Electrolytes for Na-O2 Batteries: Towards a Rational Design

$30.00

Electrolytes for Na-O2 Batteries: Towards a Rational Design

Iñigo Lozano, Idoia Ruiz de Larramendi, Nagore Ortiz-Vitoriano

Energy storage is a critical challenge for modern society, with batteries being the predominant technology of choice. Within this area, sodium-oxygen batteries present advantages such as low cost and high energy density. In order to facilitate their use, the development of targeted approaches to dealing with the technology’s unique chemistry is required. Electrolytes, consisting of a salt and a non-aqueous solvent, are a key component of any optimized system. The parameters affecting electrolyte physicochemistry are, therefore, critical to battery performance, lifetime and safety, yet the field of non-aqueous solvation chemistry remains relatively unexplored even though it plays a critical role in applications as wide ranging as supercapacitors, batteries, catalysis and chemical synthesis.

Keywords
Na-O2 Batteries, Electrolytes, Redox Mediators, Superoxide Stability, Singlet Oxygen

Published online 5/20/2020, 24 pages

Citation: Iñigo Lozano, Idoia Ruiz de Larramendi, Nagore Ortiz-Vitoriano, Electrolytes for Na-O2 Batteries: Towards a Rational Design, Materials Research Foundations, Vol. 76, pp 205-228, 2020

DOI: https://doi.org/10.21741/9781644900833-9

Part of the book on Sodium-Ion Batteries

References
[1] M. Armand, J. Tarascon, Building better batteries, Nature 451 (2008) 652–657. https://doi.org/10.1038/451652a
[2] G. Girishkumar, B. McCloskey, A.C. Luntz, S. Swanson, W. Wilcke, Lithium−Air battery: Promise and challenges, J. Phys. Chem. Lett. 1 (2010) 2193–2203. https://doi.org/10.1021/jz1005384
[3] Y. Chen, S.A. Freunberger, Z. Peng, O. Fontaine, P.G. Bruce, Charging a Li-O2 battery using a redox mediator, Nat. Chem. 5 (2013) 489–94. https://doi.org/10.1038/nchem.1646. https://doi.org/10.1038/nchem.1646
[4] H.G. Jung, Y.S. Jeong, J.B. Park, Y.K. Sun, B. Scrosati, Y.J. Lee, Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries, ACS Nano. 7 (2013) 3532–3539. https://doi.org/10.1021/nn400477d
[5] M.S. Whittingham, Lithium batteries and cathode materials, Chem. Rev. 104 (2004) 4271–4302. https://doi.org/10.1021/cr020731c
[6] V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energy Environ. Sci. 5 (2012) 5884–5901. https://doi.org/10.1039/c2ee02781j
[7] V. Palomares, M. Casas-Cabanas, E. Castillo-Martínez, M.H. Han, T. Rojo, Update on Na-based battery materials. A growing research path, Energy Environ. Sci. 6 (2013) 2312–2337. https://doi.org/10.1039/c3ee41031e
[8] P. Hartmann, C.L. Bender, M. Vračar, A.K. Dürr, A. Garsuch, J. Janek, P. Adelhelm, A rechargeable room-temperature sodium superoxide (NaO2) battery, Nat. Mater. 12 (2013) 228–232. https://doi.org/10.1038/nmat3486
[9] G. Attard, L.J. Hardwick, J.-C. Dong, J.-F. Li, T.A. Galloway, Oxygen reactions on Pt{ hkl } in a non-aqueous Na+ electrolyte: Site selective stabilisation of a sodium peroxy species , Chem. Sci. (2019). https://doi.org/10.1039/c8sc05489d
[10] P.G. Bruce, S. a Freunberger, L.J. Hardwick, J.-M. Tarascon, Li–O2 and Li–S batteries with high energy storage, Nat. Mater. 11 (2012) 19–30. https://doi.org/10.1038/NMAT3191
[11] B.D. McCloskey, J.M. Garcia, A.C. Luntz, Chemical and electrochemical differences in nonaqueous Li−O2 and Na−O2 Batteries, J. Phys. Chem. Lett. 5 (2014) 1230–1235. https://doi.org/10.1021/jz500494s
[12] K.B. Hueso, M. Armand, T. Rojo, High temperature sodium batteries: Status, challenges and future trends, Energy Environ. Sci. 6 (2013) 734–749. https://doi.org/10.1039/c3ee24086j
[13] I. Landa-Medrano, C. Li, N. Ortiz-Vitoriano, I. Ruiz De Larramendi, J. Carrasco, T. Rojo, Sodium-oxygen battery: steps toward reality, J. Phys. Chem. Lett. 7 (2016). https://doi.org/10.1021/acs.jpclett.5b02845.
