performance supercapacitor electrode derived from sugar industry spent wash waste, J. Hazard. Mater. 340 (2017) 189–201. https://doi.org/10.1016/j.jhazmat.2017.06.048
[94] Y. Huang, L. Peng, Y. Liu, G. Zhao, J.Y. Chen, G. Yu, Biobased Nano Porous Active Carbon Fibers for High-Performance Supercapacitors, ACS Appl. Mater. Interfaces 8 (2016) 15205–15215. https://doi.org/10.1021/acsami.6b02214
[95] N. Guo, M. Li, Y. Wang, X. Sun, F. Wang, R. Yang, Soybean root-derived hierarchical porous carbon as electrode material for high-performance supercapacitors in ionic liquids, ACS Appl. Mater. Interfaces 8 (2016) 33626–33634. https://doi.org/10.1021/acsami.6b11162
[96] E.Y.L. Teo, L. Muniandy, E.P. Ng, F. Adam, A.R. Mohamed, R. Jose, K.F. Chong, High surface area activated carbon from rice husk as a high performance supercapacitor electrode, Electrochim. Acta 192 (2016) 110–119. https://doi.org/10.1016/j.electacta.2016.01.140
[97] S.T. Senthilkumar, N. Fu, Y. Liu, Y. Wang, L. Zhou, H. Huang, Flexible fiber hybrid supercapacitor with NiCo2O4 nanograss@carbon fiber and bio-waste derived high surface area porous carbon, Electrochim. Acta 211 (2016) 411–419. https://doi.org/10.1016/j.electacta.2016.06.059
[98] A.K. Mondal, K. Kretschmer, Y. Zhao, H. Liu, C. Wang, B. Sun, G. Wang, Nitrogen-doped porous carbon nanosheets from eco-friendly eucalyptus leaves as high performance electrode materials for supercapacitors and lithium ion batteries, Chem. A Eur. J. 23 (2017) 3683–3690. https://doi.org/10.1002/chem.201605019
[99] H. Ba, W. Wang, S. Pronkin, T. Romero, W. Baaziz, L. Nguyen-Dinh, W. Chu, O. Ersen, C. Pham-Huu, Biosourced foam-like activated carbon materials as high-performance supercapacitors, Adv. Sustain. Syst. 2 (2018) 1700123. https://doi.org/10.1002/adsu.201700123
[100] P. Yu, Z. Zhang, L. Zheng, F. Teng, L. Hu, X. Fang, A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors, Adv. Energy Mater. 6 (2016) 1601111. https://doi.org/10.1002/aenm.201601111
[101] R. Fang, P. Tian, X. Yang, R. Luque, Y. Li, Encapsulation of ultrafine metal-oxide nanoparticles within mesopores for biomass-derived catalytic applications, Chem. Sci. 9 (2018) 1854–1859. https://doi.org/10.1039/C7SC04724J
[102] J. Wei, Y. Liang, Y. Hu, B. Kong, G.P. Simon, J. Zhang, S.P. Jiang, H. Wang, A versatile iron-tannin-framework ink coating strategy to fabricate biomass-derived iron carbide/fe-n-carbon catalysts for efficient oxygen reduction, Angew. Chem. Int. Ed. 55 (2016) 1355–1359. https://doi.org/10.1002/anie.201509024
[103] W.S. Cha, S.N. Talapaneni, D.M. Kempaiah, S. Joseph, K.S. Lakhi, A.M. Al-Enizi, D.H. Park, A. Vinu, Excellent supercapacitance performance of 3-D mesoporous carbon with large pores from FDU-12 prepared using a microwave method, RSC Adv. 8 (2018) 17017–17024. https://doi.org/10.1039/C8RA01281D
[104] Z. Ling, Z. Wang, M. Zhang, C. Yu, G. Wang, Y. Dong, S. Liu, Y. Wang, J. Qiu, Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors, Adv. Funct. Mater. 26 (2016) 111-119. https://doi.org/10.1002/adfm.201504004