Conducting Polymers for Sodium-Ion Batteries
Suzhe Liang, Yonggao Xia, Peter Müller-Buschbaum, Ya-Jun Cheng
Sodium-ion batteries are regarded as the most promising substitute of lithium-ion batteries in the future, due to the low cost and sustainability. The appropriate electrode material is the key to achieve commercialization of sodium-ion batteries. Conducting polymers can be applied on both cathodes and anodes separately or as a component of the composite, because of the good conductivity and flexibility. In this chapter, the recent progress of conducting polymer applied in SIBs will be reviewed. There will be two main parts focused on cathodes and anodes, respectively.
Keywords
Conducting Polymers, Cathode, Anode, Sodium-Ion Batteries
Published online 5/20/2020, 21 pages
Citation: Suzhe Liang, Yonggao Xia, Peter Müller-Buschbaum, Ya-Jun Cheng, Conducting Polymers for Sodium-Ion Batteries, Materials Research Foundations, Vol. 76, pp 251-271, 2020
DOI: https://doi.org/10.21741/9781644900833-11
Part of the book on Sodium-Ion Batteries
References
[1] Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid, Chem. Rev. 111 (2011) 3577-3613. https://doi.org/10.1021/cr100290v
[2] V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energy Environ. Sci. 5 (2012) 5884-5901. https://doi.org/10.1039/c2ee02781j
[3] Y.F.Y. Yao, J. Kummer, Ion exchange properties of and rates of ionic diffusion in beta-alumina, J. Inorg. Nucl. Chem. 29 (1967) 2453-2475. https://doi.org/10.1016/0022-1902(67)80301-4
[4] J. Sudworth, A. Tiley, Sodium Sulphur Battery, Springer Science & Business Media, New York, 1985, pp. 257-277.
[5] T. Oshima, M. Kajita, A. Okuno, Development of sodium‐sulfur batteries, Int. J. Appl. Ceram. Tec. 1 (2004) 269-276.
[6] R. Bones, D. Teagle, S. Brooker, F. Cullen, Development of a Ni, NiCl2 positive electrode for a liquid sodium (ZEBRA) battery cell, J. Electrochem. Soc. 136 (1989) 1274-1277. https://doi.org/10.1002/chin.198937021
[7] C.H. Dustmann, Advances in ZEBRA batteries, J. Power Sources 127 (2004) 85-92.
[8] N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries, Chem. Rev. 114 (2014) 11636-11682. https://doi.org/10.1021/cr500192f
[9] A. Yoshino, K. Sanechika, T. Nakajima, USP4, 668,595, 1985; A, Yoshino, K. Sanechika, T. Nakajima, JP1989293 (1985).
[10] M. Yoshio, R.J. Brodd, A. Kozawa, Lithium-ion batteries, Springer, Switzerland, 2009, pp. 213-233.
[11] A. Yoshino, The Birth of the Lithiumthium-ion batteries. Chem. Int. Ed. 51 (2012) 5798-5800.
[12] S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials, Energy Environ. Sci. 4 (2011) 3680-3688. https://doi.org/10.1039/c1ee01782a
[13] P. Ge, M. Fouletier, Electrochemical intercalation of sodium in graphite, Solid State Ionics 28 (1988) 1172-1175. https://doi.org/10.1016/0167-2738(88)90351-7
[14] M.M. Doeff, Y. Ma, S.J. Visco, L.C. De Jonghe, Electrochemical insertion of sodium into carbon, J. Electrochem. Soc. 140 (1993) L169-L170. https://doi.org/10.1149/1.2221153
[15] M. Lao, Y. Zhang, W. Luo, Q. Yan, W. Sun, S.X. Dou, Alloy-based anode materials toward advanced sodium-ion batteries, Adv. Mater. 29 (2017) 1700622. https://doi.org/10.1002/adma.201700622
[16] Q. Wang, C. Zhao, Y. Lu, Y. Li, Y. Zheng, Y. Qi, X. Rong, L. Jiang, X. Qi, Y. Shao, D. Pan, B. Li, Y.S. Hu, L. Chen, Advanced Nanostructured Anode Materials for Sodium-Ion Batteries, Small 13 (2017) 1701835. https://doi.org/10.1002/smll.201701835