[14] H. Yadegari, X. Sun, Recent advances on sodium–oxygen batteries: A chemical perspective, Acc. Chem. Res. 51 (2018) 1532–1540. https://doi.org/10.1021/acs.accounts.8b00139
[15] B. Sun, C. Pompe, S. Dongmo, J. Zhang, K. Kretschmer, D. Schröder, J. Janek, G. Wang, Challenges for developing rechargeable room-temperature sodium oxygen batteries, Adv. Mater. Technol. 1800110 (2018) 1800110. https://doi.org/10.1002/admt.201800110
[16] Q. Sun, H. Yadegari, M.N. Banis, J. Liu, B. Xiao, X. Li, C. Langford, R. Li, X. Sun, Toward a sodium-“Air” battery: Revealing the critical role of humidity, J. Phys. Chem. C. 119 (2015) 13433–13441. https://doi.org/10.1021/acs.jpcc.5b02673
[17] E. Peled, D. Golodnitsky, H. Mazor, M. Goor, S. Avshalomov, Parameter analysis of a practical lithium- and sodium-air electric vehicle battery, J. Power Sources. 196 (2011) 6835–6840. https://doi.org/10.1016/j.jpowsour.2010.09.104
[18] P. Hartmann, C.L. Bender, M. Vračar, A.K. Dürr, J. Janek, P. Adelhelm, Supporting Information on “ A rechargeable room-temperature sodium superoxide battery “, Nat. Mater. 12 (2013) 1–11. https://doi.org/10.1038/NMAT3486
[19] Y. Li, H. Yadegari, X. Li, M.N. Banis, R. Li, X. Sun, Superior catalytic activity of nitrogen-doped graphene cathodes for high energy capacity sodium-air batteries, Chem. Commun. 49 (2013) 11731–11733. https://doi.org/10.1039/c3cc46606j
[20] W. Liu, Q. Sun, Y. Yang, J.Y. Xie, Z.W. Fu, An enhanced electrochemical performance of a sodium-air battery with graphene nanosheets as air electrode catalysts, Chem. Commun. 49 (2013) 1951–1953. https://doi.org/10.1039/c3cc00085k
[21] S. Kang, Y. Mo, S.P. Ong, G. Ceder, Nano-scale stabilization of sodium oxides: Implications for Na-O2 batteries., Nano Lett. 14 (2014) 1016–1020. https://doi.org/10.1021/nl404557w
[22] B. Lee, D.H. Seo, H.D. Lim, I. Park, K.Y. Park, J. Kim, K. Kang, First-principles study of the reaction mechanism in sodium-oxygen batteries, Chem. Mater. 26 (2014) 1048–1055. https://doi.org/10.1021/cm403163c
[23] H. Yadegari, Y. Li, M.N. Banis, X. Li, B. Wang, Q. Sun, R. Li, T.K. Sham, X. Cui, X. Sun, On rechargeability and reaction kinetics of sodium-air batteries, Energy Environ. Sci. 7 (2014) 3747–3757. https://doi.org/10.1039/c4ee01654h
[24] C.L. Bender, P. Hartmann, M. Vračar, P. Adelhelm, J. Janek, On the thermodynamics, the role of the carbon cathode, and the cycle life of the sodium superoxide (NaO2) battery, Adv. Energy Mater. 4 (2014) 2–11. https://doi.org/10.1002/aenm.201301863
