Carbon Anodes for Sodium-Ion Batteries

$30.00

Carbon Anodes for Sodium-Ion Batteries

Syed Mustansar Abbas, Muhammad Iftikhar, Ata-ur-Rehman

Current attempts have shown great prospect of substituting lithium-ion batteries (LIBs) with their rival named as Sodium-ion batteries (SIBs), as both share similar chemistry while lithium being scarce and expensive in comparison to the earth crust rich sodium. The poor performance of SIBs anode has restricted its development in the past. Recently, a significant amount of research has been focused on anode materials for SIBs. Carbonaceous anodes have become viable SIB anodes providing high safety, abundant resources, and nontoxicity. In this chapter, the prominent sodium storage capabilities of some potent carbonaceous anodes namely hard carbon, graphite, carbon nanofibers, graphene, biomass derivatized carbon and heteroatom-doped carbon, have been discussed.

Keywords
Sodium-Ion Battery, Anode, Carbon Nanofiber, Hard Carbon, Graphene

Published online 5/20/2020, 42 pages

Citation: Syed Mustansar Abbas, Muhammad Iftikhar, Ata-ur-Rehman, Carbon Anodes for Sodium-Ion Batteries, Materials Research Foundations, Vol. 76, pp 31-72, 2020

DOI: https://doi.org/10.21741/9781644900833-2

Part of the book on Sodium-Ion Batteries

References
[1] B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science 334 (2011) 928-935. https://doi.org/10.1126/science.1212741
[2] H. Pan, Y.-S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage, Energy Environ. Sci. 6 (2013) 2338-2360. https://doi.org/10.1039/c3ee40847g
[3] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R.P. Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power sources, 257 (2014) 421-443. https://doi.org/10.1016/j.jpowsour.2013.11.103
[4] C. De las Casas, W. Li, A review of application of carbon nanotubes for lithium ion battery anode material, J. Power sources 208 (2012) 74-85. https://doi.org/10.1016/j.jpowsour.2012.02.013
[5] V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energy Environ. Sci. 5 (2012) 5884-5901. https://doi.org/10.1039/c2ee02781j
[6] L.P. Wang, L. Yu, X. Wang, M. Srinivasan, Z.J. Xu, Recent developments in electrode materials for sodium-ion batteries, J. Mater. Chem. A 3 (2015) 9353-9378. https://doi.org/10.1039/C4TA06467D
[7] D. Kundu, E. Talaie, V. Duffort, L.F. Nazar, The emerging chemistry of sodium ion batteries for electrochemical energy storage, Angew. Chem. Int. Ed. 54 (2015) 3431-3448. https://doi.org/10.1002/anie.201410376
[8] C. Nithya, S. Gopukumar, Sodium ion batteries: A newer electrochemical storage, Wiley Interdisciplinary Reviews: Energy Environ. 4 (2015) 253-278. https://doi.org/10.1002/wene.136
[9] B.L. Ellis, L.F. Nazar, Sodium and sodium-ion energy storage batteries, Curr.Opinion in Solid State Mater. Sci. 16 (2012) 168-177. https://doi.org/10.1016/j.cossms.2012.04.002
[10] T.B. Reddy, Linden’s handbook of batteries, Vol. 4. 2011: Mcgraw-hill New York.
[11] R.S. Carmichael, Practical Handbook of Physical Properties of Rocks and Minerals (1988). 2017: CRC press. https://doi.org/10.1201/9780203710968
[12] Y. Luo, Y. Tang, S. Zheng, Y. Yan, H. Xue, H. Pang, Dual anode materials for lithium-and sodium-ion batteries, J. Mater. Chem. A. 6 (2018) 4236-4259. https://doi.org/10.1039/C8TA00107C
[13] N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries, Chem. Rev. 114 (2014) 11636-11682. https://doi.org/10.1021/cr500192f
[14] M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium‐ion batteries, Adv. Funct. Mater. 23 (2013) 947-958. https://doi.org/10.1002/adfm.201200691
[15] G. Ali, A. Badshah, K.Y. Chung, K.-W. Nam, M. Jawad, M. Arshad, S.M. Abbas, Superior shuttling of lithium and sodium ions in manganese-doped titania@ functionalized multiwall carbon nanotube anodes, Nanoscale 9 (2017) 9859-9871. https://doi.org/10.1039/C7NR01417A
[16] J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: Present and future, Chem. Soc. Rev. 46 (2017) 3529-3614. https://doi.org/10.1039/C6CS00776G
[17] K. Kubota, S. Komaba, Practical issues and future perspective for Na-ion batteries, J. Electrochem. Soc. 162 (2015) A2538-A2550. https://doi.org/10.1149/2.0151514jes
[18] M.H. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci. 8 (2015) 81-102. https://doi.org/10.1039/C4EE03192J
[19] M. Sathiya, K. Hemalatha, K. Ramesha, J.-M. Tarascon, A. Prakash, Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2, Chem. Mater. 24 (2012) 1846-1853. https://doi.org/10.1021/cm300466b
[20] K. Hemalatha, M. Jayakumar, P. Bera, A. Prakash, Improved electrochemical performance of Na0.67MnO2 through Ni and Mg substitution. J. Mater. Chem. A. 3 (2015) 20908-20912. https://doi.org/10.1039/C5TA06361B
[21] N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries, Nat. Mater. 11 (2012) 512. https://doi.org/10.1038/nmat3309
[22] Y. Lu, L. Wang, J. Cheng, J.B. Goodenough, Prussian blue: A new framework of electrode materials for sodium batteries, Chem. Commun. 48 (2012) 6544-6546. https://doi.org/10.1039/c2cc31777j
[23] Y. You, X.-L. Wu, Y.-X. Yin, Y.-G. Guo, High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries, Energy Environ. Sci. 7 (2014) 1643-1647. https://doi.org/10.1039/C3EE44004D
[24] Y. Yue, A.J. Binder, B. Guo, Z. Zhang, Z.A. Qiao, C. Tian, S. Dai, Mesoporous prussian blue analogues: Template‐free synthesis and sodium‐ion battery applications, Angew. Chem. Int. Ed. 53 (2014) 3134-3137. https://doi.org/10.1002/anie.201310679
[25] D. Yang, J. Xu, X.Z. Liao, H. Wang, Y.S. He, Z.-F. Ma, Prussian blue without coordinated water as a superior cathode for sodium-ion batteries. Chem. Commun. 51 (2015) 8181-8184. https://doi.org/10.1039/C5CC01180A
[26] J. Qian, M. Zhou, Y. Cao, X. Ai, H. Yang, Nanosized Na4Fe(CN)6/C composite as a low‐cost and high‐rate cathode material for sodium‐ion batteries. Adv. Energy Mater. 2 (2012) 410-414. https://doi.org/10.1002/aenm.201100655