[17] Z. Song, H. Zhou, Towards sustainable and versatile energy storage devices: an overview of organic electrode materials, Energy Environ. Sci. 6 (2013) 2280-2301. https://doi.org/10.1039/c3ee40709h
[18] A. Abouimrane, W. Weng, H. Eltayeb, Y. Cui, J. Niklas, O. Poluektov, K. Amine, Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells, Energy Environ. Sci. 5 (2012) 9632-9638. https://doi.org/10.1039/c2ee22864e
[19] R. Emanuelsson, M. Sterby, M. Strømme, M. Sjödin, An all-organic proton battery, J. Am. Chem. Soc. 139 (2017) 4828-4834. https://doi.org/10.1021/jacs.7b00159
[20] Q.L. Zhao, A.K. Whittaker, X.S. Zhao, Polymer electrode materials for sodium-ion batteries, materials 11 (2018) 2567-2585. https://doi.org/10.3390/ma11122567
[21] X.Y. Cao, J.B. Liu, L.M. Zhu, L.L. Xie, Polymer electrode materials for high-performance lithium/sodium-ion batteries: A review, Energy Technol. 7 (2019)1800759. https://doi.org/10.1002/ente.201800759
[22] A.J. Heeger, Semiconducting and metallic polymers: the fourth generation of polymeric materials, J. Phys. Chem. B 105 (2001) 8475-8491. https://doi.org/10.1021/jp011611w
[23] J. Heinze, Electrochemistry of conducting polymers, Synthetic Met. 43 (1991) 2805-2823. https://doi.org/10.1016/0379-6779(91)91183-b
[24] X.C. Li, Y.S. Jiao, S.J. Li, The synthesis, properties and application of new conducting polymers, Eur. Polym. J. 27 (1991) 1345-1351.
[25] H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene,(CH)x, Chem. Commun. (1977) 578-580. https://doi.org/10.1039/c39770000578
[26] C. Chiang, M. Druy, S. Gau, A. Heeger, E. Louis, A.G. MacDiarmid, Y. Park, H. Shirakawa, Synthesis of highly conducting films of derivatives of polyacetylene,(CH)x, J. Am. Chem. Soc. 100 (1978) 1013-1015. https://doi.org/10.1021/ja00471a081
[27] G. Inzelt, Conducting polymers: A new era in electrochemistry, Springer, New York, 2008, pp. 225-263.
[28] L.J. Pan, H. Qiu, C.M. Dou, Y. Li, L. Pu, J.B. Xu, Y. Shi, Conducting polymer nanostructures: Template synthesis and applications in energy storage, Int. J. Mol. Sci. 11 (2010) 2636-2657. https://doi.org/10.3390/ijms11072636
[29] X.F. Lu, W.J. Zhang, C. Wang, T.C. Wen, Y. Wei, One-dimensional conducting polymer nanocomposites: Synthesis, properties and applications, Prog. Polym. Sci. 36 (2011) 671-712. https://doi.org/10.1016/j.progpolymsci.2010.07.010
[30] T.K. Das, S. Prusty, Review on conducting polymers and their applications, Polym-Plast. Technol. 51 (2012) 1487-1500.
[31] Y. Shi, L.L. Peng, G.H. Yu, Nanostructured conducting polymer hydrogels for energy storage applications, Nanoscale 7 (2015) 12796-12806. https://doi.org/10.1039/c5nr03403e
[32] M.H. Naveen, N.G. Gurudatt, Y.B. Shim, Applications of conducting polymer composites to electrochemical sensors: A review, Appl. Mater. Today 9 (2017) 419-433. https://doi.org/10.1016/j.apmt.2017.09.001
[33] H.Y. Kang, Y.C. Liu, M.H. Shang, T.Y. Lu, Y.J. Wang, L.F. Jiao, NaV3O8 nanosheet@polypyrrole core-shell composites with good electrochemical performance as cathodes for Na-ion batteries, Nanoscale 7 (2015) 9261-9267. Nanoscale 7 (2015) 9261-9267.
[34] D.H. Nam, K.S. Hong, S.J. Lim, M.J. Kim, H.S. Kwon, High-performance Sb/Sb2O3 anode materials using a polypyrrole nanowire network for na-ion batteries, Small 11 (2015) 2885-2892. https://doi.org/10.1002/smll.201500491
[35] P. Novak, K. Muller, K.S.V. Santhanam, O. Haas, Electrochemically active polymers for rechargeable batteries, Chem. Rev. 97 (1997) 207-281. https://doi.org/10.1021/cr941181o
[36] D. Kumar, R. Sharma, Advances in conductive polymers, Eur. Polym. J. 34 (1998) 1053-1060.