[25] N. Ortiz-Vitoriano, T.P. Batcho, D.G. Kwabi, B. Han, N. Pour, K.P.C. Yao, C. V. Thompson, Y. Shao-Horn, Rate-Dependent Nucleation and Growth of NaO2 in Na-O2 Batteries, J. Phys. Chem. Lett. 6 (2015) 2636–2643. https://doi.org/10.1021/acs.jpclett.5b00919
[26] I. Landa-Medrano, R. Pinedo, X. Bi, I. Ruiz de Larramendi, L. Lezama, J. Janek, K. Amine, J. Lu, T. Rojo, New Insights into the Instability of Discharge Products in Na−O2 Batteries, ACS Appl. Mater. Interfaces. 8 (2016) 20120–20127. https://doi.org/10.1021/acsami.6b06577
[27] P. Hartmann, M. Heinemann, C.L. Bender, K. Graf, R.P. Baumann, P. Adelhelm, C. Heiliger, J. Janek, Discharge and charge reaction paths in sodium-oxygen batteries: Does NaO2 form by direct electrochemical growth or by precipitation from solution?, J. Phys. Chem. C. 119 (2015) 22778–22786. https://doi.org/10.1021/acs.jpcc.5b06007
[28] S. Yang, D.J. Siegel, Intrinsic conductivity in sodium-air battery discharge phases: Sodium superoxide vs sodium peroxide, Chem. Mater. 27 (2015) 3852–3860. https://doi.org/10.1021/acs.chemmater.5b00285
[29] O. Arcelus, C. Li, T. Rojo, J. Carrasco, Electronic structure of sodium superoxide bulk, (100) surface, and clusters using hybrid density functional: Relevance for Na-O2 batteries, J. Phys. Chem. Lett. 6 (2015) 2027–2031. https://doi.org/10.1021/acs.jpclett.5b00814
[30] J.E. Nichols, B.D. McCloskey, The sudden death phenomena in nonaqueous Na-O2 batteries, J. Phys. Chem. C. 181 (2017) 85–96. https://doi.org/10.1021/acs.jpcc.6b09663.
[31] C.L. Bender, W. Bartuli, M.G. Schwab, P. Adelhelm, J. Janek, Toward better sodium-oxygen batteries: A study on the performance of engineered oxygen electrodes based on carbon nanotubes, Energy Technol. 3 (2015) 242–248. https://doi.org/10.1002/ente.201402208
[32] D. Schröder, C.L. Bender, R. Pinedo, W. Bartuli, M.G. Schwab, Ž. Tomović, J. Janek, How to control the discharge product in sodium–oxygen batteries: Proposing new pathways for sodium peroxide formation, Energy Technol. 5 (2017) 1242–1249. https://doi.org/10.1002/ente.201600539
[33] I. Landa-Medrano, R. Pinedo, I.R. De Larramendi, N. Ortiz-Vitoriano, T. Rojo, Monitoring the location of cathode-reactions in Li-O2 batteries, J. Electrochem. Soc. 162 (2015). https://doi.org/10.1149/2.0191502jes
[34] W.A. Hermann, J.B. Straubel, D.G. Beck, ( 12 ) US9559532B2 (2017).