[27] K. Hurlbutt, S. Wheeler, I. Capone, M. Pasta, Prussian Blue analogs as battery materials, Joule 2 (2018) 1950-1960. https://doi.org/10.1016/j.joule.2018.07.017
[28] Y. Xu, S. Zheng, H. Tang, X. Guo, H. Xue, H. Pang, Prussian blue and its derivatives as electrode materials for electrochemical energy storage, Energy Storage Mater. 9 (2017) 11-30. https://doi.org/10.1016/j.ensm.2017.06.002
[29] S.P. Guo, J.C. Li, Q.T. Xu, Z. Ma, H. G. Xue, Recent achievements on polyanion-type compounds for sodium-ion batteries: syntheses, crystal chemistry and electrochemical performance, J. Power sources 361 (2017) 285-299. https://doi.org/10.1016/j.jpowsour.2017.07.002
[30] X. Jiang, L. Yang, B. Ding, B. Qu, G. Ji, J.Y. Lee, Extending the cycle life of Na3V2(PO4)3 cathodes in sodium-ion batteries through interdigitated carbon scaffolding, J. Mater. Chem. A. 4 (2016) 14669-14674. https://doi.org/10.1039/C6TA05030A
[31] P. Singh, K. Shiva, H. Celio, J.B. Goodenough, Eldfellite, NaFe(SO4)2: An intercalation cathode host for low-cost Na-ion batteries. Energy Environ. Sci. 8 (2015) 3000-3005. https://doi.org/10.1039/C5EE02274F
[32] K. Zaghib, J. Trottier, P. Hovington, F. Brochu, A. Guerfi, A. Mauger, C. Julien, Characterization of Na-based phosphate as electrode materials for electrochemical cells, J. Power sources 196 (2011) 9612-9617. https://doi.org/10.1016/j.jpowsour.2011.06.061
[33] C. Yuan, Q. Wu, Q. Shao, Q. Li, B. Gao, Q. Duan, H.-g. Wang, Free-standing and flexible organic cathode based on aromatic carbonyl compound/carbon nanotube composite for lithium and sodium organic batteries, J. Colloid Interface Sci. 517 (2018) 72-79. https://doi.org/10.1016/j.jcis.2018.01.095
[34] S. Wang, L. Wang, Z. Zhu, Z. Hu, Q. Zhao, J. Chen, All Organic Sodium‐Ion Batteries with Na4C8H2O6, Angew. Chem. Int. Ed. 53 (2014) 5892-5896. https://doi.org/10.1002/anie.201400032
[35] J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities, Nature Rev. Mater. 1 (2016) 16013. https://doi.org/10.1038/natrevmats.2016.13
[36] W. Liu, X. Luo, Y. Bao, Y.P. Liu, G.-H. Ning, I. Abdelwahab, L. Li, C.T. Nai, Z.G. Hu, D. Zhao, A two-dimensional conjugated aromatic polymer via C–C coupling reaction, Nature Chem. 9 (2017) 563. https://doi.org/10.1038/nchem.2696
[37] X. Deng, Z. Chen, Y. Cao, Transition metal oxides based on conversion reaction for sodium-ion battery anodes, Mater. Today Chem. 9 (2018) 114-132. https://doi.org/10.1016/j.mtchem.2018.06.002
[38] B. Huang, Z. Pan, X. Su, L. An, Tin-based materials as versatile anodes for alkali (earth)-ion batteries, J. Power sources, 395 (2018) 41-59. https://doi.org/10.1016/j.jpowsour.2018.05.063
[39]J. Tang, A.D. Dysart, V.G. Pol, Advancement in sodium-ion rechargeable batteries, Current opinion in chemical engineering, 9 (2015) 34-41. https://doi.org/10.1016/j.coche.2015.08.007
[40] L. Wang, Z. Wei, M. Mao, H. Wang, Y. Li, J. Ma, Metal oxide/graphene composite anode materials for sodium-ion batteries, Energy Storage Mater. 16 (2019) 434-454. https://doi.org/10.1016/j.ensm.2018.06.027
[41] Y. Liu, C. Yang, Q. Zhang, M. Liu, Recent Progress in the Design of Metal Sulfides as Anode Materials for Sodium Ion Batteries, Energy Storage Mater. (2019) https://doi.org/10.1016/j.ensm.2019.01.001
[42] J. Chen, S. Li, K. Qian, P.S. Lee, NiMn layered double hydroxides derived multiphase Mn-doped Ni sulfides with reduced graphene oxide composites as anode materials with superior cycling stability for sodium ion batteries, Mater. Today Energy 9 (2018) 74-82. https://doi.org/10.1016/j.mtener.2018.02.008
[43] L. Wang, J. Wang, F. Guo, L. Ma, Y. Ren, T. Wu, P. Zuo, G. Yin, J. Wang, Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques, Nano Energy 43 (2018) 184-191. https://doi.org/10.1016/j.nanoen.2017.11.029
[44] S. Nie, L. Liu, J. Liu, J. Xia, Y. Zhang, J. Xie, M. Li, X. Wang, TiO2-Sn/C composite nanofibers with high-capacity and long-cycle life as anode materials for sodium ion batteries, J. Alloys Compds. 772 (2019) 314-323. https://doi.org/10.1016/j.jallcom.2018.09.044
[45] Z. Diao, D. Zhao, C. Lv, H. Liu, D. Yang, S. Shen, Ultrafine polycrystalline titania nanofibers for superior sodium storage, J. Energy Chem. 38 (2019) 153-161. https://doi.org/10.1016/j.jechem.2018.12.009
[46] X. Li, X. Li, L. Fan, Z. Yu, B. Yan, D. Xiong, X. Song, S. Li, K.R. Adair, D. Li, Rational design of Sn/SnO2/porous carbon nanocomposites as anode materials for sodium-ion batteries, Applied Surf. Sci. 412 (2017) 170-176. https://doi.org/10.1016/j.apsusc.2017.03.203
[47] H. Xie, W.P. Kalisvaart, B.C. Olsen, E.J. Luber, D. Mitlin, J.M. Buriak, Sn–Bi–Sb alloys as anode materials for sodium ion batteries, J. Mater. Chem. A. 5 (2017) 9661-9670. https://doi.org/10.1039/C7TA01443K
[48] Q. Li, Q. Wei, W. Zuo, L. Huang, W. Luo, Q. An, V.O. Pelenovich, L. Mai, Q. Zhang, Greigite Fe3S4 as a new anode material for high-performance sodium-ion batteries, Chem. Sci. 8 (2017) 160-164. https://doi.org/10.1039/C6SC02716D
[49] C. Bommier, D. Mitlin, X. Ji, Internal structure–Na storage mechanisms–electrochemical performance relations in carbons, Prog. Mater. Sci. 97 (2018) 170-203. https://doi.org/10.1016/j.pmatsci.2018.04.006
[50] G. Yoon, H. Kim, I. Park, K. Kang, Conditions for reversible Na intercalation in graphite: theoretical studies on the interplay among guest ions, solvent, and graphite host. Adv. Energy Mater.7 (2017) 1601519. https://doi.org/10.1002/aenm.201601519
[51] M.M. Doeff, Y. Ma, S.J. Visco, L.C. De Jonghe, Electrochemical insertion of sodium into carbon, J. Electrochem. Soc. 140 (1993) L169-L170. https://doi.org/10.1149/1.2221153
[52] K. Nobuhara, H. Nakayama, M. Nose, S. Nakanishi, H. Iba, First-principles study of alkali metal-graphite intercalation compounds, J. Power Sources 243 (2013) 585-587. https://doi.org/10.1016/j.jpowsour.2013.06.057