[37] M.E. Abdelhamid, A.P. O’Mullane, G.A. Snook, Storing energy in plastics: a review on conducting polymers & their role in electrochemical energy storage, RSC Adv. 5 (2015) 11611-11626. https://doi.org/10.1039/c4ra15947k
[38] M.E. Bhosale, S. Chae, J.M. Kim, J.Y. Choi, Organic small molecules and polymers as an electrode material for rechargeable lithium ion batteries, J. Mater. Chem. A 6 (2018) 19885-19911. https://doi.org/10.1039/c8ta04906h
[39] L. Zhu, Y. Shen, M. Sun, J. Qian, Y. Cao, X. Ai, H. Yang, Self-doped polypyrrole with ionizable sodium sulfonate as a renewable cathode material for sodium ion batteries, Chem. Commun. 49 (2013) 11370-11372. https://doi.org/10.1039/c3cc46642f
[40] R. Zhao, L. Zhu, Y. Cao, X. Ai, H.X. Yang, An aniline-nitroaniline copolymer as a high capacity cathode for Na-ion batteries, Electrochem. Commun. 21 (2012) 36-38. https://doi.org/10.1016/j.elecom.2012.05.015
[41] M. Zhou, L. Zhu, Y. Cao, R. Zhao, J. Qian, X. Ai, H. Yang, Fe (CN)6-4-doped polypyrrole: a high-capacity and high-rate cathode material for sodium-ion batteries, RSC Adv. 2 (2012) 5495-5498. https://doi.org/10.1039/c2ra20666h
[42] W. Deng, X. Liang, X. Wu, J. Qian, Y. Cao, X. Ai, J. Feng, H. Yang, A low cost, all-organic Na-ion battery based on polymeric cathode and anode, Sci. Rep. 3 (2013) 2671. https://doi.org/10.1038/srep02671
[43] M. Zhou, Y. Xiong, Y.L. Cao, X.P. Ai, H.X. Yang, Electroactive organic anion-doped polypyrrole as a low cost and renewable cathode for sodium-ion batteries, J. Polym. Sci. Pol. Phys. 51 (2013) 114-118. https://doi.org/10.1002/polb.23184
[44] Y. Shen, D. Yuan, X. Ai, H. Yang, M. Zhou, Poly (diphenylaminesulfonic acid sodium) as a cation-exchanging organic cathode for sodium batteries, Electrochem. Commun. 49 (2014) 5-8. https://doi.org/10.1016/j.elecom.2014.09.016
[45] M. Zhou, W. Li, T. Gu, K. Wang, S. Cheng, K. Jiang, A sulfonated polyaniline with high density and high rate Na-storage performances as a flexible organic cathode for sodium ion batteries, Chem. Commun. 51 (2015) 14354-14356. https://doi.org/10.1039/c5cc05654c
[46] H.Y. Hou, Q.S. Liao, J.X. Duan, S. Liu, Y. Yao, Observation on sodium p-toluenesulfonate-doped polypyrrole cathode for sodium ion battery, Surf. Innov. 6 (2018) 56-62. https://doi.org/10.1680/jsuin.17.00036
[47] Q.S. Liao, H.Y. Hou, X.X. Liu, Y. Yao, Z.P. Dai, C.Y. Yu, D.D. Li, L-lactic acid and sodium p-toluenesulfonate co-doped polypyrrole for high performance cathode in sodium ion battery, J. Phys. Chem. Solids 115 (2018) 233-237. https://doi.org/10.1016/j.jpcs.2017.12.015
[48] D. Su, J. Zhang, S. Dou, G. Wang, Polypyrrole hollow nanospheres: stable cathode materials for sodium-ion batteries, Chem. Commun. 51 (2015) 16092-16095. https://doi.org/10.1039/c5cc04229a
[49] S.H. Liu, F.X. Wang, R.H. Dong, T. Zhang, J. Zhang, X.D. Zhuang, Y.Y. Mai, X.L. Feng, Dual-template synthesis of 2D mesoporous polypyrrole nanosheets with controlled pore size, Adv. Mater. 28 (2016) 8365-8370. https://doi.org/10.1002/adma.201603036