[35] J.E. Nichols, B.D. McCloskey, The Sudden Death Phenomena in Nonaqueous Na-O 2 Batteries, J. Phys. Chem. C. 181 (2017) 85–96. https://doi.org/10.1021/acs.jpcc.6b09663
[36] J. Kim, H.D. Lim, H. Gwon, K. Kang, Sodium-oxygen batteries with alkyl-carbonate and ether based electrolytes, Phys. Chem. Chem. Phys. 15 (2013) 3623–3629. https://doi.org/10.1039/c3cp43225d
[37] K. Li, S.R. Galle Kankanamge, T.K. Weldeghiorghis, R. Jorn, D.G. Kuroda, R. Kumar, Predicting ion association in sodium electrolytes: A transferrable model for investigating glymes, J. Phys. Chem. C. 122 (2018) 4747–4756. https://doi.org/10.1021/acs.jpcc.7b09995
[38] L. Lutz, D. Alves Dalla Corte, M. Tang, E. Salager, M. Deschamps, A. Grimaud, L. Johnson, P.G. Bruce, J.M. Tarascon, Role of electrolyte anions in the na-o2battery: implications for NaO2 solvation and the stability of the sodium solid electrolyte interphase in glyme ethers, Chem. Mater. 29 (2017) 6066–6075. https://doi.org/10.1021/acs.chemmater.7b01953
[39] I.M. Aldous, L.J. Hardwick, Growth and dissolution of NaO2 in an ether-based electrolyte as the discharge product in the Na-O2 cell, Chem. Commun. 54 (2018) 3444–3447. https://doi.org/10.1039/c7cc08201k
[40] R. Tatara, G.M. Leverick, S. Feng, S. Wan, S. Terada, K. Dokko, M. Watanabe, Y. Shao-Horn, Tuning NaO2 Cube Sizes by Controlling Na+ and Solvent Activity in Na-O2Batteries, J. Phys. Chem. C. 122 (2018) 18316–18328. https://doi.org/10.1021/acs.jpcc.8b05418
[41] N. Dubouis, A. Serva, E. Salager, M. Deschamps, M. Salanne, A. Grimaud, The Fate of Water at the Electrochemical Interfaces: Electrochemical Behavior of Free Water vs . Coordinating Water, (2018). https://doi.org/10.26434/chemrxiv.7140782.v1
[42] T. Liu, J.T. Frith, G. Kim, R.N. Kerber, N. Dubouis, Y. Shao, Z. Liu, P.C.M.M. Magusin, M.T.L. Casford, N. Garcia-Araez, C.P. Grey, The effect of water on quinone redox mediators in nonaqueous Li-O2 Batteries, J. Am. Chem. Soc. 140 (2018) 1428–1437. https://doi.org/10.1021/jacs.7b11007
[43] M. Enterría, C. Botas, J.L. Gómez-Urbano, B. Acebedo, J.M. López Del Amo, D. Carriazo, T. Rojo, N. Ortiz-Vitoriano, Pathways towards high performance Na-O2 batteries: tailoring graphene aerogel cathode porosity & nanostructure, J. Mater. Chem. A. 6 (2018) 20778–20787. https://doi.org/10.1039/c8ta07273f
[44] N. Li, Y. Yin, F. Meng, Q. Zhang, J. Yan, Q. Jiang, Enabling Pyrochlore-Type Oxides as Highly efficient electrocatalysts for high-capacity and stable Na-O2 Batteries: The synergy of electronic structure and morphology, ACS Catal. 7 (2017) 7688–7694. https://doi.org/10.1021/acscatal.7b02074
[45] B. Wang, N. Zhao, Y. Wang, W. Zhang, W. Lu, X. Guo, J. Liu, Electrolyte-controlled discharge product distribution of Na-O2 batteries: A combined computational and experimental study, Phys. Chem. Chem. Phys. 19 (2017) 2940–2949. https://doi.org/10.1039/c6cp07537a
[46] L. Lutz, W. Yin, A. Grimaud, D. Alves, D. Corte, M. Tang, L. Johnson, E. Azaceta, V. Salou-Kanin, A.J. Naylor, S. Hamad, J.A. Anta, E. Salager, R. Tena-Zaera, P.G. Bruce, J. Tarascon, High capacity nao batteries – key parameters for solution – mediated discharge, J. Phys. Chem. C. 120 (2016) 20068–20076. https://doi.org/10.1021/acs.jpcc.6b07659