[53] Y. Okamoto, Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds, J. Phys. Chem. C. 118 (2014) 16-19. https://doi.org/10.1021/jp4063753
[54] Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Expanded graphite as superior anode for sodium-ion batteries, Nature Commun. 5 (2014) 4033. https://doi.org/10.1038/ncomms5033
[55] B. Jache, P. Adelhelm, Use of graphite as a highly reversible electrode with superior cycle life for sodium‐ion batteries by making use of co‐intercalation phenomena, Angew. Chem. Int. Ed. 53 (2014) 10169-10173. https://doi.org/10.1002/anie.201403734
[56] H. Kim, J. Hong, Y.U. Park, J. Kim, I. Hwang, K. Kang, Sodium storage behavior in natural graphite using ether‐based electrolyte Systems. Adv. Funct. Mater. 25 (2015) 534-541. https://doi.org/10.1002/adfm.201402984
[57] H. Kim, J. Hong, G. Yoon, H. Kim, K.-Y. Park, M.-S. Park, W.-S. Yoon, K. Kang, Sodium intercalation chemistry in graphite, Energy Environ. Sci. 8 (2015) 2963-2969. https://doi.org/10.1039/C5EE02051D
[58] Y. Liu, N. Zhang, C. Yu, L. Jiao, J. Chen, MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries, Nano Lett. 16 (2016) 3321-3328. https://doi.org/10.1021/acs.nanolett.6b00942
[59] R.E. Franklin, Crystallite growth in graphitizing and non-graphitizing carbons, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 209 (1951) 196-218. https://doi.org/10.1098/rspa.1951.0197
[60] A.P. Terzyk, S. Furmaniak, P.J. Harris, P.A. Gauden, J. Włoch, P. Kowalczyk, G. Rychlicki, How realistic is the pore size distribution calculated from adsorption isotherms if activated carbon is composed of fullerene-like fragments? Phys. Chem. Chem. Phys. 9 (2007) 5919-5927. https://doi.org/10.1039/b710552e
[61] H. Marsh, W. Wynne-Jones, The surface properties of carbon-I The effect of activated diffusion in the determination of surface area, Carbon, 1 (1964) 269-279. https://doi.org/10.1016/0008-6223(64)90281-7
[62] H. Hou, X. Qiu, W. Wei, Y. Zhang, X. Ji, Carbon anode materials for advanced sodium‐ion batteries, Adv. Energy Mater.7 (2017) 1602898. https://doi.org/10.1002/aenm.201602898
[63] R. Gray, Coal to coke conversion, in Introduction to carbon science 1989, Elsevier. p. 285-321. https://doi.org/10.1016/B978-0-408-03837-9.50014-2
[64] Z. Li, C. Bommier, Z.S. Chong, Z. Jian, T.W. Surta, X. Wang, Z. Xing, J.C. Neuefeind, W.F. Stickle, M. Dolgos, Mechanism of Na‐ion storage in hard carbon anodes revealed by heteroatom doping, Adv. Energy Mater.7 (2017) 1602894. https://doi.org/10.1002/aenm.201602894
[65] J. Kipling, J. Sherwood, P. Shooter, N. Thompson, The pore structure and surface area of high-temperature polymer carbons, Carbon 1 (1964) 321-328. https://doi.org/10.1016/0008-6223(64)90286-6
[66] A. Martynenko, True, particle, and bulk density of shrinkable biomaterials: evaluation from drying experiments. Drying Technol. 32 (2014) 1319-1325. https://doi.org/10.1080/07373937.2014.894522
[67] D. Stevens, J. Dahn, The mechanisms of lithium and sodium insertion in carbon materials, J. Electrochem. Soc. 148 (2001) A803-A811. https://doi.org/10.1149/1.1379565
[68] D. Stevens, J. Dahn, An In Situ Small‐Angle X‐Ray Scattering Study of Sodium Insertion into a Nanoporous Carbon Anode Material within an Operating Electrochemical Cell. J. Electrochem. Soc.147 (2000) 4428-4431. https://doi.org/10.1149/1.1394081
[69] D. Stevens, J. Dahn, High capacity anode materials for rechargeable sodium‐ion batteries, J. Electrochem. Soc.147 (2000) 1271-1273. https://doi.org/10.1149/1.1393348
[70] S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, K. Fujiwara, Electrochemical Na insertion and solid electrolyte interphase for hard‐carbon electrodes and application to Na‐Ion batteries, Adv. Funct. Mater. 21 (2011) 3859-3867. https://doi.org/10.1002/adfm.201100854
[71] K. Gotoh, T. Ishikawa, S. Shimadzu, N. Yabuuchi, S. Komaba, K. Takeda, A. Goto, K. Deguchi, S. Ohki, K. Hashi, NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery, J. Power Sources, 225 (2013) 137-140. https://doi.org/10.1016/j.jpowsour.2012.10.025
[72] S. Wenzel, T. Hara, J. Janek, P. Adelhelm, Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies, Energy Environ. Sci. 4 (2011) 3342-3345. https://doi.org/10.1039/c1ee01744f
[73] P.C. Tsai, S.-C. Chung, S.-k. Lin, A. Yamada, Ab initio study of sodium intercalation into disordered carbon. J. Mater. Chem. A. 3 (2015) 9763-9768. https://doi.org/10.1039/C5TA01443C
[74] C. Bommier, T.W. Surta, M. Dolgos, X. Ji, New mechanistic insights on Na-ion storage in nongraphitizable carbon, Nano Lett. 15 (2015) 5888-5892. https://doi.org/10.1021/acs.nanolett.5b01969
[75] Y. Zhang, Y. Zhao, Z. Bakenov, A simple approach to synthesize nanosized sulfur/graphene oxide materials for high-performance lithium/sulfur batteries, Ionics 20 (2014) 1047-1050. https://doi.org/10.1007/s11581-014-1165-5
[76] M. Pumera, Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4 (2011) 668-674. https://doi.org/10.1039/C0EE00295J
[77] C. Xu, B. Xu, Y. Gu, Z. Xiong, J. Sun, X. Zhao, Graphene-based electrodes for electrochemical energy storage, Energy Environ. Sci. 6 (2013) 1388-1414. https://doi.org/10.1039/c3ee23870a
[78] J. Zhu, D. Yang, Z. Yin, Q. Yan, H. Zhang, Graphene and graphene‐based materials for energy storage applications. Small, 10 (2014) 3480-3498. https://doi.org/10.1002/smll.201303202
[79] S. Wu, R. Xu, M. Lu, R. Ge, J. Iocozzia, C. Han, B. Jiang, Z. Lin, Graphene‐containing nanomaterials for lithium‐ion batteries, Adv. Energy Mater.5 (2015) 1500400. https://doi.org/10.1002/aenm.201500400
[80] S. Wu, R. Ge, M. Lu, R. Xu, Z. Zhang, Graphene-based nano-materials for lithium–sulfur battery and sodium-ion battery, Nano Energy 15 (2015) 379-405. https://doi.org/10.1016/j.nanoen.2015.04.032