[50] H.X. Han, H.Y. Lu, X.Y. Jiang, F.P. Zhong, X.P. Ai, H.X. Yang, Y.L. Cao, Polyaniline hollow nanofibers prepared by controllable sacrifice-template route as high-performance cathode materials for sodium-ion batteries, Electrochim. Acta 301 (2019) 352-358. https://doi.org/10.1016/j.electacta.2019.02.002
[51] J. Manuel, T. Salguero, R.P. Ramasamy, Synthesis and characterization of polyaniline nanofibers as cathode active material for sodium-ion battery, J. Appl. Electrochem. 49 (2019) 529-537. https://doi.org/10.1007/s10800-019-01298-y
[52] R. Berthelot, D. Carlier, C. Delmas, Electrochemical investigation of the P2–NaxCoO2 phase diagram, Nat. Mater. 10 (2011) 74. https://doi.org/10.1038/nmat2920
[53] B. Ellis, W. Makahnouk, Y. Makimura, K. Toghill, L. Nazar, A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries, Nat. Mater. 6 (2007) 749. https://doi.org/10.1038/nmat2007
[54] Y. Zhu, Y. Xu, Y. Liu, C. Luo, C. Wang, Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries, Nanoscale 5 (2013) 780-787. https://doi.org/10.1039/c2nr32758a
[55] P. Barpanda, G. Liu, C.D. Ling, M. Tamaru, M. Avdeev, S.-C. Chung, Y. Yamada, A. Yamada, Na2FeP2O7: a safe cathode for rechargeable sodium-ion batteries, Chem. Mater. 25 (2013) 3480-3487. https://doi.org/10.1002/chin.201346011
[56] C. Zhu, K. Song, P.A. van Aken, J. Maier, Y. Yu, Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes, Nano Lett. 14 (2014) 2175-2180. https://doi.org/10.1021/nl500548a
[57] M. Okubo, C.H. Li, D.R. Talham, High rate sodium ion insertion into core–shell nanoparticles of Prussian blue analogues, Chem. Commun. 50 (2014) 1353-1355. https://doi.org/10.1039/c3cc47607c
[58] Y. You, X.L. Wu, Y.X. Yin, Y.G. Guo, High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries, Energy Environ. Sci. 7 (2014) 1643-1647. https://doi.org/10.1039/c3ee44004d
[59] M. Okubo, D. Asakura, Y. Mizuno, J.D. Kim, T. Mizokawa, T. Kudo, I. Honma, Switching Redox-Active Sites by Valence Tautomerism in Prussian Blue Analogues AxMny[Fe(CN)6]n H2O (A: K, Rb): Robust Frameworks for Reversible Li Storage, J. Phys. Chem. Lett. 1 (2010) 2063-2071. https://doi.org/10.1021/jz100708b
[60] W.J. Li, S.L. Chou, J.Z. Wang, J.L. Wang, Q.F. Gu, H.K. Liu, S.X. Dou, Multifunctional conducing polymer coated Na1+xMnFe(CN)6 cathode for sodium-ion batteries with superior performance via a facile and one-step chemistry approach, Nano Energy 13 (2015) 200-207. https://doi.org/10.1016/j.nanoen.2015.02.019
[61] Y.H. Cao, D. Fang, X.Q. Liu, Z.P. Luo, G.Z. Li, W.L. Xu, M. Jiang, C.X. Xiong, Sodium vanadate nanowires @ polypyrrole with synergetic core-shell structure for enhanced reversible sodium-ion storage, Compos. Sci, Technol. 137 (2016) 130-137. https://doi.org/10.1016/j.compscitech.2016.10.032
[62] F.D. Hu, L. Li, X.L. Jiang, Hierarchical Octahedral Na2MnFe(CN)6 and Na2MnFe(CN)6@PPy as cathode materials for sodium-ion batteries, Chinses J. Chem. 35 (2017) 415-419. https://doi.org/10.1002/cjoc.201600713
[63] Z.D. Wang, Y. Liu, Z.J. Wu, G.Q. Guan, D. Zhang, H.Y. Zheng, S.D. Xu, S.B. Liu, X.G. Hao, A string of nickel hexacyanoferrate nanocubes coaxially grown on a CNT@bipolar conducting polymer as a high-performance cathode material for sodium-ion batteries, Nanoscale 9 (2017) 823-831. https://doi.org/10.1039/c6nr08765e