[47] Franco Cataldo, A revision of the Gutmann donor numbers of a series of phosphoramides including TEPA, Eur. Chem. Bull. 4 (2015) 92–97. https://doi.org/10.17628/ECB.2015.4.92
[48] C.C. Su, M. He, R. Amine, T. Rojas, L. Cheng, A.T. Ngo, K. Amine, Solvating power series of electrolyte solvents for lithium batteries, Energy Environ. Sci. 12 (2019) 1249–1254. https://doi.org/10.1039/c9ee00141g
[49] N. Zhao, X. Guo, Cell Chemistry of Sodium-Oxygen Batteries with Various Nonaqueous Electrolytes, J. Phys. Chem. C. 119 (2015) 25319–25326. https://doi.org/10.1021/acs.jpcc.5b09187
[50] Q. Sun, X. Lin, H. Yadegari, W. Xiao, Y. Zhao, K.R. Adair, R. Li, X. Sun, Aligning the binder effect on sodium-air batteries, J. Mater. Chem. A. 6 (2018) 1473–1484. https://doi.org/10.1039/c7ta09028e
[51] D. Sharon, D. Hirshberg, M. Afri, A.A. Frimer, M. Noked, D. Aurbach, Aprotic metal-oxygen batteries: Recent findings and insights, J. Solid State Electrochem. 21 (2017) 1861–1878. https://doi.org/10.1007/s10008-017-3590-7
[52] S. Wu, J. Tang, F. Li, X. Liu, Y. Yamauchi, M. Ishida, H. Zhou, A synergistic system for lithium-oxygen batteries in humid atmosphere integrating a composite cathode and a hydrophobic ionic liquid-based electrolyte, Adv. Funct. Mater. 26 (2016) 3291–3298. https://doi.org/10.1002/adfm.201505420
[53] C.L. Bender, D. Schröder, R. Pinedo, P. Adelhelm, J. Janek, One- or two-electron transfer? the ambiguous nature of the discharge products in sodium-oxygen batteries, Angew. Chem. Int. Ed. 55 (2016) 4640–4649. https://doi.org/10.1002/anie.201510856
[54] R. Pinedo, D.A. Weber, B.J. Bergner, D. Schröder, P. Adelhelm, J. Janek, Insights into the chemical nature and formation mechanisms of discharge Products in Na-O2 batteries by means of operando X-ray diffraction, J. Phys. Chem. C. 120 (2016) 8472–8481. https://doi.org/10.1021/acs.jpcc.6b00903
[55] C. Xia, R. Black, R. Fernandes, B. Adams, L.F. Nazar, The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries, Nat. Chem. 7 (2015) 496–501. https://doi.org/10.1038/NCHEM.2260
[56] Y. Qiao, S. Wu, J. Yi, Y. Sun, S. Guo, S. Yang, P. He, H. Zhou, From O2− to HO2−: reducing by-products and overpotential in Li-O2 batteries by water addition, Angew. Chem. Int. Ed. 56 (2017) 4960–4964. https://doi.org/10.1002/anie.201611122
[57] D.G. Kwabi, T.P. Batcho, S. Feng, L. Giordano, C. V. Thompson, Y. Shao-Horn, The effect of water on discharge product growth and chemistry in Li-O2 batteries, Phys. Chem. Chem. Phys. 18 (2016) 24944–24953. https://doi.org/10.1039/c6cp03695c
[58] S. Ma, J. Wang, J. Huang, Z. Zhou, Z. Peng, Unveiling the complex effects of H2O on discharge-recharge behaviors of aprotic Lithium-O2 batteries, J. Phys. Chem. Lett. 9 (2018) 3333–3339. https://doi.org/10.1021/acs.jpclett.8b01333
[59] I. Landa-Medrano, A. Sorrentino, L. Stievano, I. Ruiz de Larramendi, E. Pereiro, L. Lezama, T. Rojo, D. Tonti, Architecture of Na-O2 battery deposits revealed by transmission X-ray microscopy, Nano Energy 37 (2017). https://doi.org/10.1016/j.nanoen.2017.05.021