[81] Y.X. Wang, S.L. Chou, H.-K. Liu, S.-X. Dou, Reduced graphene oxide with superior cycling stability and rate capability for sodium storage, Carbon 57 (2013) 202-208. https://doi.org/10.1016/j.carbon.2013.01.064
[82] Z. Jian, B. Zhao, P. Liu, F. Li, M. Zheng, M. Chen, Y. Shi, H. Zhou, Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries, Chem. Commun. 50 (2014) 1215-1217. https://doi.org/10.1039/C3CC47977C
[83] W. Wang, L. Hu, J. Ge, Z. Hu, H. Sun, H. Sun, H. Zhang, H. Zhu, S. Jiao, In situ self-assembled FeWO4/graphene mesoporous composites for Li-ion and Na-ion batteries, Chem. Mater. 26 (2014) 3721-3730. https://doi.org/10.1021/cm501122u
[84] K.J. Saji, K. Tian, M. Snure, A. Tiwari, 2D tin monoxide—an unexplored p‐type van der waals semiconductor: material characteristics and field effect transistors, Adv. Electron. Mater. 2 (2016) 1500453. https://doi.org/10.1002/aelm.201500453
[85] H. Yamaguchi, S. Nakanishi, H. Iba, T. Itoh, Amorphous polymeric anode materials from poly (acrylic acid) and tin (II) oxide for lithium ion batteries, J. Power Sources 275 (2015) 1-5. https://doi.org/10.1016/j.jpowsour.2014.10.071
[86] L.Y. Liang, Z.M. Liu, H.T. Cao, X.Q. Pan, Microstructural, optical, and electrical properties of SnO thin films prepared on quartz via a two-step method, ACS Appl. Mater. Interfaces 2 (2010) 1060-1065. https://doi.org/10.1021/am900838z
[87] Y. Zhang, Z. Ma, D. Liu, S. Dou, J. Ma, M. Zhang, Z. Guo, R. Chen, S. Wang, p-Type SnO thin layers on n-type SnS 2 nanosheets with enriched surface defects and embedded charge transfer for lithium ion batteries, J. Mater. Chem. A. 5 (2017) 512-518. https://doi.org/10.1039/C6TA09748K
[88] F. Zhang, J. Zhu, D. Zhang, U. Schwingenschlögl, H.N. Alshareef, Two-dimensional SnO anodes with a tunable number of atomic layers for sodium ion batteries, Nano Lett.17 (2017) 1302-1311. https://doi.org/10.1021/acs.nanolett.6b05280
[89] R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage, Nat. Mater. 14 (2015) 271. https://doi.org/10.1038/nmat4170
[90] N. Mahmood, C. Zhang, H. Yin, Y. Hou, Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells, J. Mater. Chem. A. 2 (2014) 15-32. https://doi.org/10.1039/C3TA13033A
[91] M. Reddy, G. Subba Rao, B. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries, Chem. Rev. 113 (2013) 5364-5457. https://doi.org/10.1021/cr3001884
[92] M. Chen, D. Chao, J. Liu, J. Yan, B. Zhang, Y. Huang, J. Lin, Z.X. Shen, Rapid pseudocapacitive sodium‐ion response induced by 2D ultrathin tin monoxide nanoarrays, Adv. Funct. Mater. 27 (2017) 1606232. https://doi.org/10.1002/adfm.201606232
[93] J. Zhu, D. Deng, Single-crystalline α-Fe2O3 void@ frame microframes for rechargeable batteries, J. Mater. Chem. A. 4 (2016) 4425-4432. https://doi.org/10.1039/C6TA00870D
[94] D. Kong, C. Cheng, Y. Wang, B. Liu, Z. Huang, H.Y. Yang, Seed-assisted growth of α-Fe2O3 nanorod arrays on reduced graphene oxide: A superior anode for high-performance Li-ion and Na-ion batteries, J. Mater. Chem. A. 4 (2016) 11800-11811. https://doi.org/10.1039/C6TA04370D
[95] G.D. Park, J.S. Cho, J.K. Lee, Y.C. Kang, Na-ion storage performances of FeSex and Fe2O3 hollow nanoparticles-decorated reduced graphene oxide balls prepared by nanoscale Kirkendall diffusion process, Sci. Rep. 6 (2016) 22432. https://doi.org/10.1038/srep22432
[96] H. Li, L. Xu, H. Sitinamaluwa, K. Wasalathilake, C. Yan, Coating Fe2O3 with graphene oxide for high-performance sodium-ion battery anode, Composites Commun. 1 (2016) 48-53. https://doi.org/10.1016/j.coco.2016.09.004
[97] Z.J. Zhang, Y.-X. Wang, S.-L. Chou, H.-J. Li, H.-K. Liu, J.-Z. Wang, Rapid synthesis of α-Fe2O3/rGO nanocomposites by microwave autoclave as superior anodes for sodium-ion batteries, J. Power Sources 280 (2015) 107-113. https://doi.org/10.1016/j.jpowsour.2015.01.092
[98] T. Li, A. Qin, L. Yang, J. Chen, Q. Wang, D. Zhang, H. Yang, In situ grown Fe2O3 single crystallites on reduced graphene oxide nanosheets as high performance conversion anode for sodium-ion batteries, ACS Appl. Mater. Interfaces 9 (2017) 19900-19907. https://doi.org/10.1021/acsami.7b04407
[99] W. Guo, W. Sun, Y. Wang, Multilayer CuO@NiO hollow spheres: microwave-assisted metal–organic-framework derivation and highly reversible structure-matched stepwise lithium storage. ACS Nano 9 (2015) 11462-11471. https://doi.org/10.1021/acsnano.5b05610
[100] S. Ko, J.I. Lee, H.S. Yang, S. Park, U. Jeong, Mesoporous CuO particles threaded with CNTs for high‐performance lithium‐ion battery anodes, Adv. Mater. 24 (2012) 4451-4456. https://doi.org/10.1002/adma.201201821
[101] B. Wang, X.L. Wu, C.Y. Shu, Y.G. Guo, C.R. Wang, Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries, J. Mater. Chem. 20 (2010) 10661-10664. https://doi.org/10.1039/c0jm01941k
[102] R. Sahay, P. Suresh Kumar, V. Aravindan, J. Sundaramurthy, W. Chui Ling, S.G. Mhaisalkar, S. Ramakrishna, S. Madhavi, High aspect ratio electrospun CuO nanofibers as anode material for lithium-ion batteries with superior cycleability, J. Phys. Chem. C, 116 (2012) 18087-18092. https://doi.org/10.1021/jp3053949
[103] D. Yin, G. Huang, Z. Na, X. Wang, Q. Li, L. Wang, CuO nanorod arrays formed directly on Cu foil from MOFs as superior binder-free anode material for lithium-ion batteries, ACS Energy Lett., 2 (2017) 1564-1570. https://doi.org/10.1021/acsenergylett.7b00215
[104] D. Li, D. Yan, X. Zhang, J. Li, T. Lu, L. Pan, Porous CuO/reduced graphene oxide composites synthesized from metal-organic frameworks as anodes for high-performance sodium-ion batteries, J. Colloid Interface Sci. 497 (2017) 350-358. https://doi.org/10.1016/j.jcis.2017.03.037
[105] J. Sun, C. Lv, F. Lv, S. Chen, D. Li, Z. Guo, W. Han, D. Yang, S. Guo, Tuning the shell number of multishelled metal oxide hollow fibers for optimized lithium-ion storage, ACS Nano 11 (2017) 6186-6193. https://doi.org/10.1021/acsnano.7b02275