[64] J.X. Zhang, T.C. Yuan, H.Y. Wan, J.F. Qian, X.P. Ai, H.X. Yang, Y.L. Cao, Surface-engineering enhanced sodium storage performance of Na3V2(PO4)3 cathode via in-situ self-decorated conducting polymer route, Sci. China Chem. 60 (2017) 1546-1553. https://doi.org/10.1007/s11426-017-9125-y
[65] H. Lim, J.H. Jung, Y.M. Park, H.N. Lee, H.J. Kim, High-performance aqueous rechargeable sulfate- and sodium-ion battery based on polypyrrole-MWCNT core-shell nanowires and Na0.44MnO2 nanorods, Appl. Surf. Sci. 446 (2018) 131-138. https://doi.org/10.1016/j.apsusc.2018.02.021
[66] D.S. Kim, H. Yoo, M.S. Park, H. Kim, Boosting the sodium storage capability of Prussian blue nanocubes by overlaying PEDOT:PSS layer, J. Alloy. Compd. 791 (2019) 385-390. https://doi.org/10.1016/j.jallcom.2019.03.317
[67] D. Lu, Z.J. Yao, Y. Zhong, X.L. Wang, X.H. Xia, C.D. Gu, J.B. Wu, J.P. Tu, Polypyrrole-Coated Sodium Manganate Hollow Microspheres as a Superior Cathode for Sodium Ion Batteries, ACS Appl. Mater. Interfaces 11 (2019) 15630-15637. https://doi.org/10.1021/acsami.9b02555
[68] X.Y. Chen, L. Liu, Z.C. Yan, Z.F. Huang, Q. Zhou, G.X. Guo, X.Y. Wang, The excellent cycling stability and superior rate capability of polypyrrole as the anode material for rechargeable sodium ion batteries, RSC Adv. 6 (2016) 2345-2351. https://doi.org/10.1039/c5ra22607d
[69] L. Yang, X. Huang, A. Gogoll, M. Stromme, M. Sjodin, Conducting redox polymer based anode materials for high power electrical energy storage, Electrochim. Acta 204 (2016) 270-275. https://doi.org/10.1016/j.electacta.2016.03.163
[70] N. Fernandez, P. Sanchez-Fontecoba, E. Castillo-Martinez, J. Carretero-Gonzalez, T. Rojo, M. Armand, Polymeric redox-active electrodes for sodium-ion batteries, ChemSusChem 11 (2018) 311-319. https://doi.org/10.1002/cssc.201701471
[71] T.T. Gu, M. Zhou, B. Huang, M.Y. Liu, X.L. Xiong, K.L. Wang, S.J. Cheng, K. Jiang, Highly conjugated poly(N-heteroacene) nanofibers for reversible Na storage with ultra-high capacity and a long cycle life, J. Mater. Chem. A 6 (2018) 18592-18598. https://doi.org/10.1039/c8ta06724d
[72] L. Zhu, Y. Niu, Y. Cao, A. Lei, X. Ai, H. Yang, n-Type redox behaviors of polybithiophene and its implications for anodic Li and Na storage materials, Electrochimi. Acta 78 (2012) 27-31. https://doi.org/10.1016/j.electacta.2012.05.152
[73] K. Dai, H. Zhao, Z. Wang, X. Song, V. Battaglia, G. Liu, Toward high specific capacity and high cycling stability of pure tin nanoparticles with conductive polymer binder for sodium ion batteries, J. Power Sources 263 (2014) 276-279. https://doi.org/10.1016/j.jpowsour.2014.04.012
[74] Z.A. Zhang, J. Zhang, X.X. Zhao, F.H. Yang, Core-sheath structured porous carbon nanofiber composite anode material derived from bacterial cellulose/polypyrrole as an anode for sodium-ion batteries, Carbon 95 (2015) 552-559. https://doi.org/10.1016/j.carbon.2015.08.069
[75] B.Y. Ruan, H.P. Guo, Q.N. Liu, D.Q. Shi, S.L. Chou, H.K. Liu, G.H. Chen, J.Z. Wang, 3-D structured SnO2-polypyrrole nanotubes applied in Na-ion batteries, RSC Adv. 6 (2016) 103124-103131. https://doi.org/10.1039/c6ra21139a