[60] H. Yadegari, M.N. Banis, B. Xiao, Q. Sun, X. Li, A. Lushington, B. Wang, R. Li, T.K. Sham, X. Cui, X. Sun, Three-dimensional nanostructured air electrode for sodium-oxygen batteries: A mechanism study toward the cyclability of the cell, Chem. Mater. 27 (2015) 3040–3047. https://doi.org/10.1021/acs.chemmater.5b00435
[61] C. Liu, M. Carboni, W.R. Brant, R. Pan, J. Hedman, J. Zhu, T. Gustafsson, R. Younesi, On the stability of NaO2 in Na-O2 batteries, ACS Appl. Mater. Interfaces 10 (2018) 13534–13541. https://doi.org/10.1021/acsami.8b01516
[62] Q. Sun, J. Liu, B. Xiao, B. Wang, M. Banis, H. Yadegari, K.R. Adair, R. Li, X. Sun, Visualizing the Oxidation Mechanism and Morphological Evolution of the Cubic-Shaped Superoxide Discharge Product in Na–Air Batteries, Adv. Funct. Mater. 29 (2019) 1–9. https://doi.org/10.1002/adfm.201808332
[63] W.J. Kwak, L. Luo, H.G. Jung, C. Wang, Y.K. Sun, Revealing the reaction mechanism of Na-O2 batteries using environmental transmission electron microscopy, ACS Energy Lett. 3 (2018) 393–399. https://doi.org/10.1021/acsenergylett.7b01273
[64] H. Yadegari, M. Norouzi Banis, X. Lin, A. Koo, R. Li, X. Sun, Revealing the chemical mechanism of NaO2 decomposition by in situ Raman imaging, Chem. Mater. 30 (2018) 5156–5160. https://doi.org/10.1021/acs.chemmater.8b01704
[65] M.N. Banis, H. Yadegari, Q. Sun, T. Regier, T. Boyko, J. Zhou, Y.M. Yiu, R. Li, Y. Hu, T.K. Sham, X. Sun, Revealing the charge/discharge mechanism of Na-O 2 cells by: In situ soft X-ray absorption spectroscopy, Energy Environ. Sci. 11 (2018) 2073–2077. https://doi.org/10.1039/c8ee00721g
[66] Z.E.M. Reeve, C.J. Franko, K.J. Harris, H. Yadegari, X. Sun, G.R. Goward, Detection of electrochemical reaction products from the sodium-oxygen cell with solid-state 23Na NMR spectroscopy, J. Am. Chem. Soc. 139 (2017) 595–598. https://doi.org/10.1021/jacs.6b11333
[67] R. Black, A. Shyamsunder, P. Adeli, D. Kundu, G.K. Murphy, L.F. Nazar, The nature and impact of side reactions in glyme-based sodium – oxygen batteries, ChemSusChem. 9 (2016) 1795–1803. https://doi.org/10.1002/cssc.201600034
[68] T. Liu, G. Kim, M.T.L. Casford, C.P. Grey, Mechanistic insights into the challenges of cycling a nonaqueous Na-O2 battery, J. Phys. Chem. Lett. 7 (2016) 4841–4846. https://doi.org/10.1021/acs.jpclett.6b02267
[69] B.D. Adams, R. Black, Z. Williams, R. Fernandes, M. Cuisinier, E.J. Berg, P. Novak, G.K. Murphy, L.F. Nazar, Towards a stable organic electrolyte for the lithium oxygen battery, Adv. Energy Mater. 5 (2015) 1–11. https://doi.org/10.1002/aenm.201400867
[70] J. Wandt, P. Jakes, J. Granwehr, H.A. Gasteiger, R.A. Eichel, Singlet oxygen formation during the charging process of an aprotic lithium-oxygen battery, Angew. Chem. Int. Ed. 55 (2016) 6892–6895. https://doi.org/10.1002/anie.201602142
[71] W.-J. Kwak, H. Kim, Y.K. Petit, C. Leypold, T.T. Nguyen, N. Mahne, P. Redfern, L.A. Curtiss, H.-G. Jung, S.M. Borisov, S.A. Freunberger, Y.K. Sun, Deactivation of redox mediators in lithium-oxygen batteries by singlet oxygen, Nat. Commun. 10 (2019) 1380. https://doi.org/10.1038/s41467-019-09399-0