[106] Y. Jiang, M. Hu, D. Zhang, T. Yuan, W. Sun, B. Xu, M. Yan, Transition metal oxides for high performance sodium ion battery anodes, Nano Energy, 5 (2014) 60-66. https://doi.org/10.1016/j.nanoen.2014.02.002
[107] K. He, F. Lin, Y. Zhu, X. Yu, J. Li, R. Lin, D. Nordlund, T.C. Weng, R.M. Richards, X.Q. Yang, Sodiation kinetics of metal oxide conversion electrodes: A comparative study with lithiation, Nano Lett. 15 (2015) 5755-5763. https://doi.org/10.1021/acs.nanolett.5b01709
[108] F. Zou, Y.-M. Chen, K. Liu, Z. Yu, W. Liang, S.M. Bhaway, M. Gao, Y. Zhu, Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage, ACS Nano 10 (2015) 377-386. https://doi.org/10.1021/acsnano.5b05041
[109] C. Peng, B. Chen, Y. Qin, S. Yang, C. Li, Y. Zuo, S. Liu, J. Yang, Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity, ACS Nano 6 (2012) 1074-1081. https://doi.org/10.1021/nn202888d
[110] L. Chang, K. Wang, L.-a. Huang, Z. He, S. Zhu, M. Chen, H. Shao, J. Wang, Hierarchical CoO microflower film with excellent electrochemical lithium/sodium storage performance, J. Mater. Chem. A. 5 (2017) 20892-20902. https://doi.org/10.1039/C7TA05027E
[111] L. Chang, K. Wang, L. Huang, Z. He, H. Shao, J. Wang, Hierarchically porous CoO microsphere films with enhanced lithium/sodium storage properties, J. Alloys Compds, 725 (2017) 824-834. https://doi.org/10.1016/j.jallcom.2017.07.122
[112] D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications, Adv. Mater. 18 (2006) 2807-2824. https://doi.org/10.1002/adma.200502696
[113] L. Wu, D. Bresser, D. Buchholz, G.A. Giffin, C.R. Castro, A. Ochel, S. Passerini, Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles, Adv. Energy Mater.5 (2015) 1401142. https://doi.org/10.1002/aenm.201401142
[114] D. Su, S. Dou, G. Wang, Anatase TiO2: better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries, Chem. Mater.27 (2015) 6022-6029. https://doi.org/10.1021/acs.chemmater.5b02348
[115] Y. Xiong, J. Qian, Y. Cao, X. Ai, H. Yang, Electrospun TiO2/C Nanofibers As a High-Capacity and Cycle-Stable Anode for Sodium-Ion Batteries, ACS Appl. Mater. Interfaces 8 (2016) 16684-16689. https://doi.org/10.1021/acsami.6b03757
[116] J.Y. Hwang, S.T. Myung, J.H. Lee, A. Abouimrane, I. Belharouak, Y.K. Sun, Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes. Nano Energy 16 (2015) 218-226. https://doi.org/10.1016/j.nanoen.2015.06.017
[117] Y. Sun, X. Hu, W. Luo, Y. Huang, Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries, ACS Nano 5 (2011) 7100-7107. https://doi.org/10.1021/nn201802c
[118] Y. Shi, B. Guo, S.A. Corr, Q. Shi, Y.-S. Hu, K.R. Heier, L. Chen, R. Seshadri, G.D. Stucky, Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity, Nano Lett. 9 (2009) 4215-4220. https://doi.org/10.1021/nl902423a
[119] X. Zhao, H.-E. Wang, X. Chen, J. Cao, Y. Zhao, Z.G. Neale, W. Cai, J. Sui, G. Cao, Tubular MoO2 organized by 2D assemblies for fast and durable alkali-ion storage, Energy Storage Mater. 11 (2018) 161-169. https://doi.org/10.1016/j.ensm.2017.10.010
[120] J. Huang, Z. Xu, L. Cao, Q. Zhang, H. Ouyang, J. Li, Tailoring MoO2/Graphene Oxide Nanostructures for Stable, High‐Density Sodium‐Ion Battery Anodes. Energy Technology, 3 (2015) 1108-1114. https://doi.org/10.1002/ente.201500160
[121]S. Yang, Y. Gong, Z. Liu, L. Zhan, D.P. Hashim, L. Ma, R. Vajtai, P.M. Ajayan, Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage, Nano Lett. 13 (2013) 1596-1601. https://doi.org/10.1021/nl400001u
[122] G. He, L. Li, A. Manthiram, VO2/rGO nanorods as a potential anode for sodium-and lithium-ion batteries, J. Mater. Chem. A. 3 (2015) 14750-14758. https://doi.org/10.1039/C5TA03188E
[123] A.M. Cao, J.S. Hu, H.P. Liang, L.J. Wan, Self‐assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium‐Ion batteries, Angew. Chem. Int. Ed. 44 (2005) 4391-4395. https://doi.org/10.1002/anie.200500946
[124] J. Liu, H. Xia, D. Xue, L. Lu, Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries, J. Am. Chem. Soc. 131 (2009) 12086-12087. https://doi.org/10.1021/ja9053256
[125] Z. Chen, V. Augustyn, J. Wen, Y. Zhang, M. Shen, B. Dunn, Y. Lu, High‐performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites, Adv. Mater. 23 (2011) 791-795. https://doi.org/10.1002/adma.201003658
[126] G. Gu, M. Schmid, P.W. Chiu, A. Minett, J. Fraysse, G.T. Kim, S. Roth, M. Kozlov, E. Muñoz, R.H. Baughman, V2O5 nanofibre sheet actuators. Nat. Mater. 2 (2003) 316. https://doi.org/10.1038/nmat880
[127] T. Zhai, H. Liu, H. Li, X. Fang, M. Liao, L. Li, H. Zhou, Y. Koide, Y. Bando, D. Golberg, Centimeter‐long V2O5 nanowires: From synthesis to field‐emission, electrochemical, electrical transport, and photoconductive properties. Adv. Mater. 22 (2010) 2547-2552. https://doi.org/10.1002/adma.200903586
[128] M. Lee, S.K. Balasingam, H.Y. Jeong, W.G. Hong, B.H. Kim, Y. Jun, One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage, Sci. Rep. 5 (2015) 8151. https://doi.org/10.1038/srep08151
[129] R. Kiruthiga, C. Nithya, R. Karvembu, Reduced graphene oxide embedded V2O5 nanorods and porous honey carbon as high performance electrodes for hybrid sodium-ion supercapacitors, Electrochim. Acta 256 (2017) 221-231. https://doi.org/10.1016/j.electacta.2017.10.049
[130] W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T.F. Heinz, Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514 (2014) 470. https://doi.org/10.1038/nature13792
[131] J. Kibsgaard, Z. Chen, B.N. Reinecke, T.F. Jaramillo, Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis, Nat. Mater. 11 (2012) 963. https://doi.org/10.1038/nmat3439
[132] D. Su, S. Dou, G. Wang, WS2@ graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances, Chem. Commun. 50 (2014) 4192-4195. https://doi.org/10.1039/c4cc00840e