[76] H.W. Wang, Y. Zhang, W.P. Sun, H.T. Tan, J.B. Franklin, Y.Y. Guo, H.S. Fan, M. Ulaganathan, X.L. Wu, Z.Z. Luo, S. Madhavi, Q.Y. Yan, Conversion of uniform graphene oxide/polypyrrole composites into functionalized 3D carbon nanosheet frameworks with superior supercapacitive and sodium-ion storage properties, J. Power Sources 307 (2016) 17-24. https://doi.org/10.1016/j.jpowsour.2015.12.104
[77] Q.M. He, K. Rui, C.H. Chen, J.H. Yang, Z.Y. Wen, Interconnected CoFe2O4-polypyrrole nanotubes as anode materials for high performance sodium ion batteries, ACS Appl. Mater. Interfaces 9 (2017) 36927-36935. https://doi.org/10.1021/acsami.7b12503
[78] T.Y. Hou, G.J. Tang, X.H. Sun, S. Cai, C.M. Zheng, W.B. Hu, Perchlorate ion doped polypyrrole coated ZnS sphere composites as a sodium-ion battery anode with superior rate capability enhanced by pseudocapacitance, RSC Adv. 7 (2017) 43636-43641. https://doi.org/10.1039/c7ra07901j
[79] Q.S. Liao, H.Y. Hou, J.X. Duan, S. Liu, Y. Yao, Z.P. Dai, C.Y. Yu, D.D. Li, Composite sodium p-toluenesulfonate/polypyrrole/TiO2 nanotubes/Ti anode for sodium ion battery, Int. J. Hydrogen Energy 42 (2017) 12414-12419. https://doi.org/10.1016/j.ijhydene.2017.03.116
[80] Y. Wei, Q. Hu, Y.H. Cao, D. Fang, W.L. Xu, M. Jiang, J. Huang, H. Liu, X. Fan, Polypyrrole nanotube arrays on carbonized cotton textile for aqueous sodium battery, Org. Electron. 46 (2017) 211-217. https://doi.org/10.1016/j.orgel.2017.04.008
[81] Y.J. Fang, X.Y. Yu, X.W. Lou, Formation of polypyrrole-coated Sb2Se3 microclips with enhanced sodium-storage properties, Angew. Chem.-Int. Edi. 57 (2018) 9859-9863. https://doi.org/10.1002/anie.201805552
[82] J.J. Yuan, Y.C. Hao, X.K. Zhang, X.F. Li, Sandwiched CNT@SnO2@PPy nanocomposites enhancing sodium storage, Colloid Surface A 555 (2018) 795-801. https://doi.org/10.1016/j.colsurfa.2018.07.023
[83] J. Zhang, K. Zhang, J. Yang, G.H. Lee, J. Shin, V. Wing-hei Lau, Y.M. Kang, Bifunctional conducting polymer coated CoP core-shell nanowires on carbon paper as a free-standing anode for sodium ion batteries, Adv. Energy Mater. 8 (2018). https://doi.org/10.1002/aenm.201800283
[84] T. Zheng, G.D. Li, L.X. Zhao, Y.X. Shen, Flowerlike Sb2S3/PPy microspheres used as anode material for high-performance sodium-ion batteries, Eur. J. Inorg. Chem. (2018) 1224-1228. https://doi.org/10.1002/ejic.201701364
[85] B. Long, Z.P. Qiao, J.N. Zhang, S.Q. Zhang, M.S. Balogun, J. Lu, S.Q. Song, Y.X. Tong, Polypyrrole-encapsulated amorphous Bi2S3 hollow sphere for long life sodium ion batteries and lithium-sulfur batteries, J. Mater. Chem. A 7 (2019) 11370-11378. https://doi.org/10.1039/c9ta01358j
[86] S.Z. Liang, X.Y. Wang, Y.G. Xia, S.L. Xia, E. Metwalli, B. Qiu, Q. Ji, S.S. Yin, S. Xie, K. Fang, Scalable synthesis of hierarchical antimony/carbon micro-/nanohybrid lithium/sodium-ion battery anodes based on dimethacrylate monomer, Acta Metall. Sin-Engl. 31 (2018) 910-922. https://doi.org/10.1007/s40195-018-0733-5
[87] D.H. Nam, M.J. Kim, S.J. Lim, I.S. Song, H.S. Kwon, Single-step synthesis of polypyrrole nanowires by cathodic electropolymerization, J. Mater. Chem. A 1 (2013) 8061-8068. https://doi.org/10.1039/c3ta11227f