[72] N. Mahne, B. Schafzahl, C. Leypold, M. Leypold, S. Grumm, A. Leitgeb, G.A. Strohmeier, M. Wilkening, O. Fontaine, D. Kramer, C. Slugovc, S.M. Borisov, S.A. Freunberger, Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium-oxygen batteries, Nat. Energy. 2 (2017) 1–9. https://doi.org/10.1038/nenergy.2017.36
[73] L. Schafzahl, N. Mahne, B. Schafzahl, M. Wilkening, C. Slugovc, S.M. Borisov, S.A. Freunberger, Singlet oxygen during cycling of the aprotic sodium–O2 battery, Angew. Chem. Int. Ed. 56 (2017) 15728–15732. https://doi.org/10.1002/anie.201709351
[74] J.B. Goodenough, P. Singh, Review-Solid electrolytes in rechargeable electrochemical cells, J. Electrochem. Soc. 162 (2015) 5–10. https://doi.org/10.1149/2.0021514jes
[75] T. Bartsch, F. Strauss, T. Hatsukade, A. Schiele, A.Y. Kim, P. Hartmann, J. Janek, T. Brezesinski, Gas evolution in all-solid-state battery cells, ACS Energy Lett. 3 (2018) 2539–2543. https://doi.org/10.1021/acsenergylett.8b01457
[76] W. Zhou, Y. Li, S. Xin, J.B. Goodenough, Rechargeable Sodium All-Solid-State Battery, (2017) 0–5. https://doi.org/10.1021/acscentsci.6b00321
[77] C. Zhao, L. Liu, X. Qi, Y. Lu, F. Wu, J. Zhao, Y. Yu, Y.S. Hu, L. Chen, Solid-State Sodium Batteries, Adv. Energy Mater. 1703012 (2018) 14–16. https://doi.org/10.1002/aenm.201703012
[78] J.S. Moreno, M. Armand, M.B. Berman, S.G. Greenbaum, B. Scrosati, S. Panero, Composite PEOn:NaTFSI polymer electrolyte: Preparation, thermal and electrochemical characterization, J. Power Sources 248 (2014) 695–702. https://doi.org/10.1016/j.jpowsour.2013.09.137
[79] R. Khurana, J.L. Schaefer, L.A. Archer, G.W. Coates, Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: A new approach for practical lithium-metal polymer batteries, J. Am. Chem. Soc. 136 (2014) 7395–7402. https://doi.org/10.1021/ja502133j
[80] L. Fan, S. Wei, S. Li, Q. Li, Y. Lu, Recent progress of the solid-state electrolytes for high-energy metal-based batteries, Adv. Energy Mater. 1702657 (2018) 1–31. https://doi.org/10.1002/aenm.201702657
[81] S. Song, M. Kotobuki, F. Zheng, C. Xu, S. V. Savilov, N. Hu, L. Lu, Y. Wang, W.D.Z. Li, A hybrid polymer/oxide/ionic-liquid solid electrolyte for Na-metal batteries, J. Mater. Chem. A. 5 (2017) 6424–6431. https://doi.org/10.1039/C6TA11165C
[82] H. Wang, C. Wang, E. Matios, W. Li, Facile Stabilization of the Sodium Metal Anode with Additives: Unexpected Key Role of Sodium Polysulfide and Adverse Effect of Sodium Nitrate, Angew. Chemie – Int. Ed. 57 (2018) 7734–7737. https://doi.org/10.1002/anie.201801818
[83] X. Lin, Q. Sun, H. Yadegari, X. Yang, Y. Zhao, C. Wang, J. Liang, A. Koo, R. Li, X. Sun, On the cycling performance of Na-O2 Cells: revealing the impact of the superoxide crossover toward the metallic Na electrode, Adv. Funct. Mater. 28 (2018) 1–12. https://doi.org/10.1002/adfm.201801904
[84] B. Sun, P. Li, J. Zhang, D. Wang, P. Munroe, C. Wang, P.H.L. Notten, G. Wang, Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries, Adv. Mater. 30 (2018) 1–8. https://doi.org/10.1002/adma.201801334
[85] L. Fan, X. Li, Recent advances in effective protection of sodium metal anode, Nano Energy. 53 (2018) 630–642. https://doi.org/10.1016/j.nanoen.2018.09.017.