[133] G.S. Bang, K.W. Nam, J.Y. Kim, J. Shin, J.W. Choi, S.-Y. Choi, Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets, ACS Appl. Mater. Interfaces 6 (2014) 7084-7089. https://doi.org/10.1021/am4060222
[134] X. Zhou, X. Liu, Y. Xu, Y. Liu, Z. Dai, J. Bao, An SbOx/reduced graphene oxide composite as a high-rate anode material for sodium-ion batteries, J. Phys. Chem. C. 118 (2014) 23527-23534. https://doi.org/10.1021/jp507116t
[135] Y. Denis, P.V. Prikhodchenko, C.W. Mason, S.K. Batabyal, J. Gun, S. Sladkevich, A.G. Medvedev, O. Lev, High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries, Nat. Commun. 4 (2013) 2922. https://doi.org/10.1038/ncomms3922
[136] R. Baughman, AA Zhakidov, WA de Heer, Science 297 (2002) 787. https://doi.org/10.1126/science.1060928
[137] N. Rodriguez, A review of catalytically grown carbon nanofibers, J. Mater. Res. 8 (1993) 3233-3250. https://doi.org/10.1557/JMR.1993.3233
[138] W. Li, M. Li, K.R. Adair, X. Sun, Y. Yu, Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries, J. Mater. Chem. A. 5 (2017) 13882-13906. https://doi.org/10.1039/C7TA02153D
[139] W. Li, L. Zeng, Y. Wu, Y. Yu, Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning, Science China Mater. 59 (2016) 287-321. https://doi.org/10.1007/s40843-016-5039-6
[140] M. Inagaki, Y. Yang, F. Kang, Carbon nanofibers prepared via electrospinning, Adv. Mater. 24 (2012) 2547-2566. https://doi.org/10.1002/adma.201104940
[141] Z.J. Fan, J. Yan, T. Wei, G.Q. Ning, L.J. Zhi, J.C. Liu, D.X. Cao, G.L. Wang, F. Wei, Nanographene-constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition: high-performance anode materials for lithium ion batteries, ACS Nano 5 (2011) 2787-2794. https://doi.org/10.1021/nn200195k
[142] X.Q. Zhang, Q. Sun, W. Dong, D. Li, A.-H. Lu, J.Q. Mu, W.C. Li, Synthesis of superior carbon nanofibers with large aspect ratio and tunable porosity for electrochemical energy storage, J. Mater. Chem. A. 1 (2013) 9449-9455. https://doi.org/10.1039/c3ta10660h
[143] H. Hou, M. Jing, Y. Yang, Y. Zhang, W. Song, X. Yang, J. Chen, Q. Chen, X. Ji, Antimony nanoparticles anchored on interconnected carbon nanofibers networks as advanced anode material for sodium-ion batteries, J. Power Sources 284 (2015) 227-235. https://doi.org/10.1016/j.jpowsour.2015.03.043
[144] G. Zheng, Q. Zhang, J.J. Cha, Y. Yang, W. Li, Z.W. Seh, Y. Cui, Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries, Nano Lett. 13 (2013) 1265-1270. https://doi.org/10.1021/nl304795g
[145] Y. Yao, F. Wu, Naturally derived nanostructured materials from biomass for rechargeable lithium/sodium batteries, Nano Energy 17 (2015) 91-103. https://doi.org/10.1016/j.nanoen.2015.08.004
[146] L. Fu, K. Tang, K. Song, P.A. van Aken, Y. Yu, J. Maier, Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance, Nanoscale 6 (2014) 1384-1389. https://doi.org/10.1039/C3NR05374A
[147] Y. Cao, L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L.V. Saraf, Z. Yang, J. Liu, Sodium ion insertion in hollow carbon nanowires for battery applications, Nano Lett. 12 (2012) 3783-3787. https://doi.org/10.1021/nl3016957
[148] W. Li, L. Zeng, Z. Yang, L. Gu, J. Wang, X. Liu, J. Cheng, Y. Yu, Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers, Nanoscale 6 (2014) 693-698. https://doi.org/10.1039/C3NR05022J
[149] M. Wang, Z. Yang, W. Li, L. Gu, Y. Yu, Superior sodium storage in 3D interconnected nitrogen and oxygen dual‐doped carbon network, Small 12 (2016) 2559-2566. https://doi.org/10.1002/smll.201600101
[150] D. Nan, Z.H. Huang, R. Lv, L. Yang, J.G. Wang, W. Shen, Y. Lin, X. Yu, L. Ye, H. Sun, Nitrogen-enriched electrospun porous carbon nanofiber networks as high-performance free-standing electrode materials, J. Mater. Chem. A. 2 (2014) 19678-19684. https://doi.org/10.1039/C4TA03868A
[151] W. Luo, J. Schardt, C. Bommier, B. Wang, J. Razink, J. Simonsen, X. Ji, Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries, J. Mater. Chem. A. 1 (2013) 10662-10666. https://doi.org/10.1039/c3ta12389h
[152] Z. Zhang, J. Zhang, X. Zhao, F. Yang, Core-sheath structured porous carbon nanofiber composite anode material derived from bacterial cellulose/polypyrrole as an anode for sodium-ion batteries, Carbon 95 (2015) 552-559. https://doi.org/10.1016/j.carbon.2015.08.069
[153] T. Chen, Y. Liu, L. Pan, T. Lu, Y. Yao, Z. Sun, D.H. Chua, Q. Chen, Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance, J. Mater. Chem. A. 2 (2014) 4117-4121. https://doi.org/10.1039/c3ta14806h
[154] S. Wang, L. Xia, L. Yu, L. Zhang, H. Wang, X.W. Lou, Free‐standing nitrogen‐doped carbon nanofiber films: integrated electrodes for sodium‐ion batteries with ultralong cycle life and superior rate capability, Adv. Energy Mater. 6 (2016) 1502217. https://doi.org/10.1002/aenm.201502217
[155] J. Jin, B.-j. Yu, Z.-q. Shi, C.-y. Wang, C.-b. Chong, Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries, J. Power Sources 272 (2014) 800-807. https://doi.org/10.1016/j.jpowsour.2014.08.119
[156] L. Zeng, W. Li, J. Cheng, J. Wang, X. Liu, Y. Yu, N-doped porous hollow carbon nanofibers fabricated using electrospun polymer templates and their sodium storage properties, RSC Adv. 4 (2014) 16920-16927. https://doi.org/10.1039/C4RA01200C
[157] J. Zhu, C. Chen, Y. Lu, Y. Ge, H. Jiang, K. Fu, X. Zhang, Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries, Carbon 94 (2015) 189-195. https://doi.org/10.1016/j.carbon.2015.06.076
[158] C. Chen, Y. Lu, Y. Ge, J. Zhu, H. Jiang, Y. Li, Y. Hu, X. Zhang, Synthesis of nitrogen‐doped electrospun carbon nanofibers as anode material for high‐performance sodium‐ion batteries, Energy Technol. 4 (2016) 1440-1449. https://doi.org/10.1002/ente.201600205
[159] M. Wang, Y. Yang, Z. Yang, L. Gu, Q. Chen, Y. Yu, Sodium-ion batteries: Improving the rate capability of 3D interconnected carbon nanofibers thin film by boron, nitrogen dual-doping, Adv. Sci. 4 (2017) 1600468. https://doi.org/10.1002/advs.201600468