[86] S.R. Galle Kankanamge, K. Li, K.D. Fulfer, P. Du, R. Jorn, R. Kumar, D.G. Kuroda, Mechanism behind the unusually high conductivities of high concentrated sodium ion glyme-based electrolytes, J. Phys. Chem. C. 122 (2018) 25237-25246. https://doi.org/10.1021/acs.jpcc.8b06991
[87] H. Lim, H. Song, J. Kim, H. Gwon, Y. Bae, K. Park, J. Hong, H. Kim, T. Kim, Y.H. Kim, X. Lepró, R. Ovalle-Robles, R.H. Baughman, K. Kang, Superior rechargeability and efficiency of lithium – oxygen batteries : Hierarchical air electrode architecture combined with a soluble catalyst, Angew. Chem. Int. Ed.126 (2014) 4007–4012. https://doi.org/10.1002/anie.201400711
[88] I. Landa-Medrano, I. Lozano, N. Ortiz-Vitoriano, I. Ruiz De Larramendi, T. Rojo, Redox mediators: A shuttle to efficacy in metal-O2 batteries, J. Mater. Chem. A. 7 (2019) 8746–8764. https://doi.org/10.1039/c8ta12487f
[89] J.B. Park, S.H. Lee, H.G. Jung, D. Aurbach, Y.K. Sun, Redox mediators for Li–O2 batteries: Status and perspectives, Adv. Mater. 30 (2018) 1–13. https://doi.org/10.1002/adma.201704162
[90] W.-W. Yin, Z. Shadike, Y. Yang, F. Ding, L. Sang, H. Li, Z.-W. Fu, A long-life Na – air battery based on a soluble NaI catalyst, Chem. Commun. 51 (2015) 2324–2327. https://doi.org/10.1039/C4CC08439J
[91] W.-W. Yin, J.-L. Yue, M.-H. Cao, W. Liu, J.-J. Ding, F. Ding, L. Sang, Z.-W. Fu, Dual catalytic behavior of a soluble ferrocene as an electrocatalyst and in the electrochemistry for Na – air batteries, J. Mater. Chem. A. 3 (2015) 19027–19032. https://doi.org/10.1039/C5TA04647E
[92] J.T. Frith, I. Landa-Medrano, I. Ruiz De Larramendi, T. Rojo, J.R. Owen, N. Garcia-Araez, Improving Na-O2 batteries with redox mediators, Chem. Commun. 53 (2017). https://doi.org/10.1039/c7cc06679a
[93] I. Landa-Medrano, I. Ruiz de Larramendi, T. Rojo, Modifying the ORR route by the addition of lithium and potassium salts in Na-O2 batteries, Electrochim. Acta. 263 (2018) 102–109. https://doi.org/10.1016/j.electacta.2017.12.141
[94] Y. Zhang, N. Ortiz-Vitoriano, B. Acebedo, L. O’Dell, D.R. MacFarlane, T. Rojo, M. Forsyth, P.C. Howlett, C. Pozo-Gonzalo, Elucidating the impact of sodium salt concentration on the cathode-electrolyte interface of Na-Air Batteries, J. Phys. Chem. C. 122 (2018) 15276–15286. https://doi.org/10.1021/acs.jpcc.8b02004
[95] Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes, Nat. Energy. (2019). https://doi.org/10.1038/s41560-019-0336-z
[96] J. Zheng, J.A. Lochala, A. Kwok, Z.D. Deng, J. Xiao, Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications, Adv. Sci. 4 (2017) 1–19. https://doi.org/10.1002/advs.201700032
[97] M. He, K.C. Lau, X. Ren, N. Xiao, W.D. McCulloch, L.A. Curtiss, Y. Wu, Concentrated electrolyte for the sodium-oxygen battery: Solvation structure and improved cycle life, Angew. Chemie Int. Ed. 128 (2016) 15536–15540. https://doi.org/10.1002/anie.201608607