[160] M. Wang, Z. Yang, W. Li, L. Gu, Y. Yu, Superior sodium storage in 3d interconnected nitrogen and oxygen dual-doped carbon network, Small, 12 (2016) 2559-2566. https://doi.org/10.1002/smll.201600101
[161] Y. Zhu, X. Han, Y. Xu, Y. Liu, S. Zheng, K. Xu, L. Hu, C. Wang, Electrospun Sb/C fibers for a stable and Fast sodium-ion battery anode, ACS Nano 7 (2013) 6378-6386. https://doi.org/10.1021/nn4025674
[162] J. Liu, K. Tang, K. Song, P.A. van Aken, Y. Yu, J. Maier, Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries, Phys. Chem. Chem. Phys. 15 (2013) 20813-20818. https://doi.org/10.1039/c3cp53882f
[163] B. Zhang, J. Huang, J.-K. Kim, Ultrafine amorphous SnOx Embedded in carbon nanofiber/carbon nanotube composites for Li-Ion and Na-ion batteries. Adv. Funct. Mater. 25 (2015) 5222-5228. https://doi.org/10.1002/adfm.201501498
[164] Y. Liu, N. Zhang, C. Yu, L. Jiao, J. Chen, MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries, Nano Lett. 16 (2016) 3321-3328. https://doi.org/10.1021/acs.nanolett.6b00942
[165] C. Zhu, X. Mu, P.A. van Aken, Y. Yu, J. Maier, Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage, Angew. Chem. Int. Ed. 53 (2014) 2152-2156. https://doi.org/10.1002/anie.201308354
[166] X. Xiong, W. Luo, X. Hu, C. Chen, L. Qie, D. Hou, Y. Huang, Flexible Membranes of MoS2/C Nanofibers by Electrospinning as Binder-Free Anodes for High-Performance Sodium-Ion Batteries. Scientific Reports, 5 (2015) 9254. https://doi.org/10.1038/srep09254
[167] J.S. Cho, J.-K. Lee, Y.C. Kang, Graphitic carbon-coated FeSe2 hollow nanosphere-decorated reduced graphene oxide hybrid nanofibers as an efficient anode material for sodium ion batteries, Sci. Rep. 6 (2016) 23699. https://doi.org/10.1038/srep23699
[168]. J.S. Cho, S.Y. Lee, Y.C. Kang, First Introduction of NiSe2 to Anode Material for Sodium-Ion Batteries: A Hybrid of Graphene-Wrapped NiSe2/C Porous Nanofiber. Scientific Reports, 6 (2016) 23338. https://doi.org/10.1038/srep23338
[169] M. Dirican, Y. Lu, Y. Ge, O. Yildiz, X. Zhang, Carbon-confined SnO2-electrodeposited porous carbon nanofiber composite as high-capacity sodium-ion battery anode material, ACS Appl. Mater. Interfaces 7 (2015) 18387-18396. https://doi.org/10.1021/acsami.5b04338
[170] M. Wang, Y. Yang, Z. Yang, L. Gu, Q. Chen, Y. Yu, Sodium‐ion batteries: Improving the rate capability of 3D Interconnected carbon nanofibers thin film by boron, nitrogen dual‐doping, Adv. Sci. 4 (2017) 1600468. https://doi.org/10.1002/advs.201600468
[171] B. Zhang, F. Kang, J.-M. Tarascon, J.-K. Kim, Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage, Prog. Mater. Sci. 76 (2016) 319-380. https://doi.org/10.1016/j.pmatsci.2015.08.002
[172] L. Wu, X. Hu, J. Qian, F. Pei, F. Wu, R. Mao, X. Ai, H. Yang, Y. Cao, Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries, Energy Environ. Sci. 7 (2014) 323-328. https://doi.org/10.1039/C3EE42944J
[173] Y. Liu, N. Zhang, L. Jiao, J. Chen, Tin Nanodots encapsulated in porous nitrogen‐doped carbon nanofibers as a free‐standing anode for advanced sodium‐ion batteries, Adv. Mater. 27 (2015) 6702-6707. https://doi.org/10.1002/adma.201503015
[174] L. Ji, M. Gu, Y. Shao, X. Li, M.H. Engelhard, B.W. Arey, W. Wang, Z. Nie, J. Xiao, C. Wang, Controlling SEI formation on SnSb‐porous carbon nanofibers for improved Na ion storage, Adv. Mater. 26 (2014) 2901-2908. https://doi.org/10.1002/adma.201304962
[175] K. Shiva, H.B. Rajendra, A.J. Bhattacharyya, Electrospun SnSb crystalline nanoparticles inside porous carbon fibers as a high stability and rate capability anode for rechargeable batteries, ChemPlusChem 80 (2015) 516-521. https://doi.org/10.1002/cplu.201402291
[176] B. Zhang, J. Huang, J.K. Kim, Ultrafine Amorphous SnOx embedded in carbon nanofiber/carbon nanotube composites for Li‐Ion and Na‐ion batteries. Adv. Funct. Mater. 25 (2015) 5222-5228. https://doi.org/10.1002/adfm.201501498
[177] J. Liu, K. Tang, K. Song, P.A. van Aken, Y. Yu, J. Maier, Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries. Phys. Chem. Chem. Phys. 15 (2013) 20813-20818. https://doi.org/10.1039/c3cp53882f
[178] X. Xiong, W. Luo, X. Hu, C. Chen, L. Qie, D. Hou, Y. Huang, Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries, Sci. Rep. 5 (2015) 9254. https://doi.org/10.1038/srep09254
[179] C. Zhu, X. Mu, P.A. van Aken, Y. Yu, J. Maier, Single‐layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage, Angew. Chem. Int. Ed. 53 (2014) 2152-2156. https://doi.org/10.1002/anie.201308354
[180] J.S. Cho, S.Y. Lee, Y.C. Kang, First introduction of NiSe2 to anode material for sodium-ion batteries: A hybrid of graphene-wrapped NiSe2/C porous nanofiber, Sci. Rep. 6 (2016) 23338. https://doi.org/10.1038/srep23338
[181] J.S. Cho, J.-K. Lee, Y.C. Kang, Graphitic carbon-coated FeSe 2 hollow nanosphere-decorated reduced graphene oxide hybrid nanofibers as an efficient anode material for sodium ion batteries, Sci. Rep. 6 (2016) 23699. https://doi.org/10.1038/srep23699
[182] J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui, Z. Xu, B. Zahiri, X. Tan, E.M. Lotfabad, B.C. Olsen, Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes, ACS Nano 7 (2013) 11004-11015. https://doi.org/10.1021/nn404640c
[183] F. Shen, W. Luo, J. Dai, Y. Yao, M. Zhu, E. Hitz, Y. Tang, Y. Chen, V.L. Sprenkle, X. Li, Ultra‐Thick, Low‐tortuosity, and mesoporous wood carbon anode for high‐performance sodium‐ion batteries, Adv. Energy Mater.6 (2016) 1600377. https://doi.org/10.1002/aenm.201600377
[184] T. Yang, T. Qian, M. Wang, X. Shen, N. Xu, Z. Sun, C. Yan, A sustainable route from biomass byproduct okara to high content nitrogen‐doped carbon sheets for efficient sodium ion batteries, Adv. Mater. 28 (2016) 539-545. https://doi.org/10.1002/adma.201503221
[185] K.I. Hong, L. Qie, R. Zeng, Z.-q. Yi, W. Zhang, D. Wang, W. Yin, C. Wu, Q.J. Fan, W.X. Zhang, Biomass derived hard carbon used as a high performance anode material for sodium ion batteries, J. Mater. Chem. A. 2 (2014) 12733-12738. https://doi.org/10.1039/C4TA02068E
[186] J. Górka, C. Vix-Guterl, C. Matei Ghimbeu, Recent progress in design of biomass-derived hard carbons for sodium ion batteries, C J. Carbon Res. 2 (2016) 24. https://doi.org/10.3390/c2040024
[187] E.M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W.P. Kalisvaart, M. Hazelton, D. Mitlin, High-density sodium and lithium ion battery anodes from banana peels, ACS Nano 8 (2014) 7115-7129. https://doi.org/10.1021/nn502045y
[188] Y. Li, S. Xu, X. Wu, J. Yu, Y. Wang, Y.-S. Hu, H. Li, L. Chen, X. Huang, Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J. Mater. Chem. A. 3 (2015) 71-77. https://doi.org/10.1039/C4TA05451B
[189] Y. Li, Y.S. Hu, M.M. Titirici, L. Chen, X. Huang, Hard carbon microtubes made from renewable cotton as high‐performance anode material for sodium‐ion batteries, Adv. Energy Mater.6 (2016) 1600659. https://doi.org/10.1002/aenm.201600659
[190] L. Wu, D. Buchholz, C. Vaalma, G.A. Giffin, S. Passerini, Apple‐biowaste‐derived hard carbon as a powerful anode material for Na‐ion batteries. ChemElectroChem, 3 (2016) 292-298. https://doi.org/10.1002/celc.201500437
[191] R.R. Gaddam, D. Yang, R. Narayan, K. Raju, N.A. Kumar, X. Zhao, Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries, Nano Energy 26 (2016) 346-352. https://doi.org/10.1016/j.nanoen.2016.05.047
[192] D. Yan, C. Yu, X. Zhang, W. Qin, T. Lu, B. Hu, H. Li, L. Pan, Nitrogen-doped carbon microspheres derived from oatmeal as high capacity and superior long life anode material for sodium ion battery, Electrochim. Acta 191 (2016) 385-391. https://doi.org/10.1016/j.electacta.2016.01.105
[193] H. Li, F. Shen, W. Luo, J. Dai, X. Han, Y. Chen, Y. Yao, H. Zhu, K. Fu, E. Hitz, Carbonized-leaf membrane with anisotropic surfaces for sodium-ion battery, ACS Appl. Mater. Interfaces 8 (2016) 2204-2210. https://doi.org/10.1021/acsami.5b10875
[194] P. Zheng, T. Liu, X. Yuan, L. Zhang, Y. Liu, J. Huang, S. Guo, Enhanced performance by enlarged nano-pores of holly leaf-derived lamellar carbon for sodium-ion battery anode, Sci. Rep. 6 (2016) 26246. https://doi.org/10.1038/srep26246
[195] T.H. Emaga, C. Robert, S.N. Ronkart, B. Wathelet, M. Paquot, Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties, Bioresource Technol. 99 (2008) 4346-4354. https://doi.org/10.1016/j.biortech.2007.08.030
[196] H.g. Wang, Z. Wu, F.l. Meng, D.l. Ma, X.l. Huang, L.m. Wang, X.b. Zhang, Nitrogen‐doped porous carbon nanosheets as low‐cost, high‐performance anode material for sodium‐ion batteries, ChemSusChem 6 (2013) 56-60. https://doi.org/10.1002/cssc.201200680
[197] J. Xu, M. Wang, N.P. Wickramaratne, M. Jaroniec, S. Dou, L. Dai, High‐performance sodium ion batteries based on a 3D anode from nitrogen‐doped graphene foams, Adv.Mater. 27 (2015) 2042-2048. https://doi.org/10.1002/adma.201405370
[198] Z. Wang, L. Qie, L. Yuan, W. Zhang, X. Hu, Y. Huang, Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance, Carbon 55 (2013) 328-334. https://doi.org/10.1016/j.carbon.2012.12.072
[199] D. Li, L. Zhang, H. Chen, L.-x. Ding, S. Wang, H. Wang, Nitrogen-doped bamboo-like carbon nanotubes: promising anode materials for sodium-ion batteries, Chem. Commun. 51 (2015) 16045-16048. https://doi.org/10.1039/C5CC06266G
[200] Z. Wang, Y. Li, X.-J. Lv, N-doped ordered mesoporous carbon as a high performance anode material in sodium ion batteries at room temperature, RSC Adv. 4 (2014) 62673-62677. https://doi.org/10.1039/C4RA09084E
[201] X. Wang, G. Li, F.M. Hassan, J. Li, X. Fan, R. Batmaz, X. Xiao, Z. Chen, Sulfur covalently bonded graphene with large capacity and high rate for high-performance sodium-ion batteries anodes, Nano Energy 15 (2015) 746-754. https://doi.org/10.1016/j.nanoen.2015.05.038
[202] W. Li, M. Zhou, H. Li, K. Wang, S. Cheng, K. Jiang, A high performance sulfur-doped disordered carbon anode for sodium ion batteries, Energy Environ. Sci. 8 (2015) 2916-2921. https://doi.org/10.1039/C5EE01985K
[203] L. Qie, W. Chen, X. Xiong, C. Hu, F. Zou, P. Hu, Y. Huang, Sulfur‐doped carbon with enlarged interlayer distance as a high‐performance anode material for sodium‐ion batteries, Adv. Sci. 2 (2015) 1500195. https://doi.org/10.1002/advs.201500195
[204] H. Hou, L. Shao, Y. Zhang, G. Zou, J. Chen, X. Ji, Large‐area carbon nanosheets doped with phosphorus: a high‐performance anode material for sodium‐ion batteries, Adv. Sci. 4 (2017) 1600243. https://doi.org/10.1002/advs.201600243
[205] Y. Wang, C. Wang, Y. Wang, H. Liu, Z. Huang, Boric acid assisted reduction of graphene oxide: a promising material for sodium-ion batteries, ACS Appl. Mater. Interfaces 8 (2016) 18860-18866. https://doi.org/10.1021/acsami.6b04774
[206] C. Ling, F. Mizuno, Boron-doped graphene as a promising anode for Na-ion batteries, Phys.Chem. Chem. Phys. 16 (2014) 10419-10424. https://doi.org/10.1039/C4CP01045K
[207] D. Xu, C. Chen, J. Xie, B. Zhang, L. Miao, J. Cai, Y. Huang, L. Zhang, A hierarchical N/S‐codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high‐performance sodium‐ion batteries, Adv. Energy Mater.6 (2016) 1501929. https://doi.org/10.1002/aenm.201501929
[208] J. Yang, X. Zhou, D. Wu, X. Zhao, Z. Zhou, S‐doped N‐rich carbon nanosheets with expanded interlayer distance as anode materials for sodium‐ion batteries, Adv. Mater. 29 (2017) 1604108. https://doi.org/10.1002/adma.201604108
[209] Y. Li, Z. Wang, L. Li, S. Peng, L. Zhang, M. Srinivasan, S. Ramakrishna, Preparation of nitrogen-and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries, Carbon 99 (2016) 556-563. https://doi.org/10.1016/j.carbon.2015.12.066